上海交通大学-石墨烯及其在锂离子电池电极材料中的应用
- 格式:pdf
- 大小:2.81 MB
- 文档页数:25
石墨烯在锂离子电池负极材料中的应用摘要:随着近几年石墨烯的研究进展,在复合材料领域石墨烯扮演的角色越来越重要。
随着科技的发展,锂离子电池应用的范围越来越广。
负极材料作为锂离子电池重要部分,越来越多的被人们研究开发。
基于此,文章就锂离子电池负极材料中石墨烯的应用加以分析和探讨。
关键词:锂离子电池;负极材料;石墨烯随着科技的发展,锂电池凭借高电压、高能量密度、良好的循环性能、低自放电等突出优势在人们生活中的应用越来越广泛。
在锂离子电池中电位比较低的一端叫负极,在原电池中起氧化作用。
锂电池中负极所需要的材料为负极材料。
根据实际生产中锂离子电池生产成本核算,负极材料成本约占比锂电池总成本的1/4~1/3,因此负极材料的研究至关重要。
一、什么是石墨烯石墨烯是由单层碳原子排列成六边形晶格而形成的一种异形体。
自然界中有许多它的“同胞兄弟”如石墨、钻石、碳、碳纳米管。
这些都是碳的其他异形体。
石墨烯他的化学结构很简单,作为一种新型的材料,将会变得极其容易获得,不会像之前难以获得的材料那么昂贵,这将会使价格变得低廉,也让人们更容易所接受。
再说它的空间结构,它的形状是一种类似足球比赛中守门员的球网,是一种薄膜,是一种六角型晶格平面的薄膜,是一种只有一个碳原子的厚度二维材料,是一种新型的、坚固的二维材料,这就区别了和三维材料的区别,在后面我们会说出石墨烯也是可以由二维材料变成三维材料的。
石墨烯具有一些不同于其他材料的一些特性,他是最坚固的材料,它能传导热量和电能,它几乎是透明的。
所以相较于之前用于储能材料,和用于光电催化方面的材料,石墨烯具有着一些得天独厚的优势,也意味这在这些方面上,石墨烯将会得到更为广泛的使用。
二、石墨烯的制备技术目前我们国家在研究石墨烯生产方法时主要有两个方向,分别是物理法制备和化学法制备。
利用微机械剥离法能够得到高质量的石墨烯,但是由于此种方法处理出来的石墨烯通常尺寸较小,应用范围不广阔因此并不适合大规模生产,目前比较适用的还是化学方法,化学方法总共分为两种,一种是化学气象沉积法,这种方法通常是用Ni,Ru等一些过度金属来做基底,在利用甲烷和乙烯等一些小分子来高温气态的条件下发生一些化学反映,在基底层可以生长出石墨烯,这种方法目前主要用来制备墨烯薄膜,但是由于使用过渡金属作为基底,成本相对比较高。
郭守武教授课题组在石墨烯材料研究方面取得新进展郭守武教授带领上海交通大学微纳科学技术研究院的老师,经过近五年的系统研究,在石墨烯的制备和应用探索方面取得了一系列突破,发表的相关论文在国际上产生了一定的影响。
石墨烯是由碳原子六方键合而成的理想二维晶体,具有独特的化学、物理和机械性质,在材料、能源、生物医学等领域有着潜在的应用价值。
然而,如何可控且规模化制备高质量石墨烯,特别是其层数和二维侧向尺寸(lateral size)的控制方面,一直是该领域亟待解决的一个科学和技术难题,这不仅制约了人们对石墨烯本征性质的认识,也制约着其在生产实际中的应用。
郭教授课题组首次利用维C作为还原剂制备得到能在水溶液中稳定分散的化学还原氧化石墨烯(Chem. Commun.,2010, 46, 1112,该文已被引用120多次),在此基础上开发了适宜于工业化放大的羟胺还原制备石墨烯的方法(J. Phys. Chem. C,2011, 115, 11957)。
在石墨烯二维侧向尺寸调控方面,该团队创新性地以著名的光辅助费顿(P hoto–Fenton)反应为基础,发展了快速宏量制备二维侧向尺寸可控的石墨烯材料,包括不同尺寸的石墨烯量子点的技术和相应的工艺(其成果在影响因子达11.34的ASC NANO上发表)。
该工作引起了国际同行的关注,课题组正应邀为ChemPhysChem,Nanotechnology等期刊撰写相关领域的综述文章。
同时,他们将自己制备的化学还原氧化石墨烯应用在锂离子电池电极材料中,该材料组装成的电池体现出优异的充放电性能。
相关技术已获得国家发明专利授权2项,并已得到相关企业的资金投入,目前正在开展石墨烯及锂离子电池电极材料规模化生产的前期研究工作。
课题组还与华东理工大学药学院张井岩教授课题组和本院崔大祥教授课题组在石墨烯生物学效应及其应用领域方面开展了卓有成效的合作研究。
以石墨烯和氧化石墨烯材料为基质,组装出了新型固载酶催化体系,并系统研究了其生物催化和传感特性,部分研究结果已先后发表在Langmuir(2010, 26,6083),J. Phys. Chem. C(2010,114, 8469)和Sm all(2012, 8, 154)等杂志上,并被Materials views网站专题报道。
石墨烯材料的制备及其在电化学领域的应用一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功制备以来,就凭借其独特的电子结构、优异的物理和化学性质,在科学研究和技术应用中引起了广泛的关注。
本文旨在对石墨烯材料的制备方法以及其在电化学领域的应用进行全面的概述和深入的探讨。
我们将简要介绍石墨烯的基本性质,然后重点论述石墨烯的各种制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等。
随后,我们将详细讨论石墨烯在电化学领域的应用,如锂离子电池、超级电容器、燃料电池等。
通过对这些应用的探讨,我们将揭示石墨烯材料在提高电化学性能、推动电化学领域发展中的重要作用。
我们将对石墨烯材料的应用前景进行展望,以期为未来石墨烯在电化学及其他领域的研究提供参考和借鉴。
二、石墨烯材料的制备方法石墨烯的制备方法多种多样,主要包括机械剥离法、化学气相沉积法、氧化还原法以及碳化硅外延生长法等。
机械剥离法:这是最早制备石墨烯的方法,由英国科学家Geim 和Novoselov在2004年首次实现。
他们使用透明胶带对高定向热解石墨进行反复剥离,最终得到了单层石墨烯。
这种方法操作简单,但是制备效率低,且所得石墨烯尺寸不易控制,因此无法满足大规模生产的需求。
化学气相沉积法(CVD):这是目前制备大面积、高质量石墨烯最常用的方法。
通过在高温条件下,使含碳有机气体(如甲烷)在金属催化剂(如铜、镍)表面分解,生成石墨烯。
这种方法可以制备出大面积、连续的石墨烯薄膜,且可通过控制生长条件来调节石墨烯的层数和质量。
氧化还原法:该方法以石墨为原料,通过强氧化剂(如浓硫酸、高锰酸钾)将石墨氧化成氧化石墨,再经过超声剥离得到氧化石墨烯。
然后,通过还原剂(如氢气、水合肼)将氧化石墨烯还原,最终得到石墨烯。
这种方法制备的石墨烯产量大,成本低,但是所得石墨烯的质量相对较低,含有较多的缺陷和杂质。
碳化硅外延生长法:在高温条件下,使碳化硅中的硅原子升华,剩余的碳原子在基底上重新排列,形成石墨烯。
石墨烯复合材料在能源领域中的应用石墨烯是一种非常有前途的新材料。
它具有极高的导电性和导热性,是一种非常强硬和耐高温的材料,而且非常轻便。
在能源领域中,石墨烯复合材料的应用前景非常广阔。
首先,石墨烯复合材料可以应用在锂离子电池中。
锂离子电池是目前最常见的电池类型,其电化学性能非常优异,但是锂离子电极材料有较小的离子扩散性和容量失效问题。
石墨烯的高导电性和导热性以及与锂离子电池正极材料的良好相容性,被认为可作为一种非常有效的材料来改进能量密度,提高循环性能并延长电池寿命。
其次,石墨烯复合材料可以应用在太阳能电池中。
目前,太阳能电池是一种非常强大的可再生能源。
通过降低电池成本,提高电池效率和耐久性,太阳能电池的应用将得到更广泛的推广。
石墨烯被认为是一种有前途的材料,可以作为太阳能电池的电极材料来提高效率。
石墨烯与太阳能电极材料的良好相容性,可以显著提高电池输出功率和电池效率。
第三,石墨烯复合材料可以应用在超级电容器中。
超级电容器作为一种新型能量储存器,其具有高功率密度、长循环寿命、低内电阻、快速充放电等特点。
石墨烯高导电性和导热性以及其大表面积可以显著提高超级电容器的储能密度和电化学性能。
此外,石墨烯与活性材料的复合还可以减少薄膜的内阻和提高储存容量。
第四,石墨烯复合材料可以广泛应用于电动车、电动机、风力发电和太阳能收集器等能源领域。
石墨烯复合材料的好处在于其强度、导电性和导热性。
电动车、电动机、风力发电和太阳能收集器需要坚固耐用并且具有高效性能。
石墨烯复合材料可以满足这些要求,并且更加耐用并且可以更加高效地产生能源。
总之,石墨烯复合材料具有极其广泛的应用前景,在未来的能源领域中将有着重要的角色。
石墨烯复合材料的研究和开发仍需继续推进,以便能够利用其在锂离子电池、太阳能电池、超级电容器和新能源领域中。
通过利用石墨烯复合材料,我们有着实现更加环保且能源使用效率更高的未来的梦想。
石墨烯及其复合材料在锂离子电池中的应用1 石墨烯的性质及应用概述石墨烯是一种由碳原子组成的薄薄的层状物质,其单层厚度只有一个碳原子层厚度,具有高强度、高导电性、高热导率、高透明度等特点,被誉为“二十一世纪的黑金”。
石墨烯的这些特性使其在许多领域有着广泛的应用,从电子学、能源、催化、生物医学到材料学等等领域均有涉及。
2 石墨烯在锂离子电池中的应用锂离子电池是目前使用较为广泛的一种二次电池,能够在多种场合应用。
石墨烯在锂离子电池中的应用主要为改善电池的性能、延长电池的使用寿命以及减少电池的体积和重量等方面。
具体的应用包括以下几个方面:2.1 石墨烯作为锂离子电池的电极材料石墨烯作为一种优良的导电材料,可以作为锂离子电池的电极材料,既可以作为负极材料,也可以作为正极材料。
在负极材料方面,石墨烯的高表面积和导电性能可以增加电池的容量、循环寿命和充电速度等性能。
在正极材料方面,石墨烯可以提高电池的能量密度、循环寿命和充电速度等性能。
此外,石墨烯还可以作为一种电极材料增强剂,与其它材料复合使用,使电池整体性能更优秀。
2.2 石墨烯复合材料在锂离子电池中的应用除了单独使用石墨烯作为电池的电极材料外,还可以将石墨烯与其它材料复合使用,以改善锂离子电池的性能。
例如,石墨烯/二氧化钛复合材料可以提高电池的充电容量和循环寿命;石墨烯/硅复合材料可以减轻电池的体积和重量;石墨烯/氧化铁复合材料可以提高电池的容量和循环寿命。
石墨烯作为一种材料增强剂,它的加入可以增加复合材料的强度和稳定性,从而提高电池的使用寿命和性能。
2.3 石墨烯纳米复合材料在锂离子电池中的应用除了常规的石墨烯复合材料外,石墨烯纳米复合材料在锂离子电池中也具有潜在的应用前景。
石墨烯颗粒的尺寸十分微小,因此具有较大的比表面积和可控的晶格结构,这使得它能够与其它材料充分结合,形成具有优异性能的纳米复合材料。
石墨烯纳米复合材料可以提高电极材料的比表面积、电子传输速率和离子反应速率等性能,从而大幅度提高锂离子电池的容量、循环寿命和充电速度等性能。
课题名称:石墨烯在电池电极中的运用石墨烯在电池电极中是运用【摘要】石墨烯是指从石墨上剥离出来是一层石墨薄片。
到如今为止,只有一种单个原子是厚度是最薄是。
那就是二维纳米碳材料,它是最基本是重复单元是有机化学中最稳定是苯环结构。
其中石墨烯具有许多优良是特性,比如厚度薄重量轻,具有高导电性和导热性,较高是载流子迁移率,还有自由电子空间移动,强度高等,因此,快速崛起是材料科学和凝聚态物理领域是一颗新星在许多方面具有优良是应用前景,比如纳米电子设备、催化剂、电池、电容器、光电设备、还有新型复合材料和传感材料。
【关键词】石墨烯还原氧化锂离子电池一、介绍碳是构成自然界中物质是基本元素之一,同时在人类是发展史中也扮演了重要是角色。
列如金刚石是为人类所熟知是单晶碳。
除此之外碳材料还有石墨、活性炭、煤炭、碳纤维等非晶、多晶体[1]石油、天然气等碳基化合物都在我们是生产和生活中起到了极其重要是作用。
碳是同素异形体包括墨、金刚石、碳纳米管、富勒烯以及2004年被发现是石墨烯。
目前因为石墨烯优异是性能所体现出是宽广应用前景,人们对石墨烯是研究及应用正在逐步深入。
石墨烯简介石墨烯是一种从石墨上剥离出来是单层石墨薄片。
它只有一个原子是厚度,是迄今为止发现是最薄是二维纳米碳材料。
它最基本是重复单元就是最稳定是有机化学。
2混合六元环结构。
石墨烯是单层二维碳材料;两层石墨烯是由两层石墨烯叠加形成是二维材料;在某种程度上,将石墨烯从三层叠加到九层,形成了一层较薄是二维胺。
材料。
石墨烯是一种碳材料组成是不到10层是石墨烯结构单元,包括但不仅限于单层乙烯撑,例如两个石墨烯,石墨烯,功能化石墨烯,氢化石墨烯,石墨烯量子点,还有氧化石墨烯,石墨烯纳米带,石墨烯芯片,石墨烯是电影,三维石墨烯网格等。
目前为止国内市场上生产是石墨烯可以大致分为两类,一种是石墨烯薄膜,另一类是由多层石墨烯组成是微芯片。
石墨烯是性能:石墨烯具有许多优异是性能。
比如石墨烯是厚度可以达到0.34nm,理论表面积为2630m2 / g石墨烯,所以具有较高是强度,刚度和韧性。
石墨烯在锂离子电池负极材料中的应用研究进展结合当前利用石墨烯材料特殊二维结构、优良物理化学特性来改善锂离子电池较低能量密度、较差循环性能等缺陷的研究热点,综述石墨烯材料及石墨烯复合材料在锂离子电池负极材料中的应用研究进展,指出现有电极材料的缺陷和不足,讨论作为锂离子电池电极的石墨烯复合材料结构与功能调控的重要性,并简要评述石墨烯在相关领域中所面临的挑战和发展前景。
标签:石墨烯;锂离子电池;负极材料石墨烯是一种结构独特并且性能优异的新型材料,它是由碳原子以sp2杂化连接的单原子层二维蜂窝状结构,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1,2]。
由于石墨烯具有高导电性、高导热性、高比表面积、高强度和刚度等诸多优良特性,在储能、光电器件、化学催化等诸多领域获得了广泛的应用,特别是在未来实现基于石墨烯材料的高能量密度、高功率密度应用有着非常重要的理论和工程价值。
理想的石墨烯是真正的表面性固体,其所有碳原子均暴露在表面,具有用作锂离子电池负极材料的独特优势:(1)石墨烯具有超大的比表面积,比表面积的增大可以降低电池极化,减少电池因极化造成的能量损失。
(2)石墨烯具有优良的导电和导热特性,即本身已具有了良好的电子传输通道,而良好的导热性确保了其在使用中的稳定性。
(3)在聚集形成的宏观电极材料中,石墨烯片层的尺度在微纳米量级,远小于体相石墨的,这使得Li+在石墨烯片层之间的扩散路径较短;而且片层间距也大于结晶性良好的石墨,更有利于Li+的扩散传输。
因此,石墨烯基电极材料同时具有良好的电子传输通道和离子传输通道,非常有利于锂离子电池功率性能的提高。
1 石墨烯直接作为锂离子电池负极材料商业化锂离子电池石墨负极的理论容量为372 mAh/g。
为实现锂离子电池的高功率密度和高能量密度,提高锂离子电池负极材料的容量是一个关键性问题。
无序或比表面积高的热还原石墨烯材料具有大量的微孔缺陷,能够提高可逆储锂容量。
因此,相对石墨材料,石墨烯的储锂优点有:(1)高比容量:锂离子在石墨烯中具有非化学计量比的嵌入?脱嵌,比容量可达到700~2000 mAh/g,远超过石墨材料的理论比容量372 mAh/g(LiC6);(2)高充放电速率:多层石墨烯材料的面内结构与石墨的相同,但其层间距离要明显大于石墨的层间距,因而更有利于锂离子的快速嵌入和脱嵌。
石墨烯在锂电池中的应用研究资料石墨烯是一种由碳原子构成的单原子厚的二维材料,具有良好的导电性、热导性和力学性能,因此在电池领域具有广阔的应用前景。
本文将从石墨烯在锂电池正负极材料以及电解液中的应用角度,综述石墨烯在锂电池中的研究进展。
一、石墨烯在锂电池正极材料中的应用研究锂离子电池的正极材料主要有锂钴酸盐(LiCoO2)、锂铁磷酸盐(LiFePO4)等。
石墨烯在锂电池正极材料中的应用主要体现在两个方面:增强材料的导电性和改善电化学性能。
1.增强材料的导电性:石墨烯具有优异的电导率,将其与正极材料进行复合可以显著提高其导电性能。
例如,将石墨烯与LiCoO2进行复合制备出的复合材料可以提高锂离子的扩散速率和材料的导电性能,从而提高了锂电池的放电容量和循环寿命。
2.改善电化学性能:石墨烯与正极材料之间的复合可以提高材料的电化学性能。
石墨烯不仅可以增加正极材料的导电性,还可以改善其电化学反应的动力学过程,减小锂离子的插入/脱出电阻。
因此,利用石墨烯与正极材料的复合可以提高正极材料的容量、循环寿命和功率密度。
二、石墨烯在锂电池负极材料中的应用研究锂离子电池的负极材料主要有石墨等。
石墨烯在锂电池负极材料中的应用主要体现在以下几个方面:提高材料的电子传导性、增加锂离子的扩散速率、改善循环稳定性以及抑制锂金属的钝化现象。
1.提高电子传导性:石墨烯与石墨等负极材料的复合可以提高材料的电子传导性,从而降低电阻,改善电池的功率输出性能。
2.增加锂离子的扩散速率:石墨烯具有二维结构,可以提供更多的锂离子插入位点,增加锂离子的扩散速率,提高电池的充放电速度。
3.改善循环稳定性:石墨烯与石墨等负极材料的复合可以形成更稳定的结构,抑制材料的体积膨胀,从而提高电池的循环寿命。
4.抑制锂金属的钝化:在锂金属负极中加入石墨烯可以改善锂电池的充放电性能,减少锂金属负极表面的簧曲现象,提高电池的循环寿命。
三、石墨烯在锂电池电解液中的应用研究1.增加电解液的导电性:将石墨烯引入锂离子电池的电解液中可以提高电解液的导电性,减小电池的内阻,提高电池的放电容量和功率密度。
石墨烯在锂离子电池中的应用研究石墨烯是一种由碳原子构成的单层二维材料,具有优异的导电和导热性能,透明性强,并且具有强大的力学韧性。
这些特性使得石墨烯在科学研究和各种应用领域都备受关注。
近年来,石墨烯在锂离子电池领域的应用也越来越受到重视。
本文将介绍石墨烯在锂离子电池中的应用研究进展。
一、石墨烯作为锂离子电池的电极材料目前,石墨烯主要应用于锂离子电池的电极材料中。
众所周知,锂离子电池的电极材料主要分为负极材料和正极材料。
石墨烯作为电池负极材料,具有以下优点:1.高比表面积:石墨烯可以实现单层碳原子的紧密排列,形成大量的微小孔隙和高表面积,这不仅可以提高电极表面容量,而且可以增加锂离子的扩散速度,提高电池的性能。
2.良好的电导性:石墨烯具有高导电性,能够提供良好的电子传输和电荷存储,减少电极内阻,从而提高电池的输出功率。
3.优异的力学性能:石墨烯的组成结构可以保持相对稳定,即使在长时间循环充放电的过程中也能保持结构完整性,从而延长电池的使用寿命。
虽然石墨烯作为电极材料具有许多优点,但是它也面临着一些挑战。
例如,石墨烯的制备和应用成本较高,需要进一步降低成本才能实现大规模商业化应用。
二、石墨烯增强锂离子电池正极材料除了作为负极材料,石墨烯中的碳纳米管和颗粒可以作为锂离子电池正极材料的补充,以增加其性能。
石墨烯包覆的锂离子电池正极材料可以提高锂离子的扩散速度和电池的能量密度。
石墨烯与锂离子电池正极材料的结合还可以降低电极材料的体积变化率,延长电池的使用寿命。
三、未来展望目前,石墨烯在锂离子电池领域的研究还处于起步阶段。
随着石墨烯技术的不断发展和成熟,石墨烯在锂离子电池领域的应用前景非常广阔。
未来,石墨烯技术还有许多发展空间,例如开发更经济实用的制备方法,探索更广泛的应用领域。
总之,石墨烯在锂离子电池中的应用研究为电池的性能和寿命提供了新的提升方案。
虽然存在一些挑战和难点,但是未来的发展和探索将为锂离子电池技术的进一步提升提供新的解决方案。
2017年10月石墨烯及其复合材料在锂离子电池负极材料中的应用吉功涛(江苏省邗江中学,江苏扬州225009)摘要:石墨烯因其独特的二维空间网络结构[1],有极大的比表面积,良好导电性能,是优异的电极材料。
可通过与金属氧化物复合的方法将其机械性能和导电性能的优势最大化。
本文对石墨烯的结构、性质、制备方法及其在锂离子电池负极材料方向上的应用进行了综述,提出其发展问题并对其发展前景进行展望。
关键词:石墨烯;锂离子电池;负极材料1985年克罗托、科尔和斯莫利发表关于发现富勒烯的论文,有关石墨微观结构的研究进入了人们的视野,此后1991年饭岛澄男成功制备碳纳米管推动了碳纳米管相关研究的发展,至2004年Geim 、Novoseiov 用机械剥离法成功制备石墨烯,学术界又掀起了针对石墨烯的研究热潮[1-2]。
如今,石墨烯的应用种类越来越多,研究越来越深入。
将石墨烯及其复合材料在锂离子电池负极中应用是现在一种前景和可行性都非常优秀的方案。
1石墨烯的空间结构及性质石墨烯是由单层碳原子以sp 2杂化形式成键形成的具有蜂窝状六边形结构的二维原子晶体[2]。
它能承载远大于其自身重量的物体,实验数据显示1m 2石墨烯能承受4kg 的重量而其面质量仅为0.77mg [2]足以证明其具有优异的机械性能,同时石墨烯理论比表面积达到2630m 2/g [3]。
以上石墨烯的性质体现其在复合材料领域有很大的应用价值。
石墨烯导电性能良好,其导电率能达到106S/m [4],可作为良好的电极材料。
此外,石墨烯还具有优良的导热性以及透光性。
其透光率达到97.7%,导热率为5×103W/mk ,理论导热性能是铜的十倍多[3-5],足以支持其在光学、热学领域的应用。
2石墨烯的制备方法机械剥离法是获取石墨烯成本最低的方法,通过对高定向热解石墨进行反复剥离获取石墨烯,运用此法得到的石墨烯能满足实验室需要,在本征石墨烯研究中应用广,但是受限于其制备规模,这种方法很难满足石墨烯的商业需求。