小学数学公式运算定律算理算法大全整理全部各年级带例题巧妙简便算法
- 格式:doc
- 大小:4.49 MB
- 文档页数:17
小学数学四年级四则混合运算及运算法则知识点整理附练习题文章目录四则运算(一)加法运算定律:1、两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。
字母公式:(a+b) +c=a+(b+c)(二)乘法运算定律:1、交换两个因数的位置,积不变,这叫做乘法交换律。
字母公式:a×b=b×a2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。
字母公式:(a×b)×c=a×(b×c)3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c(三)减法简便运算:1、一个数连续减去两个数,可以用这个数减去这两个数的和。
用字母表示:a-b-c=a-(b+c)2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
用字母表示:a-b-c=a—c-b(四)除法简便运算:1、一个数连续除以两个数,可以用这个数除以这两个数的积。
用字母表示:a÷b÷c=a÷(b×c)2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。
用字母表示:a÷b÷c=a÷c÷b小学四年级数学“四则运算”知识点详解知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
小学数学简便运算和巧算小学数学简便运算和巧算一、数的加减乘除有时可以运用运算定律、性质、或数量间的特殊关系进性较快的运算这就是简便运算。
(一)其方法有:一:利用运算定律、性质或法则。
(1) 加法:交换律,a+b=b+a, 结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c, a-(b-c)=a-b+c, a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法:利用运算定律、性质或法则。
交换律,a×b=b×a, 结合律,(a×b)×c=a×(b×c),分配率,(a+b)×c=a×c+b×c, (a-b)×c=a×c-b×c.(4)除法运算性质:a÷(b×c)=a÷b÷c, a÷(b÷c)=a÷b×c, a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c, (a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,。
后面数值的运算符号不变。
例1:283+52+117+148=(283+117)+(52+48)=400+200=600(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:657-263-257=657-257-263=400-263=147.(运用减法性质,相当加法交换律。
)例3:195-(95+24)=195-95-24=100-24=76 (运用减法性质)例4; 150-(100-42)=150-100+42=50+42=92. (同上)例5:(0.75+125)×8=0.75×8+125×8=6+1000=1006. (运用乘法分配律))例6:( 125-0.25)×8=125×8-0.25×8=1000-2=998. (同上) 例7:(1.125-0.75)÷0.25=1.125÷0.25-0.75÷0.25=4.5-3=1.5。
小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律a+b = b+ a例:25+37=37+25加法结合律a+b+c=a+(b+c)例:25+37+63=25+(37+63)(扩展)a-b-c=a-(b+c)例:125-37-63=25-(37+63)a-b+c=a-(b-c)例:300-159+59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b+c)=a×b+a×c例:8×(125+25)=8×125+8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=10 2×50=100 4×25=100 8×25=200 12×5=60 8×125=100037×3=111 333=111×3 999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28+36)+64=28+(36+64)=28+100=128182+18+276+24=(182+18)+(276+24)=200+300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
小学数学简便计算方法汇总1、提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)2、借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:9999+999+99+9=9999+1+999+1+99+1+9+1—43、拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×254、加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例如:5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)5、拆分法和乘法分配律结这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?6利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:2072+2052+2062+2042+2083=(2062x5)+10-10-20+217利用公式法(1) 加法:交换律,a+b=b+a,结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法(与加法类似):交换律,a*b=b*a,结合律,(a*b)*c=a*(b*c),分配率,(a+b)xc=ac+bc,(a-b)*c=ac-bc.(4) 除法运算性质(与减法类似):a÷(b*c)=a÷b÷c,a÷(b÷c)=a÷bxc,。
简便计算公式大全一、相关基本定律计算1、加法交换律:三个数相加,交换两个加数的位置,和不变。
公式:a+b+c= a+c+b例题:672+28+169=672+28+169=700+169=869此方法在简便运算过程中,关键在于交换后的两个数能凑整。
2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c = a+(b+c)例题:738+68+132=738+(68+132)=738+200=938此方法适用于两个数结合相加后能凑成整数。
3、乘法交换律:两个数相乘,交换两个因数的位置,积不变。
公式:a×b = b×a例题:12.5×2.5×0.8×4=12.5×0.8×2.5×4=10×10=1004、乘法结合律:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。
公式:(a×b)×c = a×(b×c)例题:0.125×6.5×8=0.125×8×6.5=1×6.5=6.55、乘法分配律:①两个数的和与一个数相乘,先把它们分别与这个数相乘,再相加。
公式:(a+b)×c = a×c+b×c变形公式:(a-b)×c = a×c-b×c例题:(40+8)×25=40×25+8×25=1000+200=1200②乘法分配律的逆算式。
即ac±bc=c×(a±b),提出加减号两边乘法算式中的公因数。
如:36×34+36×66=(34+66)×36=100×36=3600此种方法又叫提公因式法。
③一个乘法算式,把其中一个数拆分为相加或相减的形式,使这个乘法算式变成乘法分配律原式(第①类型)如:78×102=78×(100+2)(变为第①类型)=78×100+78×2=7800+156=795631×99=31×(100-1)(变为第一类型)=31×100-31×1=3100-31=3069运用:対接近整百、整千的数,可以补上一个数,使它成内整百、整千的数,使计算筒便。
运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
|字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+245!3.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98.减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-1204.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4.计算下式,能简便的进行简便计算:(1)89+106 (2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170 (2)820-456+280 (3)900-456-244-(4)89+997 (5)103-60 (6)458+996(7)876-580+220 (8)997+840+260 (9)956—197-56|(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
六大类+30种具体简便运算一、连加的简便运算。
(运用加法交换律+加法结合律凑整)要点:看交换(或结合)后是否有两个数的和为整数。
(在计算时,把结合的两个数用括号括起来。
)两个数的和为整数的特征:个位相加为10,十位相加为9,百位相加为9,以此类推。
例题:二、连减的简便运算例题:例题:例题:②28+56+144=28+(56+144)=28+200=228①317+256+683=317+683+256=(317+683)+256=1000+256=1256568-345-155=568-(345+155)=568-500=68378-88-278=378-278-88=100-88=12791-(391+255)=791-391-255=400-255=145三、加减混合简便运算(依据:加减混合运算的性质)例题:例题(加括号):例题(减括号):例题:四、连乘的简便运算(运用乘法交换律+乘法结合律)要点:看交换(或结合)后,是否有两个数的乘积为整数。
记住常考的乘积为整数的算式:25×4=100125×8=100025×8=200625×16=10000 142+50-22=142-22+50=120+50=17458+239-139=458+(239-139)=458+100=558458-239+139=458-(239-139)=458-100=358247+(153-99)=247+153-99=400-99=301476-(276-196)=476-276+196=200+196=396459+199=459+(200-1)=459+200-1=659-1=658668-99=668-(100-1)=668-100+1=568+1=569例题:例题:例题:五、连除的简便运算例题:例题:25×27×4=25×4×27=100×27=270019×8×125=19×(8×125)=19×1000=190001500÷25÷40=1500÷(25×4)=1500÷100=15125×88=125(8×11)=125×8×11=1000×11=110001000÷(125×2)=1000÷125÷2=8÷2=4125×88=(125×8)×(88÷8)=1000×11=11000例题:例题:五、乘除混合运算的简便运算例题:例题(加括号):例题(去括号):六、加减乘除混合运算简便运算6×100÷25=6×(100÷25)=6×4=24250÷100×4=250÷(100÷4)=250÷25=102500÷4÷25=2500÷25÷4=100÷4=25625÷125=(625÷25)÷(125÷25)=25÷5=51000×9÷125=1000÷125×9=8×9=72125×(8÷50)=125×8÷50=1000÷50=2036÷(9÷7)=36÷9×7=4×7=28例题:例题:例题:例题:注意:一个数除以两个数的和或差不能简便运算。
运算定律和简便计算一、加法运算定律:(1)加法交换律:两个加数交换位置,和不变。
用字母表示:a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
用字母表示:(a+b)+c=a+(b+c)二、乘法运算定律:(1)乘法交换律:交换两个因数的位置,积不变。
用字母表示:a×b=b×a(2)乘法结合律:三个数相乘,先乘前两个数或者先乘后两个数,积不变。
用字母表示:(a×b)×c=a×(b×c)(3)乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
用字母表示:(a+b)×c=a×c+b×c a×(b+c)=a ×b+a×c三、简便计算(1)连减的简便计算:一个数连续减去两个数,可以用这个数减去两个减数的和。
(注意这种方法的逆向运算)a-b-c=a-(b+c)(2)连除的简便计算:一个数连续除以两个数,可以用这个数除以两个除数的积a÷b÷c=a÷(b×c)(3)加减法、乘加、乘除法的灵活应用a-b+c=a+c-ba÷b×c=a×c ÷b四、运算定律与简便计算的整理和复习小小法官(判断对错)1、25 х102 =25 х100 + 2 ( )2、132-(32 + 47)= 132 – 32 + 47 ( )3、350 ÷ 5 х 2 = 350÷( 5 х 2 ) ( )4、68 х99 + 68 = 68 х100 ( )典型错误分析:错误一:对运算定律混淆不清如:18×101=18×100×1=1800(101变成了100×1,所以错误。
)125×48=125×(40+8)=125×40+8=5008 (应该8与125再相乘)125×48=125×(40+8)=125×40×125×8=5000000(40+8)中的加号“+”看乘了乘号“×”,25×64×125=25×(60+4)×125=25×60+4×125=2000(60+4)的括号直接去掉了,把原来的连乘变成了乘法加法。
小学1-6年级数学公式+定律+奥数一网打尽,太全面了,收
藏好!
很多在小学一二年级数学学习还不错的孩子,来到三年级以后成绩直线下降,数学虽然不像语文那样需要大量的记忆,但是一些重要的数学公式是必须要让孩子记住的。
小学是一个人学习知识的基础时期,扎实好基础知识对以后的学习十分重要。
小学生接触的知识点,需要的形象思维与逻辑思维非常重要。
对于数学这门重要课程,好好学习数学公式是解题的关键。
解数学题基本上万变不离其宗,主要是将公式带入运算里,基本上数学题就迎刃而解了。
掌握小学数学公式很重要,特别在应用题上体现得非常明显。
同学们在解应用题时,都会用到这些公式。
因此扎实掌握这些数学公式,才是小学的同学们首先要做的。
同时还需要不断的总结归纳,为以后更高年级的数学学习打下良好的基础。
一些公式该背的还是要背,只有把基础的公式背熟了之后,才能灵活的运用这些公式,下面给大家整列了小学阶段的最基础的公式,大家可以收藏起来。
四年级2019最新版数学知识点: 运算定律及简便运算
四年级2019最新版数学知识点为您带来, 希望在考前可以为您提供一些帮助。
:一、加法运算定律 1、加法交换律:两个数相加, 交换加数的位置, 和不变。
a+b=b+a
一、加法运算定律
1.加法交换律: 两个数相加, 交换加数的位置, 和不变。
a+b=b+a
2.加法结合律: 三个数相加, 可以先把前两个数相加, 再加上第三个数;或者先把后两个数相加, 再加上第一个数, 和不变。
(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。
如: 165+93+35=93+(165+35)依据是什么?
3.连减的性质:一个数连续减去两个数, 等于这个数减去那两个数的和。
a-b-c=a-(b+c)
二、乘法运算定律:
1.乘法交换律: 两个数相乘, 交换因数的位置, 积不变。
ab=ba
2.乘法结合律:三个数相乘, 可以先把前两个数相乘, 再乘以第三个数, 也可以先把后两个数相乘, 再乘以第一个数, 积不变。
(ab)c=a(bc)
乘法的这两个定律往往结合起来一起使用。
如: 125788的简
算
3、乘法分配律:两个数的和与一个数相乘, 可以先把这两个数分别与这两个数相乘, 再把积相加。
(a+b)c=ac+bc(a-b)c=ac-bc。
巧算十法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见的巧算方法有以下十种。
一、凑整法运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整”运算数据,能使计算比较简便。
1、加法“凑整”。
利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+(27689+22311)=10000+50000=600002、减法“凑整”。
利用减法性质“凑整”,例如:50-13-7=50-(13+7)=303、乘法“凑整”。
利用乘法交换律、结合律、分配律“凑整”,例如:125×4×8×25×78=(125×8)×(4×25)×78= 1000×100×78=78000004、补充数“凑整”。
末尾是一个或几个0的数,运算起来比较简便。
若数末尾不是0,而是98、51等,我们可以用(100-2)、(50+1)等来代替,使运算变得比较简便、快速。
一般地我们把100叫做98的“大约强数”,2叫做98的“补充数”;50叫做51的“大约弱数”,1叫做51的“补充数”。
把一个数先写成它的大约强(弱)数与补充数的差(和),然后再进行运算,例如:(1)387+99=387+(100-1)=387+100-1=486(2)1680-89=1680-(100-11)=1680-100+11=1580+11=1591(3)69×101=69×(100+1)=6900+69=6969二、约分法根据式题结构,采用约分,能使计算比较简便。
例如:三、基数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。
力口、减法的速算与巧算(基础篇)1加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a +b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两 个数相加,再加上第一个数,和不变。
即:(a+b )+c = a+(b+c ) (提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:① 使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)② 个位:1与9, 2与8, 3与7,4与6, 5与5,结合。
③ 十位:0与9,1与8, 2与7,3与6, 4与5,结合。
连加的简便计算例题:50+98+50488+40+60165+93+35 65+28+35+72=50+50+98 =488+ (40+60) =93+165+35 =(65+35) + (28+72) =100+98 =488+100 =93+(165+35) =100+100 =198=588=293=2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a - b - c = a - (b + c )注:连减的性质逆用:a - (b + c ) = a - b - c = a - c - b ☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c = a-c-b 连减的简便计算方法:① 连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)② 连续减去两个数可以先减去后一个数再减去前一个数。
如: 226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如: 连减的简便计算例题:3、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运 算符号106-(26+74) = 106-26-74528—65—35 528— 89—128 528 =528—( 65+35) =528 —128— 89=528—100=400 — 89=528 =400—(150+128) —128—150 —150=428=311=250“搬家”。
小学数学计算公式全集一、小学数学算式定律加法交换律:a + b = b+a加法结合律:(a + b)+ c = a +(b +c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a + b)×c = a×c + b×c减法的运算性质:a-b-c=a-(b+c)除法的运算定律:a÷b÷c=a÷(b×c)1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、因数×因数=积积÷一个因数=另一个因数8、被减数-减数=差被减数-差=减数差+减数=被减数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形C:周长S:面积a:边长周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体(1)表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形面积=底×高÷2s=ah÷2三角形高=面积×2÷底h=S×2÷a三角形底=面积×2÷高a=S×2÷h6、平行四边形面积=底×高s=ah7、梯形面积=(上底+下底)×高÷2s=(a+b)×h÷28、圆形(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏S=rr∏9、圆柱体(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体体积=底面积×高÷3三、其他:1、总数÷总份数=平均数2、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数3、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者:和-小数=大数)4、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或:小数+差=大数)5、植树问题A、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)B、封闭线路上的植树问题的数量关系如下:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数6、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数7、其他A、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间B、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间C、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2 D、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度(百分比)溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量E、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%或=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)F、利息问题利息=本金×利率×时间税后利息=本金×利率×时间×(1-税率)四、单位换算A、长度单位换算:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米B、面积单位换算1平方千米=1000000平方米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米C、体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1升=1000毫升1立方米=1000升=1000000毫升D、重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤E、人民币单位换算1元=10角1角=10分1元=100分F、时间单位换算1世纪=100年1年=12月大月(31天)有:1、3、5、7、8、10、12月小月(30天)的有:4、6、9、11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒。
计算能力是小学数学学习的基础,今天小数详细整理了小学阶段关于四则运算的基础知识及运算过程中常用到的简便方法,趁着暑假帮孩子们查漏补缺,提高计算能力,扎实数学基础,助力孩子开学快速进步。
运算定律✍加法交换律两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
✍加法结合律三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
✍乘法交换律两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
✍乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
✍乘法分配律两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
✍减法的性质从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
运算法则✍整数加法计算法则相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
✍整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
✍整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
✍整数除法计算法则先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
✍小数乘法法则先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
✍除数是整数的小数除法计算法则先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
✍除数是小数的除法计算法则先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
✍同分母分数加减法计算方法同分母分数相加减,只把分子相加减,分母不变。
✍异分母分数加减法计算方法先通分,然后按照同分母分数加减法的的法则进行计算。
✍带分数加减法的计算方法整数部分和分数部分分别相加减,再把所得的数合并起来。
✍分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
✍分数除法的计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
运算顺序小数四则运算的运算顺序和整数四则运算顺序相同。
分数四则运算的运算顺序和整数四则运算顺序相同。
✍没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
✍有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
第一级运算:加法和减法叫做第一级运算。
第二级运算:乘法和除法叫做第二级运算。
速算技巧掌握良好的速算技巧,是让孩子们在最短的时间内,学好速算的关键之处,所以,家长要善于引导孩子们发现和使用速算技巧,并且多多将这些技巧进行验证,让这些技巧好好为孩子服务。
加法的神奇速算法1加大减差法✎口诀前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
✎例题1376+98=1474 计算方法:1376+100-23586+898=4484 计算方法:3586+1000-1025768+9897=15665 计算方法:5768+10000-1032求只是数字位置颠倒两个两位数的和✎口诀一个数的十位数加上它的个位数乘以11等于和✎例题47+74=121 计算方法:(4+7)x 11=121 68+86=154 计算方法:(6+8)x 11=154 58+85=143 计算方法:(5+8)x 11=143减法的神奇速算法1减大加差法✎例题321-98=223计算方法:减100,加28135-878=7257计算方法:减1000,加12291321-8987= 82334计算方法:减10000,加1013✎总结被减数减去减数的整数,再加上减数与整数的差,等于差。
2求只是数字位置颠倒两个两位数的差✎例题74-47=27计算方法:(7-4)x9=2783-38=45计算方法:(8-3)x9=4592-29=63计算方法:(9-2)x9=63✎总结被减数的十位数减去它的个位数乘以9,等于差。
三求只是首尾换位,中间数相同的两个三位数的差✎例题936-639=297计算方法:(9-6)x9=27注意!27中间必须加9,即为差297723-327=396计算方法:(7-3)x9=36注意!36中间必须加9,即为差396873-378=495计算方法:(8-3)x9=45注意!45中间必须加9,即为差495✎总结被减数的百位数减去它的个位数乘以9,(差的中间必须写9)等于差。
3求互补两个数的差✎例题73-27=46计算方法:(73-50)x2=46613-387=226计算方法:(613-500)x2=2268112-1888=6224计算方法:(8112-5000)x2=6224✎总结两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2;以此类推......乘法的神奇速算法1十位数相同,个位数互补的两位数乘法✎口诀十位加一乘十位,个位相乘写后边(未满10补零)。
✎例题67x 63= 4221计算方法:(6+1)x6=427x3=21写在42的后面,即为乘积422138x32=1216计算方法:(3+1)x3=128x2=16写在12的后面,即为乘积121676x74=5624计算方法:(7+1)x7=566x4=24写在56的后面,即为乘积562481 x89=7209计算方法:(8+1)x8=721x9=09写在72的后面,(未满10补零)即为乘积72092十位数互补,个位数相同的两位数乘法✎口诀十位相乘加个位,个位相乘写后边(未满10补零)。
✎例题76x 36=2736计算方法:7x3+6=276x6= 36写在27的后面,即乘积273668x 48=3264计算方法:6x4+8=328x8=64写在32的后面,即为乘积3264同理,56的平方是5x5+6+6x6=313657的平方是5x5+7+7x7=3249........3一个数的十位和个位互补,另一个数相同乘法运算✎例题37x66=2442计算方法:(3+1)x6=247x6=42写在24的后面,即乘积244244x28=1232计算方法:(2+1)x4=124x8=32写在12的后面,即乘积1232✎总结互补数十位加个1,和另一个十位乘得积,后写两个个位积,即为所求最终积4十几与十几相乘的运算✎例题13x12=156计算方法:(13+2)x10=1503x2=6 150+6=15615x17=255计算方法:(15+7)x10=2205x7=35 220+35=255✎口诀一数加上另数尾,乘10再加尾数积。
5个位数都是1的乘法运算✎例题31x21=651计算方法:3x2=6 2+3=5 1x1=1 51 x71=3621计算方法:5x7=35 +1 =365+7=12(写2进1)1x1=161 x81=4941计算方法:6x8=48+1=496+8=14(写4进1)1x1=1✎口诀末位皆一者,首位之积接着首位之和(满十进位),尾数之积后面接。
6一百零几乘一百零几✎例题101X102=10302计算方法:101+2=1031X2=02 两数相接即为乘积10302103 X104=10712计算方法:103+4=1073X4=12两数相接即为乘积10712同理:求101、102、103......109的平方,也可以采用上述方法。
如107的平方=107+7=114, 7x7=49,两数相接11449即为107的平方✎口诀一数加上另数尾,尾数之积后面接(未满10的,前面补零)。
除法的神奇速算法除法的目的是求商,但从被除数中突然看不出含有多少商时,可用试商,估商的办法,看被乘数最高几位数含有几个除数(即含商几倍),就由本位加补数几次,其得数就是商。
1小数组凡是被除数含有除数1、2、3倍时、其方法为:被除数含商1倍:由本位加补数一次。
被除数含商2倍:由本位加补数二次。
被除数含商3倍:由本位加补数三次。
✎例题7995÷65=123,(65的补数是35)✎算序①被除数前两位79中含除数65一倍,加补数一次(35),得1-1495(破折号前为商,破折号后为被除数,下同);②被乘数149中含除数二倍,加补数二次(35×2=70)得12-195;③被除数195含除数三倍,加补数三次(35×3=105)得123(商)。
2中数组凡是被除数含有除数4、5、6倍时、其方法为:被除数含商4倍:前位加补数一半,本位减补数一次。
被除数含商5倍:前位加补数一半,本位不动。
被除数含商6倍:前位加补数一半,本位加补数一次。
✎例题35568÷78=456(78的补数是22)✎算序355中含有除数4倍,所以前位加11,本位减22,得4-4368; 436中含除数5倍,前位加11,本位不动,得45-468;468中含除数6倍,前位加11,本位加22,得456(商)。
3大数组凡是被除数含有除数7、8、9倍时、其方法为:被除数含商9倍:前位加补数一次,本位减补数一次。
被除数含商8倍:前位加补数一次,本位减补数二次。
被除数含商7倍:前位加补数一次,本位减补数三次。
✎例题884352÷896=987(896的补数是104)✎算序o8843中含除数9倍,前位加104,本位减104,得9-77952; o7795中含除数8倍前位加104,本位减208,得98-6272;o6272含除数7倍,前位加补数一次104,本位减补数三次(104×3=312(得986(商))。