七年级秋学期期末数学模拟试卷
- 格式:doc
- 大小:227.00 KB
- 文档页数:5
2014年宁波市七年级秋季学期期末模拟数学试卷仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.下列各对数中,互为相反数的是………………………………………………………(▲)A.和0.2B.和C.-1.75和1.75D.2和2.一个数的立方是它本身,则这个数是………………………………………………(▲)A.1B.0C.-1D.1或0或-13.4的算术平方根是………………………………………………………………………(▲)A.2B.4C.-2D.-44.下列方程中,是一元一次方程的是……………………………………………………(▲)A.B.C.D.5.化简的结果为…………………………………………………………(▲)A.B.C.D.6.如果一个角是36º,那么………………………………………………………………(▲)A.它的余角是64ºB.它的补角是64ºC.它的余角是144ºD.它的补角是144º 7.已知=0,则x+y的值为………………………………………………(▲)A.10B.不能确定C.-6D.-108.下列变形正确的是………………………………………………………………………(▲)A.4x–5=3x+2变形得4x–3x=–2+5B.x–1=x+3变形得4x–6=3x+18C.3(x–1)=2(x+3)变形得3x–1=2x+6D.3x=2变形得x= 9.若现在的时间为下午2:30,那么时针与分针的夹角为………………(▲)A.120°B.115°C.110°D.105°10.一列匀速前进的火车,从它进入500m的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是…………(▲)A.mB.100mC.120mD.150m二、认真填一填(本题有10小题,每小题3分,共30分)11.计算:▲.12.64的平方根是___▲____。
苏教版七年级秋学期期末数学模拟试卷(时间:100分钟满分:100分)一、选择题(每小题2分,共20分)1.-15的绝对值是( )A.-15B.15C.5 D.-52.计算12-7×(-4)+8÷(-2)的结果是( )A.-24 B.-20 C.6 D.363.下列各式中,运算正确的是( )A.6a-5a=1B.a2+a2=a4C.3a2+2a2=5a4D.3a2b-4a2b=-a2b4.世界文化遗产长城总长约为6700000 m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为( )A.5 B.6 C.7 D.85.由一个圆柱与一个长方体组成的几何体如图所示,这个几何体的左视图是( )6.实数a,b在数轴上的位置如图所示,则化简-a的结果为( )A.2a+b B.-bC.-2a-b D.b7.下列各图中,可以是一个正方体的平面展开图的是( )8.如图,AO⊥OB于点O,∠AOC=50°,则∠BOC的补角等于( )A.120°B.130°C.140°D.150°9.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是( )A.AC=BC B.AC+BC=AB c.AB=2AC D.BC=12AB10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2014”在( ) A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(每小题3分,共18分)11.计算:-(-1)2=_______.12.已知2a-3b2=5,则10-2a+3b2的值是_______.13.如果3x1-2k+34k=0是关于x的一元一次方程,那么k=_______.14.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④长方体是四棱柱.其中正确的有_______.(填正确说法的序号)15.按照下图所示的操作步骤,若输入x的值为2,则输出的值为_______.16.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD为_______°.三、解答题(共62分)17.(6分)(1)计算:(-1)3×(-2)÷[(+3) 2+2×(-5)];(2)化简:5(3a-b)-4(-a+3b).18.(6分)解方程:(1)4-x=3(2-x);(2)112 0.20.5x x-+-=.19.(8分)如图所示是由一些大小相同的小正方体组合成的简单几何体.(1)图中有_______块小正方体;(2)请在下面分别画出这个几何体的主视图、左视图和俯视图.20.(8分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OP是∠BOC的平分线.(1)图中除直角外,还有相等的角吗?请写出两对:①_______;②_______;(2)如果∠AOD=40°,①那么根据_______,可得∠BOC=_______°;②因为OP是∠BOC的平分线,所以∠BOP=_______°;③求∠BOF的度数.21.(8分)某自来水公司按如下规定收取水费:如果每月用水不超过10 t,按每吨1.5元收费;如果每月用水超过10 t,超过部分按每吨2元收费.(1)某户9月份的水费是22.8元,问该户9月份用水多少?(2)某户8月份平均每吨水费1.75元,那么该户8月份用水多少吨?应交水费多少元?22.(8分)如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到_______的距离,_______是点C到直线OB的距离.因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC,PH,OC这三条线段的大小关系是_______.(用“<”号连接)23.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于2,求5a+5b-1 2014cd-m2的值.24.(10分)某人去水果批发市场采购苹果,他看中了A,B两家苹果.这两家苹果品质一样,零售价都为6元/kg,批发价各不相同.A家规定:批发数量不超过1000 kg,按零售价的92%优惠;批发数量不超过2000 kg,按零售价的90%优惠;超过2000 kg按零售价的88%优惠.B家的规定如下表:(表格说明:批发价格分段计算,如:某人批发苹果2100 kg,则总费用=6x95%x500+6×85 %×1000+6×75%x(2100-1500))(1)如果他批发600 kg苹果,则他在A家批发需要_______元,在B家批发需要_______元;(2)如果他批发x kg苹果(1500<x<2 000),则他在A家批发需要_______元,在B家批发需要_______元;(用含x的代数式表示)(3)现在他要批发1800 kg苹果,那么他选择在哪家批发更优惠?请说明理由.参考答案一、1.B 2.D 3.D 4.B 5.D 6.D 7.C 8.C .9.B 10.C二、11.-1 12.5 13.0 14.①③④15.20 16.90三、17.(1)-2.(2)19a-17b.18.(1)x=1.(2)x=3.19.(1)7(2)如图:20.(1)(答案不唯一,只要符合都可以)(2)①对顶角相等40②20③50°. 21.(1)13.9 t.(2)该户8月份用水20 t,应交水费35元.22.(1)、(2)如图:(3)直线OA 线段PC的长度PH<PC<OC23.1 42014 -24.(1)3312 3360 (2)275x912002x+(3)选择B家批发更优惠,。
秋期七年级上册数学期末模拟试题秋期七年级上册数学期末模拟试题一、选择题(10个小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.1.-3的相反数是( )A.-3B.3C.D.2.我市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A. 元B. 元C. 元D. 元3. 两数差的平方是( )A. B. C. D.4.你对“0” 有多少了解?下面关于“0”的说法错误的是( )A. 数轴上表示0的点是原点B. 0没有倒数C. 0是整数,也是自然数D. 0是最小的有理数5.从左面看如图所示的几何体可得到的平面图形是( ).6.若与是同类项,则的值是( )A.4B.-4C.64D. -647.若,则 =( ).A.0B.0或3C.3或6D.0或68.如图所示正方体的平面展开图是( ).9.如图,分别在长方形ABCD的边DC、BC上取两点E、F,使得AE平分ang;DAF,若ang;BAF = 60deg;,则ang;DAE =( ).A.15deg;B.30deg;C.45deg;D.60deg;10.已知方程的解为,则关于x的方程的解为( ).A.1B.C.-5D.5二、填空题:(8个小题,每小题2分,共16分)16.已知线段AB=16cm,点C在直线AB上,且BC=10 cm,则线段AC的长是__________cm.17.下列图案是我国古代窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第6个图中所贴剪纸“○”的个数为 .18.对于整数 a,b,c,d,规定符号 = 已知则的值为 .三、计算题:(19-21每小题4分,22题6分共18分)19. ×4+16÷(-2)20.22. 先化简,再求值:四、解方程:(每小题4分,共8分)23.五、解答题:(每小题5分,共10分)25.(1)已知:如图,线段 ;请按下列步骤画图:(用圆规、三角板或量角器画图,不写画法、保留作图痕迹,)① 画线段AB=② 画线段AB的中点O,画的平分线OM;③ 以O为顶点画出表示东南西北的十字线(按照上北下南,左西右东的规定),画出表示北偏西的射线OC.( 2)请求出在(1)题所画的图形中ang;AOC 的度数.26.已知:如图, AEperp;BC, FGperp;BC, ang;1=ang;2, 求证:AB∥CD ;六、列方程解应用题:(共3个小题 ,2 7-28每小题5分,29题8分,共18分)27.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1000元的商品,共节省280元,则用贵宾卡又享受了几折优惠?28.整理一批图书,如果由一个人单独做要用60小时,现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。
苏科版七年级秋学期期末数学模拟试卷(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.在数0,2,-3,-1.2中,属于负整数的是( )A.0 B.2 C.-3 D.-1.22.多项式1+2xy-3xy2的次数及最高次项的系数分别是( )A.3,-3 B.2,-3 C.5,-3 D.2,33.把右图中的三棱柱展开,所得到的展开图是( )4.用激光测距仪测得两物体之间的距离为14000000米,将14000000用科学记数法表示为( )A.14×107B.1.4×106C.1.4×107D.0.14×1085.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是( )A.M=mn B.M=n(m+1) C.M=mn+1 D.M=-m(n+1)6.某种商品每件的标价是330元,若按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元7.由n个相同的小正方体堆成的几何体,其视图如图所示,则n的最大值是( ) A.18 B.19 C.20 D.218.如图,∠AOB=120°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是( )A.∠DOE的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=60°D.∠BOE=2∠COD二、填空题(每题2分,共20分)9.若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作_______克.10.单项式-5x3y的系数是_______.11.观察下列各数:12,34,71531,,81632,…,它们是按一定规律排列的,则第n个数是_______.12.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,若a b=2013,且AO=2BO,则a+b的值为_______.13.某商店积压了一批商品.为尽快售出,该商店采取了如下销售方案:将价格由原来每件m 元,加价50%,再作两次降价处理,第一次降价30%.第二次降价10%,经过两次降价后的价格为_______元.(结果用含m的代数式表示)14.某商场将一款空调按标价的8折出售,仍可获利10%,若该空调的进价为2000元,则标价_______元.15.若m2-m=6,则1-2m2+2m=_______.16.若x=2是关于x的方程2x+m-1=0的解,则m=_______.17.我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.若现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有_______只,兔有_______只.18.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+ (136)_______.三、解答题(共64分)19.(本题6分)作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.20.(本题6分)计算:(1)4×13 2.5324⎛⎫--+⨯ ⎪⎝⎭;(2)(-1)2015×(-12)÷[(-4)2+2×(-5)].21.(本题6分)解方程:(1)212126x x -+=-(2)210.30.530.2x x -+=22.(本题6分)(1)先化简,再求值:-3(x 2-2x)+2231222x x ⎛⎫-- ⎪⎝⎭,其中x =-4;(2)已知y =1是方程2-13(m -y)=2y 的解,求关于x 的方程m(x -3)-2=m(2x -5)的解.23.(本题6分)如图,在△ABC 中,先按要求画图,再回答问题:(1)过点A 画∠BAC 的平分线交BC 于点D ;过点D 画AC 的平行线交AB 于点E ;过点D 画AB 的垂线,垂足为点F .(画图时保留痕迹)(2)度量AE ,ED 的长度,它们有怎样的数量关系? (3)比较DF ,DE 的大小,并说明理由.24.(本题5分)如图,已知直线AB与CD相交于点O,OE是∠BOD的平分线,∠EOF=90°,若∠BOD=58°,求∠COF的度数.25.(本题9分)如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD.(1)图中除直角外,还有相等的角吗?请写出两对:①_______;②_______.(2)如果∠AOD=40°,①那么根据______________,可得∠BOC=度.②因为OP是∠BOC的平分线,所以∠COP=12∠_______=_______度.③求∠BOF的度数.26.(本题8分)某工程队承包了某段全长1755米的过江隧道施工任务,甲、乙两个组分别从东、西两端同时掘进,已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个组平均每天各掘进多少米;(2)为加快进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米,按此施工进度,能够比原来少用多少天完成任务?27.(本题12分)(1)如图,已知点C在线段AB上,线段AC=12,BC=8,点M,N分别是AC,BC的中点,求线段MN的长度.(2)根据(1)中的计算结果,设AC+BC=a,你能猜想出MN的长度吗?请用一句简洁的语言表述你的发现.(3)请以“角的平分线”为背景出一道与(1)性质相同的题目并直接写出待求的结果.(要求画出相关的图形)(4)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,其他条件均不变,求线段MN的长度.参考答案一、选择题1.C2.A3.B4.C5.D6.A7.A8.C 二、填空题9.-0.03 10.-5 11.212n n -12.-671 13.0.945m 14.2750 15.-11 16.-1 17.22 11 18.1225 三、解答题 19.20.(1)原式=15 (2)原式=221.(1)x =1 (2)x =-17522.(1)原式=2x -1,当x =-4时,原式=-9 (2)x =0 23.(1)画图略 (2)AE =ED (3)DF<DE 24.119° 25.(1)①∠AOD =∠BOC ②∠COP =∠BOP(∠BOF =∠EOC 或∠BOP =∠COP) (2)①对顶角相等 40° ②∠COB 20° ③∠BOF =50°26.(1)甲组平均每天掘进4.8米,乙组平均每天掘进4.2米 (2)能够比原来少用10天完成任务27.(1)10 (2)12a (3) 线段上任意一点把线段分成两部分的中点之间的距离等于原线段长度的一半(注:只要意思表达相近即可) (3)如图所示 ∠DOE =2αβ+(4)分两种情况:如果在线段AB 上 10;如果在线段AB 的延长线上,2.。
七年级秋季学期数学期末试卷做题的时候因为题目有很多的小细节所以大家要注意哦,今天小编就给大家分享一下七年级数学,欢迎大家多多参考哦七年级上学期数学期末试卷一、选择题温度-4℃比-9℃高( )A. -5℃B. 5℃C. -13℃D. 13℃若x=2是关于x的方程2x+3m-1=0的解,则m的值为( )A. -1B. 0C. 1D. 1/3下列说法中正确的是( )A. 数轴上距离原点2个单位长度的点表示的数是2B. -1是最大的负整数C. 任何有理数的绝对值都大于0D. 0是最小的有理数下列合并同类项中,正确的是( )A. 2x+3y=5xyB. 3x^2+2x^3=5x^5C. -2x^2+2x^2=x^2D. x^2-3x^2=-2x^2如图,O是线段AB的中点,C在线段OB上,AC=4,CB=3,则OC的长等于( )A. 0.5B. 1C. 1.5D. 2已知m-2n=-1,则代数式1-2m+4n的值是( )A. -3B. -1C. 2D. 3将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( )A. B.C. D.小马虎在计算16-1/3x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是( )A. 15B. 13C. 7D. -1某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是( )A. 亏2元B. 亏4元C. 赚4元D. 不亏不赚如图所示,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,……按此规律,则第50个图形中面积为1的正方形的个数为( )A. 1322B. 1323C. 1324D. 1325二、填空题绝对值大于1且小于3的整数有______.度数为82°30′16″的角的补角的度数为______.x、y两数的平方和减去它们的积的2倍,用代数式表示为______.已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3=______.如图是一个时钟的钟面,8:00的时针及分针的位置如图所示,则此时分针与时针所成的∠α是______度.已知某商品降价20%后的售价为2800元,则该商品的原价为______元.12am-1b3与-1/2a3bn是同类项,则m+n=______.下列等式变形:①a=b,则a/x=b/x;②若a/x=b/x,则a=b;③若4a=7b,则a/b=7/4;④若a/b=7/4,则4a=7b,其中一定正确的有______(填序号)有理数a、b在数轴上的位置如图所示,则化简|2a|+|a+b|-|a-b|的结果为______.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则最后一辆车有2个空位.给出下面五个等式:①40m+10=43m-2;②40m-10=43m+2;③(n-10)/40=(n+2)/43;④(n+10)/40=(n-2)/43;⑤43m=n+2.其中正确的是______(只填序号).三、解答题计算:(1)-16-(-1+1/2)÷3×[2-(-4)2](2)解方程:(x-7)/2-(2x-5)/3=-1(3)先化简,再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-3/2.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______,点P表示的数______(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?如图,点C在AB上,点M、N分别是AC、BC的中点,(1)若AC=12cm,BC=10cm,求线段MN的长;(2)若点C为线段AB上任意一点,满足AC+BC=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若点C在线段AB的延长线上,且满足AC-BC=bcm,点M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.请用一句简洁的话描述你发现的结论.答案和解析1.【答案】B【解析】解:∵-4-(-9)=5,∴温度-4℃比-9℃高5℃.故选:B.温度-4℃比-9℃高多少度就是-4与-9的差.本题主要考查有理数的减法在实际中的应用,熟记减去一个数等于加上这个数的相反数是解题的关键.2.【答案】A【解析】解:∵x=2是关于x的方程2x+3m-1=0的解,∴2×2+3m-1=0,解得:m=-1.故选:A.根据方程的解的定义,把x=2代入方程2x+3m-1=0即可求出m 的值.本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.3.【答案】B【解析】解:A、数轴上距离原点2个单位长度的点表示的数是2或-2,故A错误;B、-1是最大的负整数,故B正确;C、0的绝对值等于零,故C错误;D、没有最小的有理数,故D错误;故选:B.根据数轴上到一点距离相等的点有两个,可判断A;根据整数,可判断B;根据绝对值的意义,可判断C;根据有理数,可判断D.本题考查了有理数,没有最大的有理数,也没有最小的有理数.4.【答案】D【解析】解:A、不是同类项的不能合并,故A错误;B、不是同类项的不能合并,故B错误;C、系数相加字母及指数不变,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.根据合并同类项,系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母部分不变.5.【答案】A【解析】解:∵AC=4,CB=3,∴AB=AC+CB=4+3=7,∵O是线段AB的中点,∴OB= AB=3.5,∴OC=OB-CB=3.5-3=0.5.故选:A.先计算出AB=AC+CB=4+3=7,再根据线段中点的定义得到OB= AB=3.5,然后利用OC=OB-CB进行计算.本题考查了两点间的距离:两点间的连线段长叫这两点间的距离.也考查了线段中点的定义.6.【答案】D【解析】解:∵m-2n=-1,∴1-2m+4n=1-2(m-2n)=1-2×(-1)=3.故选:D.把代数式1-2m+4n为含m-2n的代数式,然后把m-2n=-1整体代入求得数值即可.此题考查代数式求值,注意整体代入思想的渗透.7.【答案】C【解析】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.根据图形,结合互余的定义判断即可.本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.8.【答案】A【解析】解:根据题意得:16+ x=17,解得:x=3,则原式=16- x=16-1=15,故选:A.由错误的结果求出x的值,代入原式计算即可得到正确结果.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.9.【答案】A【解析】解:设商品进价为x,根据题意得:x(1+20%)(1-20%)=48解得x=50,以48元出售,可见亏2元.故选:A.依据题意,商品按进价增加20%后又降价20%以48元的价格出售的等量关系可列出等式.考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.【答案】D【解析】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.当n=50时, = =1325,即第50个图形中面积为1的正方形的个数为1325,故选:D.第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1= .此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.11.【答案】±2【解析】解:绝对值大于1且小于3的整数有±2.求绝对值大于1且小于3的整数,即求绝对值等于2的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.主要考查了绝对值的性质.本题要注意不要漏掉-2.绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.【答案】97°29′44″.【解析】解:度数为82°30′16″的角的补角的度数为:180°-82°30′16″=97°29′44″.故答案为97°29′44″.若两个角的和等于180°,则这两个角互补,其中一个角叫做另一个角的补角.根据已知条件直接求出补角的度数.本题考查了补角的定义,解题时牢记定义是关键.13.【答案】x2+y2-2xy【解析】解:x2+y2-2xy.故答案为:x2+y2-2xy.把x、y两数首先平方,再想加,进一步减去两数积的2倍即可.此题考查列代数式,注意语言叙述的运算方法和运算顺序.14.【答案】157°【解析】解:∵∠1与∠2互余,∠2与∠3互补,∴∠2=90°-∠1,∠2=180°-∠3,∴90°-∠1=180°-∠3,∴∠3=90°+∠1,∵∠1=67°,∴∠3=90°+67°=157°.故答案为:157°.根据互余的两个角的和等于90°,互补的两个角的和等于180°用∠1表示出∠3,再代入数据进行计算即可得解.本题考查了余角和补角,是基础题,熟记概念是解题的关键.15.【答案】120【解析】解:时针每小时转动:360÷12=30°;当8:00时,时针转动了30°×8=240°;故∠α=360°-240°=120°.此类钟表问题,需理清时针每小时所转动的度数,然后再求解.解答此类钟表问题时,一定要搞清时针和分针每小时、每分钟转动的角度.时针12小时转360°,每小时转(360÷12=30)度,每分钟(30÷60=0.5)度;分针1小时转360°,即每分钟转(360÷60=6)度.16.【答案】3500【解析】解:设原价为x,那么:x×80%=2800元,解得x=3500,故原价为3500元.依据题意商品的原价格=2800÷(1-20%).此题的关键是把原价当成单位1来计算.17.【答案】7【解析】解:∵12am-1b3与 a3bn是同类项,∴m-1=3,n=3,∴m=4,n=3,则m+n=7,故答案为:7.根据同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.本题考查了同类项,同类项是字母相同,且相同的字母的指数也相同,可得二元一次方程组,根据解二元一次方程组,可得m、n的值,根据有理数的加法,可得答案.18.【答案】②④【解析】解:①a=b,x不能等于0,则 = ,错误;②若 = ,则a=b,正确;③若4a=7b,b≠0,则 = ,错误;④若 = ,则4a=7b,正确;故答案为:②④根据等式的性质进行计算,判断即可.本题考查的是等式的性质,性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.19.【答案】0【解析】解:原式=-2a+a+b+a-b=0,故答案为0.根据数轴,可去掉绝对值,再计算即可.本题考查了整式的加减,熟练运用合并同类项的法则,这是各地中考的常考点.20.【答案】①③⑤【解析】解:根据总人数列方程,应是40m+10=43m-2,①正确,②错误;根据客车数列方程,应该为 = ,③正确,④错误;根据总人数和客车数列方程得:43m=n+2.故答案为:①③⑤.首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.【答案】解:(1)原式=-1-(-1/2)×1/3×(-14)=-1-7/3(2)去分母,得3(x-7)-2(2x-5)=-6,去括号,得3x-21-4x+10=-6,移项,得3x-4x=-6+21-10,合并,得-x=5所以,x=-5;(3)原式=2x2-4xy+(2y2-3x2+6xy-3y2+x2)=2x2-4xy+2y2-3x2+6xy-3y2+x2=2xy-y2.当x=1,y=-3/2时,原式=2×1×(-3/2)-(-3/2)2=-3-9/4=-51/4.【解析】(1)先计算16、(-4)2,再算括号里面和乘除法,最后算减法得结果;(2)按解一元一次方程的步骤求解即可;(3)先对代数式进行化简,然后再代入求值.本题考查了有理数的混合运算、整式的加减、解一元一次方程等知识点.解决(1)的关键是掌握有理数混合运算的顺序,注意(2)去分母时勿漏乘,(3)需先化简再求值..22.【答案】-6 8-5t【解析】解:(1)∵OA=8,AB=14,∴OB=6,∴点B表示的数为-6,∵PA=5t,∴P点表示的数为8-5t,故答案为-6,8-5t;(2)根据题意得5t=14+3t,答:点P运动7秒时追上点H.(1)先计算出线段OB,则可得到出点B表示的数;利用速度公式得到PA=5t,易得P点表示的数为8-5t;(2)点P比点H要多运动14个单位,利用路程相差14列方程得5t=14+3t,然后解方程即可.本题考查了一元二次方程的应用:利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.23.【答案】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴∠MOC=1/2∠BOC=65°,∠NOC=1/2∠AOC=20°.∴∠MON=∠MOC-∠NOC=65°-20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵∠MON=∠MOC-∠NOC=1/2∠BOC-1/2∠AOC=1/2(∠BOC-∠AOC)=1/2∠AOB,又∠AOB是直角,不改变,∴∠MON=1/2∠AOB=45°.【解析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON 是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC-∠NOC,又利用∠AOB是直角,不改变,可得 .此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.【答案】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a-100/10)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算【解析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)先求出到两家商场购买一样合算时足球的个数,再根据题意即可求解.本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.【答案】解:(1)由M、N分别是AC、BC的中点,得MC=1/2AC,CN=1/2BC.由线段的和差,得MN=MC+CN=1/2AC+1/2BC=1/2×12+1/2×10=6+5=11cm;(2)MN=a/2,理由如下:由M、N分别是AC、BC的中点,得MC=1/2AC,CN=1/2BC.由线段的和差,得MN=MC+CN=1/2AC+1/2BC=1/2(AC+BC)=a/2cm;(3)MN=b/2,理由如下:由M、N分别是AC、BC的中点,得MC=1/2AC,CN=1/2BC.由线段的和差,得MN=MC-CN=1/2AC-1/2BC=1/2(AC-BC)=b/2cm;如图:,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC 的中点.那么MN就等于AB的一半.【解析】(1)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案;(2)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案;(3)根据线段中点的性质,可得MC、CN,再根据线段的和差,可得答案.本题考查了两点间的距离,利用了线段中点的性质,线段的和差.七年级数学上册期末模拟试题一.选择题(共8小题,满分16分)1.据新华社中国青年网报道,新一期全球超级计算机500强榜单发布,中国超算“神威•太潮之光”与“天河二号”连续第三次占据榜单前两位,“神威•太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度最快的计算机”,它共有40960块处理器,将40960用科学记数法表示为( )A.0.4096×105B.4.096×104C.4.0960×103D.40.96×1032.如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是( )A. B.C. D.3.下列结论正确的是( )A.有理数包括正数和负数B.数轴上原点两侧的数互为相反数C.0是绝对值最小的数D.倒数等于本身的数是0、1、﹣14.下列计算正确的是( )A.4a﹣2a=2B.2x2+2x2=4x4C.﹣2x 2y﹣3yx2=﹣5x2yD.2a2b﹣3a2b=a2b5.下列各式中结果为负数的是( )A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.﹣326.如图是一个正方体的展开图,把展开图折叠成正方体后,相对面上的数互为相反数,则ab的值为( )A.3B.﹣3C.9D.﹣97.计算4+(﹣2)2×5=()A.﹣16B.16C.20D.248.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A.4cmB.8cmC.(a+4)cmD.(a+8)cm二.填空题(共8小题,满分16分,每小题2分)9.据统计:我国微信用户数量已突破8.87亿人,近似数8.87亿精确到位.10.50°﹣25°13 ′=11.如果关于x的方程2x+1=3和方程的解相同,那么k的值为.12.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣113.如果 x3nym+4与﹣3x6y2n是同类项,那么mn的值为.14.一组数据3,﹣3,2,4,1,0,﹣1的中位数是.15.某校为学生购买名著《三国演义》100套、《西游记》80套,共用了12000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x元,可列方程为.16.有一个数值转换器,原理如图所示,若开始输入x的值是3,可发现第1次输出的结果是10,第2次输出的结果是5,第3次输出的结果是16,第4次输出的结果是8,依次继续下去…,第2018次输出的结果是.三.解答题(共12小题,满分65分)17.(5分)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.18.(5分)已知:A=x﹣ y+2,B= x﹣y﹣1.(1)求A﹣2B;(2)若3y﹣x的值为2,求A﹣2B的值.19.(6分)解方程:(1)x﹣7=10﹣4(x+0.5)(2) ﹣ =1.20.(4分)补全下列解题过程如图,OD是∠AOC的平分线,且∠BOC﹣∠AOB=40°,若∠AOC=120°,求∠BOD的度数.解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC= ∠= °.∵∠BOC+∠=120°,∠BOC﹣∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC﹣∠= °.21.(6分)如图,B、C两点把线段MN分成三部分,其比为MB:BC:CN=2:3:4,点P是MN的中点,PC=2cm,求MN的长.22.(9分)已知△ABC,∠C=90°.(1)如图1,在边BC上求作点P,使得点P到AB的距离等于点P 到点C的距离.(尺规作图,保留痕迹)(2)如图2,请利用没有刻度的直尺和圆规在线段AB上找一点F,使得点F到AC的距离等于FB(注:不写作法.保留痕迹,对图中涉及到点用字母进行标注).23.(5分)某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克)甲种 5 8乙种 9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?24.(4分)如图所示,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.25.(7分)阅读下面的文字,完成后面的问题,我们知道: =1﹣,= ﹣, = ﹣, = ﹣,……那么:(1) = ;(2)用含有n(n为正整数)的式子表示你发现的规律;(3)求式子+ + +…… .26.(9分)已知实数a、b在数轴上的对应点如图,化简|a|﹣|a+b|+|c﹣b|27.(4分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别 A B C D E F类型足球羽毛球乒乓球篮球排球其他人数 10 4 6 2根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;( 3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.28.(6分)观察下列关于自然数的等式:①42﹣9×12﹣7;②72﹣9×22=13;③102﹣9×32=19;…根据上述规律解决下列问题:(1)完成第五个等式:162﹣9×= ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.参考答案一.选择题1.解:将40960这个数用科学记数法表示为4.096×104.故选:B.2.解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.3.解:A、有理数分为正数、零、负数,故A错误;B、只有符号不同的两个数互为相反数,故B错误;C、0是绝对值最小的数,故C正确;D、倒数等于本身的数是1、﹣1,故D错误.故选:C.4.解:A、4a﹣2a=2a,此选项错误;B、2x2+2x2=4x2,此选项错误;C、﹣2x2y﹣3yx2=﹣5x2y,此选项正确;D、2a2b﹣3a2b=﹣a2b,此选项错误;故选:C.5.解:A、﹣(﹣3)=3,是正数,故本选项不符合题意;B、|﹣3|=3是正数,故本选项不符合题意;C、(﹣3)2=9是正数,故本选项不符合题意;D、﹣ 32=﹣9是负数,故本选项符合题意.故选:D.6.解:这是一个正方体的平面展开图,共有六个面,其中面“﹣2”与面“b”相对,面“﹣1”与面“c”相对,面“3”与面“a”相对.∵相对面上的数互为相反数,∴a=﹣3,b=2,c=1,∴ab=(﹣3)2=9.故选:C.7.解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.8.解:∵原正方形的周长为acm,∴原正方形的边长为 cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为( +2)cm,则新正方形的周长为4( +2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.二.填空题(共8小题,满分16分,每小题2分)9.解:近似数8.87亿精确到0.01亿,即精确到百万位,故答案为:百万.10.解:原式=49°60′﹣25°13′=24°47′,故答案为:24°47′.11.解:∵2x+1=3∴x=1又∵2﹣ =0即2﹣ =0∴k=7.故答案为:712.解:①﹣1[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0[x]+(x)+[x)=0+1+0=1;⑤0.5[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.13.解:由题意可知:3n=6,m+4=2n,解得:n=2,m=0原式=0,故答案为:014.解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.15.解:设《西游记》每套x元,则《三国演义》每套(x+16)元,根据题意得:100(x+16)+80x=12000.故答案为:100(x+16)+80x=12000.16.解:第3次输出的结果是16,第4次输出的结果是8,第5次输出的结果是×8=4,第6次输出的结果是×4=2,第7次输出的结果是×2=1,第8次输出的结果是3×1+1=4,所以,从第5次开始,每3次输出为一个循环组依次循环,(2018﹣4)÷3=671…1,所以,第2018次输出的结果是4.故答案为:4.三.解答题(共12小题,满分65分)17.解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.18.解:(1)∵A=x﹣ y+2,B= x﹣y﹣1,∴A﹣2B=x﹣ y+2﹣2( x﹣y﹣1)=﹣ x+ y+4;(2)∵3y﹣x=2,∴x﹣3y=﹣2,∴A﹣2B=﹣ x+ y+4=﹣ (x﹣3y)+4=﹣×(﹣2)+4=5.19.解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:10x+2﹣2x+1=6,移项合并得:8x=3,解得:x= .20.解:∵OD是∠AOC的平分线,∠AOC=120°,∴∠DOC= ∠AOC=60°.∵∠BOC+∠AOB=120°,∠BOC﹣∠AOB=40°,∴∠BOC=80°.∴∠BOD=∠BOC﹣∠DOC=20°故答案是:AOC,60,AOB,DOC,20.21.解:∵MB:BC:CN=2:3:4,∴设MB=2xcm,BC=3xcm,CN=4xcm,∴MN=MB+BC+CN=2x+3x+4x=9xcm,∵点P是MN的中点,∴PN= MN= xcm,∴PC=PN﹣CN,即 x﹣4x=2,解得x=4,所以,MN=9×4=36cm.22.解:(1)如图,点P为所作;(2)如图,点F为所作.23.解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:利润为495元.24.解:如图所示(1)沿AB走,两点之间线段最短;(2)沿AC走,垂线段最短;(3)沿BD走,垂线段最短.25.解:(1) = ﹣ ;(2)根据题意得: = ﹣ ;(3)原式=1﹣ + ﹣+…+ ﹣ =1﹣ = .故答案为: (1) ﹣ ;26.解:由图可知,a<0,b<0,c>0,且|a|>|b|,所以,a+b<0,c﹣b>0,所以,|a|﹣|a+b|+|c﹣b|=﹣a+a+b+c﹣b=c.27.解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比= ×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.28.解:(1)第五个等式:162﹣9×52=31;故答案为:52;31;(2)第n个等式:(3n+1)2﹣9n2=6n+1,左边=9n2+6n+1﹣9n2=6n+1=右边,则等式成立.初中生七年级数学上册期末试卷一.选择题(共12小题,满分36分,每小题3分)1.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代数式a2017+2016b+c2018的值为( )A.2018B.2016C.2017D.02.计算2﹣(﹣3)×4的结果是( )A.20B.﹣10C.14D.﹣203.某商品打七折后价格为a元,则原价为( )A.a元B. a元C.30%a元D. a元4.当x=1时,代数式px3+qx+1的值为2018,则当x=﹣1时,代数式px3+qx+1的值为( )A.2017B.﹣2016C.2018D.﹣20185.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( )A.100gB.150gC.300gD.400g6.在3,0,﹣2,﹣5四个数中,最小的数是( )A.3B.0C.﹣2D.﹣57.﹣3的相反数是( )A.3B.﹣3C.D.﹣8.﹣1+3的结果是( )A.﹣4B.4C.﹣2D.29.下列方程中,是一元一次方程的是( )A.2x2﹣x=0B.xy+1=﹣1C.x﹣3= xD.x ﹣2y=410.下列等式变形正确的是( )A.若﹣3x=5,则x=﹣B.若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=111.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为( )A.﹣1B.0C.1D.212.下列变形中:①由方程 =2去分母,得x﹣12=10;②由方程 x= 两边同除以,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是( )个.A.4B.3C.2D.1二.填空题(共4小题,满分12分,每小题3分)13.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.14.已知a2+2a=1,则3(a2+2a)+2的值为.15.如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是.16.如果 x3nym+4与﹣3x6y2n是同类项,那么mn的值为.三.解答题(共7小题,满分72分)17. (8分)解方程:(1)x﹣7=10﹣4(x+0.5)(2) ﹣ =1.18.(7分)已知x、y满足关系(x﹣2)2+|y+2|=0,求yx的值.19.(8分)已知代数式(x﹣y)2和x2﹣2xy+y2.(1)当x=2,y=3时,计算出两个代数式的值.(2)当x=﹣2,y=4时,计算出两个代数式的值.(3)请你任取一组x,y的值,计算出两个代数式的值.(4)你有什么发现?20.(8分)如果y=3是方程2+(m﹣y)=2y的解,那么关于x的方程2mx=(m+1)(3x﹣5)的解是多少?21.(8分)已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0对于任意的x都成立.求:(1)a0的值(2)a0﹣a1+a2﹣a3+a4﹣a5的值(3)a2+a4的值.22.(14分)如图,在同一平面内四个点A,B,C, D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF= AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.23.(12分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.(1)某游客中一年进入该公园共有n次,如果不购买年票,则一年的费用为元;如果购买A类年票,则一年的费用为元;如果购买B类年票,则一年的费用为元;(用含n的代数式表示)(2)假如某游客一年中进入该公园共有12次,选择哪种购买方式比较优惠?请通过计算说明理由.(3)某游客一年中进入该公园n次,他选择购买哪一类年票合算?请你帮助他决策,并说明你的理由.参考答案一.选择题1.解:根据题意知a=﹣1、 b=0、c=1,则原式=(﹣1)2017+2016×0+12018=﹣1+0+1=0,故选:D.2.解:原式=2+12=14,故选:C.3.解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴ 原价为:0.7x=a,则x= a(元).故选:B.4.解:将x=1代入px3+qx+1,可得p+q+1=2018,∴p+q=2017,将x=﹣1代入px3+qx+1,可得﹣p﹣q+1=﹣(p+q)+1=﹣2017+1=﹣2016,故选:B.5.解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选:D.6. D.7.解:﹣3的相反数是3,。
苏教版七年级秋学期期末数学模拟试卷一、选择题(每小题2分,共20分) 1.-4的倒数是 ( ) A .4B .-4C .14D .-142.计算-2x 2+3x 2的结果为 ( ) A .-5x 2 B .5x 2 C .-x 2 D .x 2 3.下列方程变形正确的是 ( )A .由15x -=0得x -1=5 B .由5x-1=0得x -1=0C .由15x -=1得x -1=5 D .由5x-1=1得x -5=14.-件工作,甲单独做20 h 完成,乙单独做12 h 完成,现甲单独做4h 后,乙加入和甲一起做,还要几小时完成?若设还要x h 完成,则依题意可列方程为 ( )A .41202012x x --= B .41202012x x-+=C .41202012x x +-= D .41202012x x ++=5.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是 ( )6.将长方形的纸ABCD 沿AE 折叠,得到如图所示的图形,已知∠CED'=60°,则∠AED 的度数是 ( ) A .60° B .50° C .75° D .55° 7.若()2120m n -++=,则m +n 的值为 ( )A .-1B .-3C .3D .不确定8.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是 ( ) A .垂线段最短 B .两点确定一条直线 C .两点之间,直线最短 D .两点之间,线段最短9.由几个相同的小正方体搭成的几何体的三视图如下,则搭成这个几何体的小正方体的个数是 ( )A .4B .5C .6D .710.有一串数:-2003,-1999,-1995,-1991,…按一定的规律排列,那么这串数最小的和是前 ( )A .500个数B .501个数C .502个数D .503个数 二、填空题(每小题3分,共18分)11.计算:20°30'+15°24'x 3=_______°_______'. 12.合并同类项:5x -2(x -3)=_______. 13.第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务,将13000用科学记数法表示为_______.14.如图,A ,O ,B 三点在一条直线上,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.若∠1:∠2=1:2,则∠1=_______°.15.若a ,b 互为相反数,c 的绝对值为5,且a +b+c<0,则a +b+c =_______.16.如图,要使平面图形折叠成正方体后相对面上的两数和相等,则x +y =_______. 三、解答题(共62分) 17.(5分)计算:()()()23322251835⎛⎫---⨯--÷- ⎪⎝⎭.18.(5分)设A =3ax 3-bx ,B =-ax 3-2bx +8. (1)求A +B ;(2)当x =-1时,A +B =10,求代数式9b -6a +2的值.19.(6分)解方程:124423x x--=-.20.(8分)(1)用5块正方体木块搭出如图所示的图形,画出它的三视图;(2)在(1)中的实物图中,再添加一个小正方体,使得它的主视图和左视图不变.操作后,画出所有可能的俯视图.21.(8分)(2013.苏州)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问甲、乙两个旅游团各有多少人?22.(8分)如图,∠AOB=90°,OC是∠BOD的平分线,若∠1:∠3=7:9.求∠BOD的度数.23.(10分)我国股市交易中每买或卖一次需交成交价的千分之四点五的各种费用,李明以每股10元的价格买入上海某股票1000股进行投资.(1)若李明计划以每股12元的价格全部卖出,则他盈利多少元?(2)若李明计划实际盈利20%时卖出,则他应该计划以多少元的价格全部卖出?(精确到分)24.(12分)(1)如图,已知点C在线段AB上,且AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点,求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,求MN的长度;(3)对于(1),如果我们这样叙述:已知线段AC=6 cm,BC=4 cm,点C在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.结果会有变化吗?如果变化,求出结果.参考答案一、1.D 2.D 3.C 4.D 5.D 6.A 7.A 8.D 9.B 10.B二、11.66 42 12.3x+613.1.3×10414.30 15.-5 16.7三、17.-30.18.(1)2ax3-3bx+8.(2)8.19.x=5.20.(1)三视图如图:(2)操作过程略,可能的俯视图如图所示:21.35人、20人.22.140°.23.(1)1901元.(2)12.10元24.(1)5(cm). (2)2a bMN cm += (3)有变化.1( cm).苏教版七年级秋学期期末数学模拟试卷一、选择题(每小题2分,共20分)1.-4的绝对值是( )A.4 B.14C.-4 D.±42.下列计算正确的是( )A.3a+2b=5ab B.5y-3y=2 C.7a+a=7a2D.3x2y-2yx2=x2y3.下列关于单项式-235xy的说法中,正确的是( )A.系数是3,次数是2 B.系数是35,次数是2C.系数是35,次数是3 D.系数是-35,次数是34.将下面的直角梯形绕直线l旋转1周,可以得到如图所示的立体图形的是( )5.有理数a,b在数轴上的位置如图所示,则下列各式错误的是( )A.b<0<a B.b<a C.ab<0 D.a+b>06.下列方程中,解为x=2的方程是( )A.3x-2=3 B.4-2(x-I)=1 C.-x+6=2x D.12+1=07.如图,一个几何体上半部分为四棱锥,下半部分为正方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是( )8.若代数式(m-2)x2+5y2+3的值与字母x的取值无关,则m的值是( )A.2 B.-2 C.-3 D.09.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了( ) A.70元B.120元C.150元D.300元10.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A'处,BC为折痕,如果BD 为∠A'BE的平分线,则∠CBD=( )A.80°B.90°C.100°D.70°二、填空题(每小题3分,共18分)11.已知∠α=34°26',则∠α的余角为_______.12.2013年第一季度,泰州市共完成工业投资22300000000元.22300000000这个数可用科学记数法表示为_______.13.若a2n+1b2与5a3n-2b2是同类项,则n=_______.14.点A在点B的北偏东60°方向上,点C在射线BA与正北方向夹角的角平分线上,那么点B测点C的方向是北偏东_______度.15.小华和小明每天坚持跑步,小明每秒跑6m,小华每秒跑4m,如果他们同时从相距200 m的两地相向起跑,那么几秒后两人相遇?若设x s后两人相遇,则可列方程_______.16.已知线段AB=20 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,则AM =_______cm.三、解答题(共62分)17.(6分)(1)计算:(-4)2×(-34)+30÷(-6);(2)化简:4(2x2-xy)-(x2+xy-6).18.(6分)解方程:(1)4(x-1)=1-x;(2)1231 23x x+--=.19.(7分)(1)如图①,在方格纸中有三个格点三角形(顶点在小正方形的顶点上),把三角形ABC绕A点顺时针旋转90°,可以得到三角形ADE,再将三角形ADE向左平移5格,得到三角形FHG.图中,直线AB,AD,FH两两之间有怎样的位置关系?(2)如图②,用直尺过点A画AD⊥AB,过点C画CF⊥AB,垂足为F,并在图中标出直线AD,CF经过的格点.20.(7分)(1)根据下列条件,分别求代数式4(x-y)+5(x-y)-11(x-y)的值:①x=3,y=1;②x=0,y=-2;③x=-0.5,y=-2.5.(2)观察上述计算结果,请你给出一组x,y的值,使得上述代数式的值与(1)中①的计算结果相同.21.(8分)如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是______________;(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①_______;②_______;③_______;(3)①如果∠AOD=140°.那么根据_______,可得∠BOC=_______°;②如果∠EOF=15∠AOD,求∠EOF的度数.22.(8分)某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加口个座位.(1)请你在下表的空格里填写适当的代数式:(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?23.(10分)在平整的地面上,有若干个完全相同的棱长为10 cm的小正方体堆成一个几何体(如图所示).(1)这个几何体由_______个小正方体组成,请画出这个几何体的三视图;(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有_______个正方体只有一个面是黄色,有_______个正方体只有两个面是黄色,有_______个正方体只有三个面是黄色;(3)若现在还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少平方厘米?24.(10分)扬州某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元,”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车?”甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位,”乙同学说:“我的方案是只租用60座的客车,正好坐满且比甲同学的方案少用两辆客车.”王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案?并说明理由.参考答案一、1.A 2.D 3.D 4.B 5.D 6.C 7.B 8.A 9.B 10.B二、11.55°34' 12.2.23×101013.314.30 15.6x+4x=200 16.7或13三、17.(1)-17.(2)7x2-5xy+6.18.(1)x=1.(2)x=7 919.(1)AD⊥AB,FH⊥AB,FH//AD.(2)画图略.20.(1)①②③结果均为-4.(2)本题答案不唯一21.(1)∠AOC,∠EOF,∠BOD (2)∠AOC=∠EOF=∠BOD,∠COE=∠BOF,∠AOD=∠COB,∠AOF=∠DOE(只需写出不重复的三对即可)(3)①对顶角相等140②30°22.(1)12+2a 12+3a 12+(n-1)a (2)52.23.(1)10三视图略(2)1 2 3 (3)400( cm2).24.(1)45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元.(2)租用45座的客车4辆,60座的客车1辆.这个方案的费用为1100元,能让所有同学都能有座位且无空位.苏教版七年级秋学期期末数学模拟试卷(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.在-2,1,5,0这四个数中,最大的数是( )A.-2 B.1 C.5 D.02.计算-10-8所得的结果是( )A.-2 B.2 C.18 D.-183.在网络上用搜索“中国梦”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为( )A.451×105B.45.1×106C.4.51×107D.0.451×1084.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.在下列图形中,该几何体的表面展开图是( )5.甲、乙、丙三家超市对一种定价相同的商品进行促销,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品应该去的超市是( )A.甲B.乙C.丙D.一样6.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出,得到本息和(本金+利息)33852元.若设王先生存人的本金为x元,则下面所列方程正确的是( )A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=338257.A.B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少的路线是( )A.A→E→C B.A→D→CC.A→E→B→C D.A→B→E→C8.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,若相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ) A.54盏B.55盏C.56盏D.57盏二、填空题(每题2分,共20分)9.若实数a,b在数轴上对应点的位置如图所示,则a_______b.(填“<”、“>”或“=”)中的O里,填入运算符号_______,能使得算式的值最小.(填“+”、10.在算式1-2O3“-”、“×”或“÷”)11.体育委员带了500元钱去买体育用品,若一个足球a元,一个篮球b元,则代数式500-3a-2b表示____________________________.12.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,按此规律,摆第n图,需用火柴棒的根数为_______.13.某计算程序编辑如图所示,当输入x=_______时,输出的y=8.14.根据里氏震级的定义,地震所释放的相对能量E与震级n的关系为E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_______.15.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=-1时,代数式2ax3+3bx+4的值是_______.16.李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为_______.17.龙都电子商场出售A,B,C三种型号的笔记本电脑,四月份A型电脑的销售额占三种型号总销售额的56%,五月份,B,C两种型号的电脑销售额比四月份减少了m%,A型电脑的销售额比四月份增加了23%.已知商场五月份这三种型号电脑的总销售额比四月份增加了12%,则m=_______.18.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,请你观察它们的构成规律,用你发现的规律写出第8个等式:_______.三、解答题(共64分)19.计算:(1)(-39)-(+21)-(-5)+(-9);(2)-22+3×(-1)2014-9÷(-3).20.解下列方程:(1)2(x+1)-6=3(x-2)-4(x-5);(2)21211 36x x-+=-21.已知关于x的方程3(x-2)=x-a的解比223x a x a+-=的解小52,求a的值.22.先化筒,再求值: (1)求 2m 2-4m +1-22122m m ⎛⎫+- ⎪⎝⎭,其中m =-1;(2)已知(x -2)2+1y +=0,求5xy 2-[2x 2y -(2x 2y -3xy 2)].23.三个队植树,第一队植树a 棵,第二队比第一队的2倍还少8棵,第三队比第二队的一半多6棵,问三个队共植树多少棵?并求当a =100时,三个队植树的总棵数.24.(本题6分)九年级某班为纪念师生情谊,班委决定花800元班会费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留作纪念,其中送给任课老师的留念册的单价比给同学的单价多8元,请问这两种不同留念册的单价分别为多少元?25.(本题8分)(1)如图,B,C两点把线段MN分成三部分,其比分别为MB:BC:CN=2:3:4,P是MN的中点,PC=2cm,求MN的长.(2)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.①图中有_______块小正方体;②该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.26.(本题9分)一天,某客运公司的甲、乙两辆客车分别从相距380千米的A,B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时13分钟时也经过C地,未停留继续开往A地.(友情提醒:可以画出线段图帮助分析)(1)乙车的速度是_______千米/时,B,C两地的距离是_______千米,A,C两地的距离是_______千米;(2)求甲车的速度;(3)这一天,乙车出发多长时间,两车相距200千米?27.(本题10分)(1)如图1,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB=_______.(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF平分∠DOB,则OE平分∠AOC 吗?为什么?参考答案一、选择题1.C2.D3.C4.B5.C6.A7.A8.B二、填空题9.<10.×11.体育委员买了3个足球,2个篮球后剩余的经费12.6n+213.1或11 14.100 15.3 16.33 17.m=2 18.82+92+722=732三、解答题19.(1)原式=-64 (2)原式=220.(1)x=6 (2)x=-3 221.a=122.(1)原式=-8m+2.10 (2)原式=2xy2 原式=4 23.394(棵)24.20元,12元25.(1)36(cm) (2)①11 ②图略26.(1)80 180 200 (2)100(千米/时)(3)1小时9227或小时,两车相距200千米27.(1)140°(2)略苏教版七年级秋学期期末数学模拟试卷(时间:100分钟满分:100分)一、选择题(每小题2分,共20分)1.-15的绝对值是( )A.-15B.15C.5 D.-52.计算12-7×(-4)+8÷(-2)的结果是( )A.-24 B.-20 C.6 D.363.下列各式中,运算正确的是( )A.6a-5a=1B.a2+a2=a4C.3a2+2a2=5a4D.3a2b-4a2b=-a2b4.世界文化遗产长城总长约为6700000 m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为( )A.5 B.6 C.7 D.85.由一个圆柱与一个长方体组成的几何体如图所示,这个几何体的左视图是( )6.实数a,b在数轴上的位置如图所示,则化简-a的结果为( )A.2a+b B.-bC.-2a-b D.b7.下列各图中,可以是一个正方体的平面展开图的是( )8.如图,AO⊥OB于点O,∠AOC=50°,则∠BOC的补角等于( )A.120°B.130°C.140°D.150°9.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是 ( )A .AC =BCB .AC +BC =AB c .AB =2ACD .BC =12AB 10.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2014”在 ( ) A .射线OA 上 B .射线OB 上 C .射线OD 上 D .射线OF 上 二、填空题(每小题3分,共18分) 11.计算:-(-1)2=_______.12.已知2a -3b 2=5,则10-2a +3b 2的值是_______.13.如果3x 1-2k +34k =0是关于x 的一元一次方程,那么k =_______.14.下列说法:①两点之间的所有连线中,线段最短; ②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行; ④长方体是四棱柱. 其中正确的有_______.(填正确说法的序号)15.按照下图所示的操作步骤,若输入x 的值为2,则输出的值为_______.16.将一张长方形纸片按如图所示的方式折叠,BC ,BD 为折痕,则∠CBD 为_______°.三、解答题(共62分) 17.(6分)(1)计算:(-1)3×(-2)÷[(+3) 2+2×(-5)];(2)化简:5(3a -b )-4(-a +3b). 18.(6分)解方程:(1)4-x =3(2-x); (2)1120.20.5x x -+-=.19.(8分)如图所示是由一些大小相同的小正方体组合成的简单几何体.(1)图中有_______块小正方体;(2)请在下面分别画出这个几何体的主视图、左视图和俯视图.20.(8分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OP是∠BOC的平分线.(1)图中除直角外,还有相等的角吗?请写出两对:①_______;②_______;(2)如果∠AOD=40°,①那么根据_______,可得∠BOC=_______°;②因为OP是∠BOC的平分线,所以∠BOP=_______°;③求∠BOF的度数.21.(8分)某自来水公司按如下规定收取水费:如果每月用水不超过10 t,按每吨1.5元收费;如果每月用水超过10 t,超过部分按每吨2元收费.(1)某户9月份的水费是22.8元,问该户9月份用水多少?(2)某户8月份平均每吨水费1.75元,那么该户8月份用水多少吨?应交水费多少元?22.(8分)如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到_______的距离,_______是点C到直线OB的距离.因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC,PH,OC这三条线段的大小关系是_______.(用“<”号连接)23.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于2,求5a+5b-1 2014cd-m2的值.24.(10分)某人去水果批发市场采购苹果,他看中了A,B两家苹果.这两家苹果品质一样,零售价都为6元/kg,批发价各不相同.A家规定:批发数量不超过1000 kg,按零售价的92%优惠;批发数量不超过2000 kg,按零售价的90%优惠;超过2000 kg按零售价的88%优惠.B家的规定如下表:(表格说明:批发价格分段计算,如:某人批发苹果2100 kg,则总费用=6x95%x500+6×85 %×1000+6×75%x(2100-1500))(1)如果他批发600 kg苹果,则他在A家批发需要_______元,在B家批发需要_______元;(2)如果他批发x kg苹果(1500<x<2 000),则他在A家批发需要_______元,在B家批发需要_______元;(用含x的代数式表示)(3)现在他要批发1800 kg苹果,那么他选择在哪家批发更优惠?请说明理由.参考答案一、1.B 2.D 3.D 4.B 5.D 6.D 7.C 8.C .9.B 10.C二、11.-1 12.5 13.0 14.①③④15.20 16.90三、17.(1)-2.(2)19a-17b.18.(1)x=1.(2)x=3.19.(1)7(2)如图:20.(1)(答案不唯一,只要符合都可以)(2)①对顶角相等40②20③50°. 21.(1)13.9 t.(2)该户8月份用水20 t,应交水费35元.22.(1)、(2)如图:(3)直线OA 线段PC的长度PH<PC<OC23.1 42014 -24.(1)3312 3360 (2)275x912002x+(3)选择B家批发更优惠,苏教版七年级秋学期数学期末模拟试卷满分:100分时间:90分钟一、选择题(每题2分,共16分)1.如果+30m表示向东走30m,那么向西走40m表示为( )A.+40m B.-40m C.+30m D.-30m2.在-2,0,1,-3四个数中,最小的数是( )A.-2 B.0 C.1 D.-33.如果整式3x n-2-5x+2是关于x的二次三项式,那么72等于( )A.3 B.4 C.5 D.64.若a-b=1,则代数式2a-2b-3的值是( )A.-1 B.1 C.-5 D.55.如图所示是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的.看不见的面上的点数总和是( )A.41 B.40 C.39 D.386.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,若∠BOD=45°,则∠COE的度数是( )A.125°B.135°C.145°D.155°7.服装店销售某款服装,一件服装的标价为300元,若按标价的8折销售,仍可获利60元,则这款服装每件的标件比进价多( )A.60元B.80元C.120元D.180元8.如图,下列图案均是由长度相同的火柴按一定的规律拼搭而成的:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需要的火柴根数是( )A.156 B.157 C.158 D.159二、填空题(每题2分,共20分)9.如图所示是某几何体的表面展开图,则这个几何体是_______.10.若a=1.9×105,b=9.1×104,则a_______b.(填“<”或“>”)11.如图,直线AB,CD相交于点O,OE平分∠AOD,若∠BOD=100°,则∠AOE=_______.12.某种苹果的售价是每千克x元,用面值是100元的人民币购买了5千克,应找_____元.13.多项式2x2-3x+5是_______次_______项式.14.有一数值转换器,其转项原理如图所示,若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,请你探索第2015次输出的结果是_______.15.一条直线上立有10根距离相等的标杆,一名学生匀速地从第1根标杆向第10根标杆行走,当他走到第6根标杆时用了6.5s,则他走到第10根标杆时所用时间是_______.16.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为_______.17.元代朱世杰所著《算学启蒙》里有这样一道题:良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?请你回答:良马______天可以追上驽马.18.小明在做数学题时,发现下面有趣的结果:3-2=18+7-6-5=415+14+13-12-11-10=924+23+22+21-20-19-18-17=16…根据以上规律可知第100行左起第一个数是_______.三、解答题(共64分)19.(本题6分)计算:(1)4+(-2)2×2-(-36)÷4;(2)15713261236⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭.20.(本题4分)依据下列解方程0.30.5210.23x x+-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据,解:原方程可变形为352123x x+-=.(_______)去分母,得3(3x+5)=2(2x-1).(_______)去括号,得9x +15=4x -2.(_______) (_______),得9x -4x =-15-2.(_______) 合并,得5x =-17.(合并同类项) (_______),得.x =-175.( ) 21.(本题6分)(1)计算:5(a +2b)-2(3a -2b);(2)先化简,再求值:3x 2y -22234222xy xy x y x y ⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦其中x =3,y =-13.22.(本题6分)解下列方程:(1)12x +=2x -3;(2)12223x x x -+-=-.23.(本题8分)根据下列要求画图,并回答问题: (1)如图,分别取AB ,BC ,CA 的中点D ,E ,F ; (2)连接DE ,EF ,FD ;(3)请利用有关的工具进行测量,并判断DE ,EF ,FD 与CA ,AB ,BC 之间分别有怎样的特殊位置关系.24.(本题6分)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量的3倍还多2000千克,求粗加工的该种山货质量.25.(本题8分)阅读材料:我们知道x 的几何意义是在数轴上的数x 对应的点与原点的距离,即x 0x =-,也就是说x 表示在数轴上数x 与数0对应的点之间的距离.这个结论可以推广为12x x -表示在数轴上数x 1与x 2对应的点之间的距离. 例1 已知x =2,求x 的值.解 容易看出,在数轴上与原点的距离为2的点对应的数为-2和2,即x 的值为-2和2.例2 已知1x -=2,求x 的值.解 在数轴上与数1对应的点之间的距离为2的点对应的数为3和-1,即x 的值为3和-1.仿照阅读材料的解法,求下列各式中的x 的值: (1)33x -=; (2)428x +=.26.(本题8分)因课外阅读需要,学校图书馆向出版商邮购某系列图书,每本书单价为20元,邮购总费用包括书的价钱和邮费,相关的书价折扣、邮费如下表所示:(1)若一次邮购8本,共需总费用为_______元;若一次邮购12本,共需总费用为_______元.(2)已知图书馆需购书的总数是10的整数倍,且超过10本.①若分次邮购,分别汇款,每次邮购10本,总费用为930元,则邮购了多少本书?②如果图书馆需购书的总数为60本,若你是图书馆负责人,从节约的角度出发,在“每次邮购10本”与“一次性邮购”这两种方式中你会选择哪一种?请说明理由.27.(本题9分)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:直线ON是否平分∠AOC?请说明理由.(2)将图中的三角板绕点O以每秒6°的速度按逆时针方向旋转一周,在旋转的过程中,直线ON恰好平分∠AOC,求t的值.(3)将图1中的三角板绕点O按顺时针方向旋转至图3的位置,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.参考答案一、选择题1.B2.D3.B4.A5.C6.B7.C8.B二、填空题9.圆柱10.> 11.40°12.100-5x 13.二三14.4 15.11.7s 16.21 17.20 18.10200三、解答题19.(1)原式=21 (2)原式=8720.分式的基本性质等式性质2去括号法则或乘法分配律移项等式性质1系数化为1等式性质221.(1)原式=-a+14b (2)-123.(1)、(2)略(3)DE//CA,EF//AB,FD//BC24.2000kg25.(1)x=0或6 (2)x=1.5或-2.526.(1)150 211.2 (2)①50(本);②从节约的角度出发应选一次性邮购的方式27.(1)直线ON平分∠AOC.(2)t=10s或40s (3)30°苏教版七年级上册期末数学模拟试卷(满分:100分 时间:90分钟)一、选择题(每题2分,共16分)1.如图所示为某地区十二月份某一天的天气预报,这天最高气温 比最低气温高 ( ) A .-30C B .7℃ C .3℃ D .-7℃2.有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是 ( )A .+2B .-3C .+3D .+43.我国第一艘航空母舰辽宁舰的电力系统可提供14000000瓦的电力,14000000这个数用科学记数法可表示为 ( )A .14×106B .1.4×107C .1.4×108D .0.14×1094.如图,直线l 1与l 2相交于点O ,OM ⊥l 1,若∠α=44°,则∠β等于 ( ) A .56° B .46° C .45° D .44°5.如图所示是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是 ( ) A .3 B .4 C .5 D .66.把一根长100cm 的木棍锯成两段,若使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为 ( ) A .70cm B .65cm C .35cm D .35cm 或65cm 7.若把两块三角板按如图所示那样拼在一起,则∠ABC 等于 ( ) A .70° B .90° C .105° D .120°8.下列图形都是由同样大小的棋子按一定的规律组成的,其中第1个图形有1颗棋子,第2个图形一共有6颗棋子,第3个图形一共有16颗棋子,…,则第6个图形中棋子的颗数为 ( )A .51B .70C .76D .81 二、填空题(每题2分,共20分) 9.(-1)2015的绝对值是_______. 10.若0a ba b+=,则ab ab =_______.11.观察下面的单项式:a ,-2a 2,4a 3,-8a 4,…,根据你发现的规律,第8个式子是_______. 12.按照下图所示的操作步骤,若输入x 的值为2,则输出的值为_______.13.方程3x +1=7的解是_______.14.多项式_______与m 2+m -2的和是m 2-2m.15.如图所示是由若干个大小相同的小正方体堆砌而成的几何体,其三 种视图中面积最小的是_______.16.某地居民生活用电基本价格为0.50元/度,规定每月基本用电量 为a 度,超过部分电量的每度电价比基本用电量的每度电价增加20%. 若某用户在5月份用电100度,共交电费56元,则a 为_______度. 17.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周……计算机处理数据采用的是二进位制.已知二进位制与十进位制的比较如下表:请将二进位制数10101010(二)写成十进位制数为_______.18.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第6个图形有_______个小圆.三、解答题(共64分) 19.(本题6分)计算:(1)-18+(-14)-(-18)-13; (2)-14-1-(12)÷3×()233--. 20.(本题6分)解方程:(1)123123x x+--= (2)20.250.110.030.026x x -+=.21. (本题5分)先化简,再求值:-5x 2 y -[2x 2y -3(xy -2x 2y)]+2xy , 其中x =-1,y =-2.22.(本题6分)如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.23.(本题6分)某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时距A地多远;(2)在第_______次纪录时距A地最远;(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?24.(本题6分)如图,直线AB,CD相交于点O,OE平分∠BOD,∠AOC=72°,∠DOF=90°.(1)写出图中任意一对互余的角;(2)求∠EOF的度数.25.(本题8分)如图,所有小正方形的边长都为1,长方形的顶点都在格点上.请按要求解答:。
苏教版七年级秋学期期末数学模拟试卷一、选择题(每小题2分,共20分) 1.-4的倒数是 ( ) A .4B .-4C .14D .-142.计算-2x 2+3x 2的结果为 ( ) A .-5x 2 B .5x 2 C .-x 2 D .x 23.下列方程变形正确的是 ( ) A .由15x -=0得x -1=5 B .由5x -1=0得x -1=0C .由15x -=1得x -1=5 D .由5x -1=1得x -5=14.-件工作,甲单独做20 h 完成,乙单独做12 h 完成,现甲单独做4h 后,乙加入和甲一起做,还要几小时完成?若设还要x h 完成,则依题意可列方程为 ( )A .41202012x x --=B .41202012x x-+=C .41202012x x+-=D .41202012x x ++= 5.已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是 ( )6.将长方形的纸ABCD 沿AE 折叠,得到如图所示的图形,已知∠CED'=60°,则∠AED 的度数是 ( ) A .60° B .50° C .75° D .55° 7.若()2120m n -++=,则m +n 的值为 ( )A .-1B .-3C .3D .不确定8.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是 ( ) A .垂线段最短 B .两点确定一条直线 C .两点之间,直线最短 D .两点之间,线段最短9.由几个相同的小正方体搭成的几何体的三视图如下,则搭成这个几何体的小正方体的个数是 ( )A .4B .5C .6D .710.有一串数:-2003,-1999,-1995,-1991,…按一定的规律排列,那么这串数最小的和是前 ( )A .500个数B .501个数C .502个数D .503个数 二、填空题(每小题3分,共18分)11.计算:20°30'+15°24'x 3=_______°_______'. 12.合并同类项:5x -2(x -3)=_______.13.第二届亚洲青年运动会将于2013年8月16日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务,将13000用科学记数法表示为_______.14.如图,A ,O ,B 三点在一条直线上,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.若∠1:∠2=1:2,则∠1=_______°.15.若a ,b 互为相反数,c 的绝对值为5,且a +b+c<0,则a +b+c =_______.16.如图,要使平面图形折叠成正方体后相对面上的两数和相等,则x +y =_______. 三、解答题(共62分) 17.(5分)计算:()()()23322251835⎛⎫---⨯--÷- ⎪⎝⎭.18.(5分)设A=3ax3-bx,B=-ax3-2bx+8.(1)求A+B;(2)当x=-1时,A+B=10,求代数式9b-6a+2的值.19.(6分)解方程:124423x x--=-.20.(8分)(1)用5块正方体木块搭出如图所示的图形,画出它的三视图;(2)在(1)中的实物图中,再添加一个小正方体,使得它的主视图和左视图不变.操作后,画出所有可能的俯视图.21.(8分)(2013.苏州)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问甲、乙两个旅游团各有多少人?22.(8分)如图,∠AOB=90°,OC是∠BOD的平分线,若∠1:∠3=7:9.求∠BOD的度数.23.(10分)我国股市交易中每买或卖一次需交成交价的千分之四点五的各种费用,李明以每股10元的价格买入上海某股票1000股进行投资.(1)若李明计划以每股12元的价格全部卖出,则他盈利多少元?(2)若李明计划实际盈利20%时卖出,则他应该计划以多少元的价格全部卖出?(精确到分)24.(12分)(1)如图,已知点C在线段AB上,且AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点,求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,求MN的长度;(3)对于(1),如果我们这样叙述:已知线段AC=6 cm,BC=4 cm,点C在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.结果会有变化吗?如果变化,求出结果.参考答案一、1.D 2.D 3.C 4.D 5.D 6.A 7.A 8.D 9.B 10.B二、11.66 42 12.3x +6 13.1.3×10414.30 15.-5 16.7 三、17.-30. 18.(1)2ax 3-3bx +8. (2)8. 19.x =5. 20.(1)三视图如图:(2)操作过程略,可能的俯视图如图所示:21.35人、20人. 22.140°. 23.(1)1901元.(2)12.10元 24.(1)5(cm). (2)2a bMN cm += (3)有变化.1( cm).。
【七年级】2021年秋七年级数学上册期末模拟考试卷(有答案) 2021年秋七年级数学上学期期末模拟卷一、(每个子问题3分,共30分):1.下列变形正确的是()a、如果x2=Y2,那么x=Yb。
如果,那么x=yc.若x(x-2)=5(2-x),则x=-5d.若(+n)x=(+n)y,则x=y2、截至2022年5月19日,21600名中外记者成为上海世博会注册记者。
21600表示为()a.0.216×105b.21.6×103c.2.16×103d.2.16×1043.以下计算是正确的()a.3a-2a=1b.x2y-2xy2=-xy2c、 3a2+5a2=8a4d.3ax-2xa=ax4.有理数a、b在数轴上表示如图3所示,下列结论错误的是()a、 b<ab。
c.d.5.已知关于X的方程4x-3=2的解是X=,那么的值是()a.2b.-2c.2或7d.-2或76.以下陈述是正确的()a.的系数是-2b.32ab3的次数是6次c、是一个常数项为1的多项式d.x2+X-17.用四舍五入把0.06097精确到千分位的近似值的有效数字是()a、 0,6,0b.0,6,1,0c.6,0,9d.6,18.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,这所列方程为()a、 13x=12(x+10)+60b.12(x+10)=13x+60c.d.9.如图所示,c点、O点和B点位于同一条直线上,∠ AOB=90°,∠aoe=∠dob,则下列结论:①∠eod=90°;②∠coe=∠aod;③∠coe=∠dob;④∠coe+∠bod=90°.其中正确的个数是()a、 1b.2c.3d.410.如图,把一张长方形的纸片沿着ef折叠,点c、d分别落在、n的位置,且∠fb=∠fe.则∠fb=()a、30°b.36°c.45°d.72°二、题(每小题3分,共18分):11的2倍之间的差异。
2021-2022学年七年级下学期期末数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分在每个小题给出的四个选项中,只有一项符合要求,请选出并填在下面的表格里)1.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1B.0C.1D.2解:把x=2代入方程得:2m+2=0,解得:m=﹣1,故选:A.2.《侯马盟书》是山西博物馆藏得十大国宝之一,其中很多篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.3.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由−12a>2得a<2D.由2x+1>x得x>1解;A、a>b,c=0时,ac2=bc2,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边没诚乘以﹣2,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D错误;故选:B.4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .{x =y +512x =y −5B .{x =y −512x =y +5C .{x =y +52x =y −5D .{x =y −52x =y +5解:设索长为x 尺,竿子长为y 尺,根据题意得:{x =y +512x =y −5. 故选:A .5.如图,数轴上所示的解集用不等式表示正确的是( )A .x >﹣2B .x ≥﹣2C .x <﹣2D .x ≤﹣2解:根据数轴上表示的解集得:x <﹣2,故选:C .6.如图,在△ABC 中,BC 边上的高为( )A .BFB .CFC .BD D .AE解:根据高的定义,AE 为△ABC 中BC 边上的高.故选:D .7.已知等腰三角形两边a ,b ,满足|2a ﹣3b +5|+(2a +3b ﹣13)2=0,则此等腰三角形的周长为( )A .7或8B .6或10C .6或7D .7或10解:∵|2a ﹣3b +5|+(2a +3b ﹣13)2=0,∴{2a −3b +5=02a +3b −13=0, 解得{a =2b =3,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;故选:A.8.一次数学活动课上,小聪将一副含30°角的三角板的一条直角边和45°角的三角板的一条直角边重叠,则∠1的度数为()A.45°B.60°C.75°D.85°解:如图所示,∵∠ABC=∠DEF=90°,∴∠ABC+∠DEF=180°,∴AB∥EF,∴∠AOF=∠F=45°,∵∠A=30°,∴∠1=∠A+∠AOF=30°+45°=75°,故选:C.9.如图所示,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4cm2,则阴影部分面积等于()A.2cm2B.1cm2C.0.25cm2D.0.5cm2解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,高相等;∴S△BEF=12S△BEC,同理得,S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=4,∴S△BEF=1,即阴影部分的面积为1.故选:B.10.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数是()A.102个B.114个C.126个D.138个解:根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第10层中含有正三角形个数是6+12×9=114个.故选:B.二、填空题(本大题共5个小题,每小题3分,共15分把答案写在题中的横线上)11.已知方程2x﹣y=1,用含x的代数式表示y,得y=2x﹣1.解:移项,得﹣y=1﹣2x,系数化1,得y=2x﹣1.故填y=2x﹣1.12.在△ABC中,如果∠A:∠B:∠C=1:2:3,那么△ABC的形状是直角三角形.解:设∠A、∠B、∠C的度数分别为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则2x=60°,3x=90°,∴△ABC是直角三角形,故答案为:直角.13.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=65度.解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 248或296 元.解:设第一次购书的原价为x 元,则第二次购书的原价为3x 元,依题意得:①当0<x ≤1003时,x +3x =229.4, 解得:x =57.35(舍去);②当1003<x ≤2003时,x +910×3x =229.4, 解得:x =62,此时两次购书原价总和为:4x =4×62=248;③当2003<x ≤100时,x +710×3x =229.4, 解得:x =74,此时两次购书原价总和为:4x =4×74=296;④当100<x ≤200时,910x +710×3x =229.4, 解得:x ≈76.47(舍去);⑤当x >200时,710x +710×3x =229.4, 解得:x ≈81.93(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.三、解答题(本题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)解方程:y −y−12=2−y+26;(2)解方程组:{x −y =32x +3y =16. 解:(1)去分母得:12y ﹣6y +6=24﹣2y ﹣4,移项合并得:8y =14,解得:y =74;(2){x −y =3①2x +3y =16②, ①×3+②得:5x =25,解得:x =5,把x =5代入①得:y =2,则方程组的解为{x =5y =2. 17.(6分)解不等式组:{5x −1<3(x +1)2x−13−1≤5x+12,并写出它所有的整数解.解:{5x −1<3(x +1)①2x−13−1≤5x+12②, 解①得x <2,解②得x ≥﹣1,故不等式组的解集为﹣1≤x <2,故不等式组的整数解为﹣1,0,1.18.(7分)如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得C 1P +C 2P 的值最小.解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)连接C 1C 2交直线m 于点P ,则点P 即为所求点.19.(6分)“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.20.(10分)数学课上,老师出了一道题,如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=40°(1)求∠DAE的度数;(2)小红解完第(1)小题说,我只要知道∠B﹣∠C=40°,即使不知道∠B、∠C的具体度数,也能推出∠DAE的度数小红的说法,对不对?如果你认为对,请推导出∠DAE 的度数:如果你认为不对,请说明理由.解:(1)∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠BAE=12∠BAC=30°,∵AD⊥BC,∴∠ADB=90°,∵∠B=80°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣80°﹣90°=10°,∴∠DAE=∠BAE﹣∠BAD=30°﹣10°=20°;(2)对,理由是:∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°−12(∠B+∠C),∵AD⊥BC,∴∠ADB=90°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣∠B﹣90°=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°−12(∠B+∠C)﹣(90°﹣∠B)=12∠B−12∠C=12(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=20°,所以小红的说法正确.21.(10分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈.据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的路口,还会感应避让障碍物,自动归队取包裹,没电的时候还会自己找充电桩充电.某快递公司启用40台A 种机器人、150台B 种机器人分拣快递包裹,A 、B 两种机器人全部投入工作,1小时共可以分拣0.77万件包裹;若全部A 种机器人工作1.5小时,全部B 种机器人工作2小时,一共可以分拣1.38万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹?(2)为进一步提高效率,快递公司计划再购进A 、B 两种机器人共100台.若要保证新购进的这批机器人每小时的总分拣量不少于5500件,求至少应购进A 种机器人多少台? 解:(1)A 种机器人每台每小时拣x 件包裹,B 种机器人每台每小时分拣y 件包裹,由题意得,{40x +150y =0.77×100001.5×40x +2×150y =1.38×10000, 解得,{x =80y =30, 答:A 种机器人每台每小时分拣80件包裹,B 种机器人每台每小时分拣30件包裹;(2)设应购进A 种机器人a 台,购进B 种机器人(100﹣a )台,由题意得,80a +30(100﹣a )≥5500,解得:a ≥50,答:至少应购进A 种机器人50台.22.(12分)已知:如图,E 点是正方形ABCD 的边AB 上一点,AB =4,DE =6,△DAE逆时针旋转后能够与△DCF 重合.(1)旋转中心是 D .旋转角为 90 度.(2)请你判断△DFE 的形状,并说明理由.(3)求四边形DEBF 的周长和面积.解:(1)旋转中心是点D .旋转角为90度.(2)根据旋转的性质可得:△DAE ≌△DCF ,则DE =DF ,∠EDF =∠ADC =90°,则△DFE的形状是等腰直角三角形.(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=20;面积等于正方形ABCD的面积=16.23.(14分)阅读材料,并回答下列问题如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),旋转.(2)如图2,前进小组把△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=5,则DC=3.(3)如图3,圆梦小组展开了探索活动,把△ABC纸片沿DE折叠,使点A落在四边形BCDE内部点A′的位置,且得出一个结论:2∠A′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC纸片沿DE折叠,使点A落在四边形BCDE 外部点A′的位置,此时∠A′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.解:(1)旋转;故答案为:旋转(2)∵AD=2,∴DC=AC﹣AD=5﹣2=3;故答案为:3(3)∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED);由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=180°﹣∠A'EA=180°﹣2∠A'ED,∴∠1+∠2=180°﹣2∠A'DE+180°﹣2∠A'ED=2(180°﹣∠A'ED﹣∠A'DE)∴2∠A′=∠1+∠2.(4)∠2﹣∠1=2∠A',理由如下:∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED),由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=2∠A'ED﹣180°∴∠2﹣∠1=(180°﹣2∠A'DE)﹣(2∠A'ED﹣180°)=180°﹣(∠A'DE+∠A'ED),∴∠2﹣∠1=2∠A'.。
七年级秋学期期末数学模拟试卷(七)(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.如图所示为某地区十二月份某一天的天气预报,这天最高气温比最低气温高( )A.-30C B.7℃C.3℃D.-7℃2.有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A.+2 B.-3 C.+3 D.+43.我国第一艘航空母舰辽宁舰的电力系统可提供14000000瓦的电力,14000000这个数用科学记数法可表示为( )A.14×106B.1.4×107C.1.4×108D.0.14×1094.如图,直线l1与l2相交于点O,OM⊥l1,若∠α=44°,则∠β等于( ) A.56°B.46°C.45°D.44°5.如图所示是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是( )A.3 B.4 C.5 D.66.把一根长100cm 的木棍锯成两段,若使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为 ( ) A .70cm B .65cmC .35cmD .35cm 或65cm7.若把两块三角板按如图所示那样拼在一起,则∠ABC 等于 ( ) A .70°B .90°C .105°D .120°8.下列图形都是由同样大小的棋子按一定的规律组成的,其中第1个图形有1颗棋子,第2个图形一共有6颗棋子,第3个图形一共有16颗棋子,…,则第6个图形中棋子的颗数为 ( )A .51B .70C .76D .81 二、填空题(每题2分,共20分) 9.(-1)2015的绝对值是_______. 10.若0a b a b +=,则abab=_______. 11.观察下面的单项式:a ,-2a 2,4a 3,-8a 4,…,根据你发现的规律,第8个式子是_______.12.按照下图所示的操作步骤,若输入x的值为2,则输出的值为_______.13.方程3x+1=7的解是_______.14.多项式_______与m2+m-2的和是m2-2m.15.如图所示是由若干个大小相同的小正方体堆砌而成的几何体,其三种视图中面积最小的是_______.16.某地居民生活用电基本价格为0.50元/度,规定每月基本用电量为a度,超过部分电量的每度电价比基本用电量的每度电价增加20%.若某用户在5月份用电100度,共交电费56元,则a为_______度.17.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”.而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周……计算机处理数据采用的是二进位制.已知二进位制与十进位制的比较如下表:请将二进位制数10101010(二)写成十进位制数为_______.18.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依此规律,第6个图形有_______个小圆.三、解答题(共64分) 19.(本题6分)计算:(1)-18+(-14)-(-18)-13; (2)-14-1-(12)÷3×()233--. 20.(本题6分)解方程: (1)123123x x+--= (2)20.250.110.030.026x x -+=.21.(本题5分)先化简,再求值:-5x 2 y -[2x 2y -3(xy -2x 2y)]+2xy ,其中x =-1,y =-2.22.(本题6分)如图,已知线段AB =6,延长线段AB 到C ,使BC =2AB ,点D 是AC 的中点.求:(1)AC 的长;(2)BD 的长.23.(本题6分)某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时距A地多远;(2)在第_______次纪录时距A地最远;(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?24.(本题6分)如图,直线AB,CD相交于点O,OE平分∠BOD,∠AOC=72°,∠DOF =90°.(1)写出图中任意一对互余的角;(2)求∠EOF的度数.25.(本题8分)如图,所有小正方形的边长都为1,长方形的顶点都在格点上.请按要求解答:(1)画线段AC;(2)过点D,B作线段AC的垂线,垂足分别为点E,F;(3)因为______________,所以线段AD,AE的大小关系是_______(用“<”号连接).(4)你能写出线段DE,BF的关系吗?(直接写出答案)26.(本题12分)已知A,B两家商店的随身听的单价相同,书包的单价也相同,随身听和书包的单价之和为452元,且随身听的单价比书包的单价的4倍少8元.(1)问随身听和书包的单价各是多少元?(2)现在这两家商店搞促销,促销方式如下:商店A:所有的商品打8折销售;商店B:每购物满100元,立即返还25元(例如,购物205元,则立即返还50元).小明身上带了400元钱,想买随身听和书包各一个,那么他应该选择在哪一家商店购买更省钱?27.(本题15分)如图,点A从原点出发沿数轴向右运动,同时,点B也从原点出发沿数轴向左运动,3秒后,两点相距18个单位长度.已知点B的速度是点A的速度的5倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置;(2)若A,B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向右运动,几秒时,原点恰好处在点A、点B的正中间?(3)当A,B两点从(2)中的位置继续以原来的速度沿数轴向右运动的同时,另一点C 从原点位置也向点A运动,当遇到点A后,立即返回向点B运动,遇到点B后又立即返回向点A运动,如此往返,直到点B追上A点时,点C立即停止运动.若点C-直以10个单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案一、选择题1.B2.A3.B4.B5.D6.A7.D8.C二、填空题9.-1 10.-1 11.-128a812.20 13.x=2 14.-3m+2 15.左视图16.40 17.170 18.46三、解答题19.(1)原式=-27 (2)原式=-3(2)x=-0.220.(1)x=7921.3622.(1)AC的长为18 (2)BD的长为323.(1)2千米(2)在第五次纪录时距A地最远(3)90.72(元)24.(1)∠BOF与∠BOD或∠DOE与∠EOF (2)54°25.(1)、(2)如图所示:(3)垂线段最短AD>AE (4)DE=BF26.(1)360元和92元(2)在商店B购买更省钱27.(1)A的速度为每秒1个单位长度,点B的速度为每秒5个单位长度.A,B两点从原点出发运动3秒时的位置如图所示:(2)运动2秒时,原点恰好处在A,B两点的正中间(3)25(单位长度)初中数学试卷。
七年级秋学期期末数学模拟试卷(三)
(时间:100分钟满分:100分)
一、选择题(每小题2分,共20分)
1.-4的绝对值是( )
A.4 B.1
4
C.-4 D.±4
2.下列计算正确的是( )
A.3a+2b=5ab B.5y-3y=2 C.7a+a=7a2D.3x2y-2yx2=x2y
3.下列关于单项式-
2
3
5
xy
的说法中,正确的是( )
A.系数是3,次数是2 B.系数是3
5
,次数是2
C.系数是3
5
,次数是3 D.系数是-
3
5
,次数是3
4.将下面的直角梯形绕直线l旋转1周,可以得到如图所示的立体图形的是( )
5.有理数a,b在数轴上的位置如图所示,则下列各式错误的是( )
A.b<0<a B.b<a C.ab<0 D.a+b>0
6.下列方程中,解为x=2的方程是( )
A.3x-2=3 B.4-2(x-I)=1 C.-x+6=2x D.1
2
+1=0
7.如图,一个几何体上半部分为四棱锥,下半部分为正方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是( )
8.若代数式(m-2)x2+5y2+3的值与字母x的取值无关,则m的值是( )
A.2 B.-2 C.-3 D.0
9.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了( )
A.70元B.120元C.150元D.300元
10.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A'处,BC为折痕,如果BD为∠A'BE的平分线,则∠CBD=( )
A.80°B.90°C.100°D.70°
二、填空题(每小题3分,共18分)
11.已知∠α=34°26',则∠α的余角为_______.
12.2013年第一季度,泰州市共完成工业投资22300000000元.22300000000这个数可用科学记数法表示为_______.
13.若a2n+1b2与5a3n-2b2是同类项,则n=_______.
14.点A在点B的北偏东60°方向上,点C在射线BA与正北方向夹角的角平分线上,那么点B测点C的方向是北偏东_______度.
15.小华和小明每天坚持跑步,小明每秒跑6m,小华每秒跑4m,如果他们同时从相距200 m的两地相向起跑,那么几秒后两人相遇?若设x s后两人相遇,则可列方程_______.16.已知线段AB=20 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,则AM=_______cm.
三、解答题(共62分)
17.(6分)(1)计算:(-4)2×(-3
4
)+30÷(-6);
(2)化简:4(2x2-xy)-(x2+xy-6).
18.(6分)解方程:(1)4(x-1)=1-x;(2)
123
1 23
x x
+-
-=.
19.(7分)(1)如图①,在方格纸中有三个格点三角形(顶点在小正方形的顶点上),把三角形ABC绕A点顺时针旋转90°,可以得到三角形ADE,再将三角形ADE向左平移5格,得到三角形FHG.图中,直线AB,AD,FH两两之间有怎样的位置关系?
(2)如图②,用直尺过点A画AD⊥AB,过点C画CF⊥AB,垂足为F,并在图中标出直线AD,CF经过的格点.
20.(7分)(1)根据下列条件,分别求代数式4(x-y)+5(x-y)-11(x-y)的值:
①x=3,y=1;②x=0,y=-2;③x=-0.5,y=-2.5.
(2)观察上述计算结果,请你给出一组x,y的值,使得上述代数式的值与(1)中①的计算结果相同.
21.(8分)如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.
(1)图中∠AOF的余角是______________;(把符合条件的角都填出来)
(2)图中除直角相等外,还有相等的角,请写出三对:
①_______;②_______;③_______;
(3)①如果∠AOD=140°.那么根据_______,可得∠BOC=_______°;②如果∠EOF
=1
5
∠AOD,求∠EOF的度数.
22.(8分)某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加口个座位.
(1)请你在下表的空格里填写适当的代数式:
(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?
23.(10分)在平整的地面上,有若干个完全相同的棱长为10 cm的小正方体堆成一个几何体(如图所示).
(1)这个几何体由_______个小正方体组成,请画出这个几何体的三视图;
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有_______个正方体只有一个面是黄色,有_______个正方体只有两个面是黄色,有_______个正方体只有三个面是黄色;
(3)若现在还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少平方厘米?
24.(10分)扬州某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.
(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元,”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元吗?
(2)公司经理问:“你们准备怎样租车?”甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位,”乙同学说:“我的方案是只租用60座的客车,正好坐满且比甲同学的方案少用两辆客车.”王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案?并说明理由.
参考答案
一、1.A 2.D 3.D 4.B 5.D 6.C 7.B 8.A9.B 10.B
二、11.55°34' 12.2.23×101013.314.30 15.6x+4x=200 16.7或13
三、17.(1)-17.(2)7x2-5xy+6.18.(1)x=1.(2)x=7 9
19.(1)AD⊥AB,FH⊥AB,FH//AD.(2)画图略.
20.(1)①②③结果均为-4.(2)本题答案不唯一
21.(1)∠AOC,∠EOF,∠BOD (2)∠AOC=∠EOF=∠BOD,∠COE=∠BOF,∠AOD=∠COB,∠AOF=∠DOE(只需写出不重复的三对即可)(3)①对顶角相等140②30°
22.(1)12+2a 12+3a 12+(n-1)a (2)52.
23.(1)10三视图略(2)1 2 3 (3)400( cm2).
24.(1)45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元.(2)租用45座的客车4辆,60座的客车1辆.这个方案的费用为1100元,能让所有同学都能有座位且无空位.。