专家指点高考数学答题技巧
- 格式:doc
- 大小:13.00 KB
- 文档页数:3
2024年高考数学无敌答题技巧总结一、常规题型技巧1.选择题:(1)寻找关键信息:仔细阅读题目,理解题意,找出关键信息,如条件、要求等。
(2)排除法:根据选项逐一排除错误的选项,缩小范围,提高正确选项的概率。
(3)逻辑推理:借助题目中的条件或要求进行逻辑推理,寻找解题的线索。
2.填空题:(1)审题准确:仔细阅读题目,理清题目要求,确定填空的种类(数、代数式、字母等)。
(2)转换思路:将复杂问题转换为简单问题,利用等式、条件等求解填空。
(3)检验答案:填入数值后,进行计算,验证答案是否正确。
3.解答题:(1)系统化思考:将问题分解为多个简单的小问题,逐步解决,构建完整的解题框架。
(2)注重图像:合理运用图表、图像、示意图等工具,对于几何问题,可以先绘制图形帮助理解。
(3)条理清晰:清晰地表达解题过程,用文字说明解题思路、逻辑关系和计算过程。
二、解应用题的技巧1.审题:仔细阅读题目,理解问题背景和要求,确定所给信息和需要求解的内容。
2.建立模型:将问题抽象为数学模型,利用数学知识将问题转化为等价的数学表达式或方程组。
3.计算准确:对所建立的模型进行计算,注意运算的准确性、规范性和简洁性。
4.结果验证:对答案进行合理性检验,通过合理的估算、逻辑推理等方法,判断解是否符合实际情况。
5.拓展思考:对应用题进行扩展思考,探索更多的解题思路和方法。
三、应对难题的技巧1.缩小范围:通过对题目进行分类,找出难题的共性,逐个攻克,缩小解题范围。
2.变换角度:换一种角度思考问题,利用数学性质和公式,尝试不同的解题思路。
3.多维思考:综合运用多个数学知识点,进行多层面的思考和分析,拓宽解题思路。
4.寻求帮助:及时向老师或同学请教,讨论解题思路和方法,互相帮助和提升。
四、备考技巧1.制定合理的学习计划:根据自身的情况,合理安排学习时间和任务,分解目标,逐步实现。
2.多做真题和模拟题:通过大量的题目练习,熟悉考点,提高解题速度和准确率。
高考试题数学解答技巧及答案一、背景介绍高考是中国教育系统中的一项非常重要的考试,对每个参加高考的学生来说都非常关键。
其中,数学科目是高考中比较重要的一门科目,因为它不仅考察学生的计算能力,还考察学生的逻辑思维和问题解决能力。
在本文中,我们将为大家介绍一些高考数学解答的技巧及提供一些典型题目的解答。
二、解题技巧1.审题准确解题的第一步是要仔细审题,理解题意及要求。
对于较长的题目,可以逐步划分小问题,分析每个小问题所需的步骤和方法。
2.列式解题在高考数学中,很多问题都可以通过列式解决。
列方程、列不等式和列向量都是常见的列式解题方法。
通过列式解题可以将问题转化为数学模型,使得问题更加清晰明了。
3.灵活运用公式和定理在高考数学中,有很多公式和定理可以应用到题目的解答中。
解答时需灵活运用这些公式和定理,将问题转化为易于处理的形式。
4.准确选择计算方法对于较为复杂的计算题,需要准确选择合适的计算方法。
例如,对于分数运算题,可以选择化简、通分等方法来简化计算过程。
5.注重步骤和细节在解答题目时,要注重步骤和细节。
尤其是在计算过程中,避免疏忽和粗心导致错误。
同时,要学会控制计算过程中的误差范围,提高解答的准确性。
三、典型题目解答1.求函数极限题目:求函数$f(x)=\frac{2x+1}{x-3}$当$x\to3$时的极限。
解答:利用极限的性质,我们可以将函数分子、分母同时除以$x$,得到$f(x)=\frac{2+\frac{1}{x}}{1-\frac{3}{x}}$。
当$x\to3$时,分子和分母分别趋近于$2$和$1$,所以极限为$f(3)=2$。
2.解二元一次方程组题目:已知方程组$\begin{cases} 2x+y=5 \\ 3x-4y=2 \end{cases}$,求解$x$和$y$的值。
解答:可以通过消元法解题。
将第一个方程的两倍加第二个方程,消去$x$的系数,得到$9y=12$,解得$y=\frac{4}{3}$。
2023高考数学大题的最佳解题技巧及解题思路,清华学长告诉你如何拿高分2023高考数学大题的最佳解题技巧及解题思路,清华学长告知你如何拿高分把握数学解题思想是解答数学题时不行缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,把握解题技巧,并将做过的题目加以划分,最终几天集中复习。
2023高考数学大题的最佳解题技巧及解题思路六种解题技巧一、三角函数题留意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很简单由于马虎,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最终下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最终一问证明不等式成立时,假如一端是常数,另一端是含有n的式子时,一般考虑用放缩法;假如两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,肯定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时肯定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简洁(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简洁;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、留意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的全部基本领件和所求大事包含的基本领件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(依据p1+p2+...+pn=1);5、留意计数时利用列举、树图等基本方法;6、留意放回抽样,不放回抽样;7、留意“零散的”的学问点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、留意条件概率公式;9、留意平均分组、不完全平均分组问题。
高考数学解题最佳方法_数学拿高分技巧数学高考解题可以用方程解题法,数学题目中的各种数量关系大都具有紧密联系,所以可以利用方程解题法建立多种数量关系,简化解题步骤,更好解决数学问题。
下面我给大家带来高考数学解题最佳方法,期望大家宠爱!高中数学解题有效方法一、数形结合法数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简洁的数量关系,挂念我们更好解决数学问题。
高中数学题目对我们的规律思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必需严谨推导各种数量关系。
很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。
二、排解解题法排解解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的精确率。
排解解题法一般用于解决数学选择题,当我们应用排解法解决问题时,需把握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排解,从而有效解决数学问题。
当我们在解决选择题时,必需将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排解,从而选择正确的答案。
高三数学成绩怎么提高1.对数学的认知。
由于成绩长期没有提升,很多学生觉得数学本身就难,或者觉得自己不具备某种天赋、某种方法,于是对自己怀疑,甚至对自己没有信念,那么这样的话很简洁挫伤学习数学的乐观性。
2.备考的方向。
很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永久都做不完题,结果是成绩没有提升上去。
那么这个方向,当然也有一些考生走向了另一个极端,不宠爱做题甚至很少做题,这些考生有的觉得自己很聪慧,应当能学好理科,特殊是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。
高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。
它需要灵活运用各种技巧和解题思路来处理各类题目。
本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。
一、选择题解题思路选择题在高考数学试卷中占有重要的比重。
解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。
阅读题干和选项时要注意细节,避免因为粗心而丢分。
2. 其次,列出已知条件,找到相关的数学概念和定理。
有时候,选择题通过对已知条件的解析可以得到答案。
3. 利用排除法。
根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。
4. 适时使用近似计算法。
高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。
二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。
以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。
2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。
处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。
3. 分数计算:分数计算也是高考数学试卷中的重要考点。
在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。
4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。
例如,通过图形的面积计算来解决几何题。
三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。
以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。
在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。
2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。
高考数学试卷答题的五个技巧高考数学试卷答题的五个技巧一、高考数学试卷答题技巧:但凡热爱数学科目的人并没有把数学当成一种学习,更多的是把数学当成一种游戏。
因为如果认为是学习的话就会有反感。
在解答数学试卷的时候,与其说是解答题目,不如说是追求一种成就感,那种把题抽丝剥茧一步步追寻到正确结果的完美境界。
1.考数学就是和时间的斗争。
问题卷一发下来后,首先把全部问题看一遍。
找出其中看上去最容易解答的题,然后假定步骤,思考怎么样的顺序解题才最好。
2.切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。
3.解题格式要规范,重点步骤要突出。
4.卷选择题时间控制在35分中以内。
小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。
5.保持心静,以不变应万变。
切莫因旁人的翻卷或其他行为干扰自己的解决思路。
二、高考英语试卷答题技巧:1.时间控制:一般分三块:第一块,听力20分钟,语法10分钟,共30分钟。
第二块,完型填空20分钟,阅读理解35分钟,共55分钟。
第三块,翻译10分钟,写作20分钟,共30分钟。
还剩下5分钟用于检查试卷。
2.听力部分:卷子发下来后,应利用朗读说明的时间快速浏览题目,了解材料的大概内容,使听的重点集中到关键部分,这样回答的正确率会提高。
对听到的数字,如年代、年龄、人数等,应随手记下,以免遗忘。
如没听见,或太难而听不懂,要坦然放弃,纠缠不休只能使损失更大。
3.完形填空:读两遍为宜,第一遍通读全文,了解总的意思,从而不会造成大的偏差,第二遍再填词。
有困难可用排除法,意思为主,语法为辅。
4.阅读理解:对文章长的,可以先读题,带着问题找答案。
一边读一边将认为重要的部分划下来,这样做题容易快速找到依据。
把握文章的主要意思,作者的态度是回答难题的关键。
5.翻译题:读题后首先考虑大结构,提示的词或词组一般必须用上,译不出的词或词组,试着以简单、明确的方式来替代,译出基本意思就行,尽量不要空着。
高考数学答题技巧及经验分享高考数学的目的是考查大家对数学知识的综合运用能力,想要取得高分,就必须要夯实基础、活学活用。
下面是小编整理的高考数学答题技巧及经验分享,欢迎大家阅读分享借鉴,希望对大家有所帮助。
高考数学答题技巧及经验分享调适心理,增强信心(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;(2)合理安排饮食,提高睡眠质量;(3)保持良好的备考状态,不断进行积极的心理暗示;(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。
悉心准备,不紊不乱(1)重点复习,查缺补漏。
对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。
强化联系,形成知识网络结构,以少胜多,以不变应万变。
(2)查找错题,分析病因,对症下药,这是重点工作。
(3)阅读《考试说明》和《试题分析》,确保没有知识盲点。
(4)回归课本,回归基础,回归近年高考试题,把握通性通法。
(5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。
(6)临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。
入场临战,通览全卷最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。
刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事:(1)填写好全部考生信息,检查试卷有无问题;(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B 两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。
高考数学题型有哪些特点(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
高三数学万能解题法_名师指点
高三数学万能解题法
①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。
说到去年高考数学和理科综合,周洁娴仍心有余悸。
数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。
她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。
“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。
”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。
陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。
做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。
“既然得不到难题分,一定要保证简单题不错。
”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。
结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。
三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。
周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。
当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。
好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。
毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。
答题时,应先做自己最拿手的科目。
四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。
”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。
他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
“要留意题目的所有条件。
”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。
这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。
“文科综合更是重在审题。
”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。
高考数学解题技巧实用5篇高考数学解题技巧 1一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的__性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一般来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定。
一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答;2.选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,根据题目的已知条件与问题的联系写出可能用到的公式、方法、或是判断。
虽然不能完全解答,但是也要把自己的想法与做法写到答卷上。
多写不会扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是。
;4.选择与填空中出现不等式的题目,优选特殊值法;5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时可以测量;16.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
2019年专家指点高考数学答题技巧先易后难先同后异
一、提前进入角色
很多同学都有这样的习惯,每次刚刚考试完,会有很多遗憾,总想如果这次考试要是重新考的话,我会考得比较好。
那么,要想在高考这一次考试中取得比较好的成绩,必须要少留遗憾,最正常的发挥,至于不会做的,或者根本做不出来的谈不上遗憾,就怕自己的水平没有发挥出来。
提前进入角色应该特别关注以下两个问题:
1、生活作息上的适当调整。
首先,调整好自己的生物钟,不要熬夜,做题尽量放在白天与高考同步。
其次,尽量保持与平时一致的生活习惯,饮食上不要有太大的改变,避免肠胃不适。
再次,要有积极的心理暗示。
人的潜力有时候自己都难以相信,当你精力集中、心理暗示到一定程度,可以使自己超水平发挥的。
2、高考前几天要在数学学科做好“保温”。
有三点要注意:第一,分析订正错题,总结常见的几类错误。
第二,分类看旧题,针对重点内容重点看。
看看《考试说明》要求比较高的知识点,总结一下通性和通法,进行专项内容的总结和分类,形成解决这类问题的常见方法。
第三,适当做一些新题。
新题难度不要太大,中等或者偏下。
中等可以保持你的斗志,偏下是为了保温。
二、监考发卷后迅速摸清题情
高考会提前五分钟发卷,这五分钟同学们不要答卷,先用一分钟填考试信息,接下来同学们就要尽快地摸清题情。
1、识别试卷中曾做过的,会做的题。
也要注意有没有可能会做,但是需要花大量的时间的题。
心里要立刻有一个答题的顺序。
2、舍得放弃,正确对待得与失。
万一遇到某个题从来都没有见过,可以大概看看是哪个类型,用什么方法能解决,这个题目是考察什么,迅速决定是否放弃。
如果觉得花两个小时也不一定能做出来,这个时候要舍得放弃,集中自己的精力,解决自己会做的问题,高考考得不是会多少,而是对多少。
三、四先四后
即先易后难、先熟后生、先高后低、先同后异。
1、易与熟:涉及的概念公式方法能融会贯通,脱口而出,一目了然。
这样的问题我们很快就能做出来,这就是先“易”和先“熟”。
2、高:选择填空一步5分,相比大题按步骤给分,分数更高。
3、同:三种(选择、填空、解答)。
同一种类型的题,尽
量放在同一个时间答。
这当然也要具体问题具体分析。