万有引力定律与航天部分(“公式和比值”专项训练)
- 格式:doc
- 大小:157.00 KB
- 文档页数:4
高中物理万有引力与航天专项训练100(附答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度.【答案】(1)126F F g m -=(2(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R = 2GMm R =2mv R两式联立得:(3)在星球表面:2GMmmg R= ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.3.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大?(3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R= 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =4.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
高中物理万有引力与航天解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1. 如下图,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得R=M,又因为 LR rrm所以能够解得: M L , rm L ;RMmMm(2)依据( 1)能够获得 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 . 2. 如下图是一种丈量重力加快度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上涨到最高点,OP 间的距离为h ,已知引力常量为G , 星球的半径为R ;求:( 1)该星球表面的重力加快度g ; ( 2)该星球的质量 M ;( 3)该星球的第一宇宙速度 v 1。
2h ( 2)2hR 2 2hR【答案】( 1) gGt 2(3)t 2t【分析】( 1)由竖直上抛运动规律得: t 上 =t 下=t由自由落体运动规律:h1 gt 22g2ht 2(2)在地表邻近: GMmmgR 2MgR 2 2hR 2GGt22 (3)由万有引力供给卫星圆周运动向心力得:GMmmv 1R 2RGM 2hR v 1Rt点睛:此题借助于竖直上抛求解重力加快度,并利用地球表面的重力与万有引力的关系求星球的质量。
万有引力定律与航天1.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的状况下,须要验证A. 地球吸引月球的力约为地球吸引苹果的力的1/602B. 月球公转的加速度约为苹果落向地面加速度的1/602C. 自由落体在月球表面的加速度约为地球表面的1/6D. 苹果在月球表面受到的引力约为在地球表面的1/60【来源】2024年全国一般高等学校招生统一考试物理(北京卷)【答案】 BD、苹果在月球表面受到引力为:,由于月球本身的半径大小未知,故无法求出苹果在月球表面受到的引力与地球表面引力之间的关系,故选项D错误。
点睛:本题考查万有引力相关学问,驾驭万有引力公式,知道引力与距离的二次方成反比,即可求解。
2.2024年2月,我国500 m口径射电望远镜(天眼)发觉毫秒脉冲星“J0318+0253”,其自转周期T=5.19 ms,假设星体为质量匀称分布的球体,已知万有引力常量为。
以周期T稳定自转的星体的密度最小值约为()A. B.C. D.【来源】2024年一般高等学校招生全国统一考试物理(全国II卷)【答案】 C点睛:依据万有引力供应向心力并结合密度公式求解即可。
3.为了探测引力波,“天琴安排”预料放射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。
P与Q的周期之比约为A. 2:1B. 4:1C. 8:1D. 16:1【来源】2024年全国一般高等学校招生统一考试物理(全国III卷)【答案】 C【解析】试题分析本题考查卫星的运动、开普勒定律及其相关的学问点。
解析设地球半径为R,依据题述,地球卫星P的轨道半径为R P=16R,地球卫星Q的轨道半径为R Q=4R,依据开普勒定律,==64,所以P与Q的周期之比为T P∶T Q=8∶1,选项C正确。
点睛此题难度不大,解答此题常见错误是:把题述的卫星轨道半径误认为是卫星距离地面的高度,陷入误区。
高考物理万有引力与航天常有题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g(2)v gR (3)h3gT2 R2R 4 GR42【分析】(1)在地球表面重力与万有引力相等:Mmmg ,GR2M M地球密度:V 4 R33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mg m v2R v gR(3)天宫一号的轨道半径 r R h,Mm h 42据万有引力供给圆周运动向心力有:G2 m R2,R h T解得:h3gT 2 R2R242.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017 年 7 月 13 日朱诺号飞行器近距离拍摄的土星表面的气体涡旋( 大红斑 ) ,假定朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。
土星视为球体,已知土星质量为M,半径为R,万有引力常量为G. 求:1 土星表面的重力加快度g;23朱诺号的运转速度v ;朱诺号的运转周期T 。
GM GMR h 【答案】1 ? R 22 ?3 ?2 R hR hGM【分析】【剖析】土星表面的重力等于万有引力可求得重力加快度;由万有引力供给向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】Mm(1)土星表面的重力等于万有引力:GmgGM可得 gR 2(2)由万有引力供给向心力:Mm mv 2 Gh)2R h( RGM可得: vhR(3)由万有引力供给向心力:GMm m R h ( 2)2( R h) 2T可得:T 2R h R hGM3. 如下图是一种丈量重力加快度 g 的装置。
高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
高考物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1.已知地球同步卫星到地面的距离为地球半径的 6 倍,地球半径为R,地球视为均匀球体,两极的重力加速度为g,引力常量为G,求:(1)地球的质量;(2)地球同步卫星的线速度大小.【答案】 (1)gR2gR M(2)vG7【解析】【详解】(1)两极的物体受到的重力等于万有引力,则GMmR2解得mgM gR2;G(2)地球同步卫星到地心的距离等于地球半径的7 倍,即为7R,则GMm v22m7R7R而 GM gR2,解得gRv.72.宇航员在某星球表面以初速度v0竖直向上抛出一个物体,物体上升的最大高度为h.已知该星球的半径为R,且物体只受该星球的引力作用.求:(1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)v2(2)R 2hv0 2h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则v022g h 解得,该星球表面的重力加速度g v022hv2(2) 卫星贴近星球表面运行,则mg mRR解得:星球上发射卫星的第一宇宙速度v g R v02h3.某双星系统中两个星体A、 B 的质量都是m,且 A、 B 相距 L,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论值 T0,且k (),于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A、 B 的连线中点.求:(1)两个星体 A、 B 组成的双星系统周期理论值;(2)星体 C 的质量.【答案】( 1);( 2)【解析】【详解】(1)两星的角速度相同 ,根据万有引力充当向心力知 :可得:两星绕连线的中点转动,则解得:(2) 因为 C 的存在 ,双星的向心力由两个力的合力提供,则再结合:k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可 .4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
万有引力与航天典型题型万有引力定律:(G=6.67×10-11 N·m2/kg2),万有引力定律在天文学中的应用:1、计算天体的质量和密度;2、人造地球卫星、地球同步卫星、近地卫星;3、发现未知天体;4、分析重力加速度g随离地面高度h的变化情况;①物体的重力随地面高度h的变化情况:物体的重力近似地球对物体的吸引力,即近似等于,可见物体的重力随h的增大而减小,由G=mg得g随h的增大而减小。
②在地球表面(忽略地球自转影响):(g为地球表面重力加速度,r为地球半径)。
③当物体位于地面以下时,所受重力也比地面要小,物体越接近地心,重力越小,物体在地心时,其重力为零。
5、双星问题:天文学上把两颗相距比较近,又与其他星体距离比较远的星体叫做双星。
双星的间距是一定的,它们绕二者连线上的同一点分别做圆周运动,角速度相等。
以下图为例由以上各式解得:6、黄金代换公式:GM=gR2。
一:重力与万有引力的关系1、 地球可视为球体,其自转周期为T ,在它的两极处,用弹簧秤测得某物体重为P ;在它的赤道上,用弹簧秤测得同一物体重为0.9P 。
试计算地球的平均密度是多少?2、 已知地球半径R=6.37×106m ,质量M=5.98×1024Kg ,万有引力常量G=6.67×10-11N · m 2/Kg 2,试问,挂在赤道附近弹簧测力计下质量为1Kg 的物体对弹簧的拉力多大? 3、 地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为g/2,则该处距地面的高度为( )A 、R )12( B 、 R C 、R 2 D 、R 24、假设火星和地球都是球体,火星的质量M 火与地球的质量M 地之比M 火:M 地=p ,火星的半径与地球的半径之比为R 火:R 地=q,它们表面处的重力加速度之比为 。
5、宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球。
专项练习05 万有引力定律和航天(共三节)练习一1、如图,火星与地球近似在同一平面内,绕太阳沿同一方向做匀速圆周运动,火星的轨道半径大约是地球的1.5倍。
地球上的观测者在大多数的时间内观测到火星相对于恒星背景由西向东运动,称为顺行;有时观测到火星由东向西运动,称为逆行。
当火星、地球、太阳三者在同一直线上,且太阳和火星位于地球两侧时,称为火星冲日。
忽略地球自转,只考虑太阳对行星的引力,下列说法正确的是()A. 火星的公转周期大约是地球的827倍B. 在冲日处,地球上的观测者观测到火星的运动为顺行C. 在冲日处,地球上的观测者观测到火星的运动为逆行D. 在冲日处,火星相对于地球的速度最小2、“祝融号”火星车需要“休眠”以度过火星寒冷的冬季。
假设火星和地球的冬季是各自公转周期的四分之一,且火星的冬季时长约为地球的1.88倍。
火星和地球绕太阳的公转均可视为匀速圆周运动。
下列关于火星、地球公转的说法正确的是()A. 火星公转的线速度比地球的大B. 火星公转的角速度比地球的大C. 火星公转的半径比地球的小D. 火星公转的加速度比地球的小3、“羲和号”是我国首颗太阳探测科学技术试验卫星。
如图所示,该卫星围绕地球的运动视为匀速圆周运动,轨道平面与赤道平面接近垂直。
卫星每天在相同时刻,沿相同方向经过地球表面A点正上方,恰好绕地球运行n圈。
已知地球半径为地轴R,自转周期为T,地球表面重力加速度为g,则“羲和号”卫星轨道距地面高度为()A.1223222π⎛⎫-⎪⎝⎭gR TRnB.1223222π⎛⎫⎪⎝⎭gR TnC.1223224π⎛⎫-⎪⎝⎭gR TRnD.1223224π⎛⎫⎪⎝⎭gR Tn4、中国航天员翟志刚、王亚平、叶光富在离地球表面约400km的“天宫二号”空间站上通过天地连线,为同学们上了一堂精彩的科学课。
通过直播画面可以看到,在近地圆轨道上飞行的“天宫二号”中,航天员可以自由地漂浮,这表明他们()A. 所受地球引力的大小近似为零B. 所受地球引力与飞船对其作用力两者的合力近似为零C. 所受地球引力的大小与其随飞船运动所需向心力的大小近似相等D. 在地球表面上所受引力的大小小于其随飞船运动所需向心力的大小5、神州十三号飞船采用“快速返回技术”,在近地轨道上,返回舱脱离天和核心舱,在圆轨道环绕并择机返回地面。
【物理】物理万有引力与航天练习题含答案及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m=2.0 kg的小物块从斜面底端以速度9 m/s沿斜面向上运动,小物块运动1.5 s时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R=1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v ==⨯3.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt ;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22Rt T v π=4.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)212v R v h= 【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=5.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.6.我国在2008年10月24日发射了“嫦娥一号”探月卫星.同学们也对月球有了更多的关注.(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,月球绕地球的运动可近似看作匀速圆周运动,试求月球绕地球运动的轨道半径.(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度0v 竖直向上抛出一个小球,经过时间t ,小球落回抛出点.已知月球半径为r ,万有引力常量为G ,试求出月球的质量M 月【答案】22324gR T π(2)202v r Gt . 【解析】 【详解】(1)设地球的质量为M ,月球的质量为M 月,地球表面的物体质量为m ,月球绕地球运动的轨道半径R ',根据万有引力定律提供向心力可得:222()MM GM R R Tπ=''月月2Mmmg GR = 解得:R '= (2)设月球表面处的重力加速度为g ',根据题意得:02g t v '=02GM m g rm '=月 解得:202v r M Gt=月7.2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知地球半径为R ,地面处的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)飞船在上述圆形轨道上运行的周期T .【答案】(1)GgR M 2=(2)2T =【解析】 【详解】(1)根据在地面重力和万有引力相等,则有2MmGmg R= 解得:GgR M 2=(2)设神舟五号飞船圆轨道的半径为r ,则据题意有:r R h =+飞船在轨道上飞行时,万有引力提供向心力有:2224πMm G m r r T=解得:2T =8.今年6月13日,我国首颗地球同步轨道高分辨率对地观测卫星高分四号正式投入使用,这也是世界上地球同步轨道分辨率最高的对地观测卫星.如图所示,A 是地球的同步卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加速度为g,求:(1)同步卫星离地面高度h (2)地球的密度ρ(已知引力常量为G )【答案】(122324gR TR π(2)34g GR π 【解析】 【分析】 【详解】(1)设地球质量为M ,卫星质量为m ,地球同步卫星到地面的高度为h ,同步卫星所受万有引力等于向心力为()2224()R h mMG m R h Tπ+=+ 在地球表面上引力等于重力为2MmGmg R= 故地球同步卫星离地面的高度为22324gR T h R π=(2)根据在地球表面上引力等于重力2MmGmg R= 结合密度公式为233443gR M g G V GR R ρππ===9.某宇航员乘坐载人飞船登上月球后,在月球上以大小为v 0的速度竖直向上抛出一物体(视为质点),测得物体上升的最大高度为h ,已知月球的半径为R ,引力常量为G 。
万有引力定律与航天(公式和比值)1、(07宁夏理综14)天文学家发现了某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和运行周期.由此可推算出( )A.行星的质量B.行星的半径C.恒星的质量D.恒星的半径2、(06北京理综18)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( )A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量3、(07昆明第一次教学质检)据报道:我国第一颗绕月探测卫星“嫦娥一号”将于2007年在西昌卫星发射中心由“长征三号甲”运载火箭发射升空.假设该卫星的轨道是圆形的,且贴近月球表面.若已知该卫星的运行周期、月球的半径、万有引力常量,则可求出( )A.月球的质量B.月球的密度C.探测卫星的质量D.月球表面的重力加速度4、(05全国卷Ⅰ16)把火星和地球绕太阳运行的轨道视为圆周,由火星和地球绕太阳运动的周期之比可求得( )A.火星和地球的质量之比B.火星和太阳的质量之比C.火星和地球到太阳的距离之比D.火星和地球绕太阳运行速度大小之比5、(05全国卷Ⅱ18)已知引力常量G 、月球中心到地球中心的距离R 和月球绕地球运行的周期T.仅利用这三个数据,可以估算出的物理量有 ( )A.月球的质量B.地球的质量C.地球的半径D.月球绕地球运行速度的大小6、(安徽卷)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。
假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T 。
火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。
仅利用以上数据,可以计算出( )A .火星的密度和火星表面的重力加速度B .火星的质量和火星对“萤火一号”的引力C .火星的半径和“萤火一号”的质量D .火星表面的重力加速度和火星对“萤火一号”的引力7、(2009江苏常州中学高三月考) 2007 年3 月26 日,中俄共同签署了《中国国家航天局和俄罗斯联邦航天局关于联合探测火星——火卫一合作的协议》,双方确定2008年联合对火星及其卫星“火卫一”进行探测.“火卫一”在火星赤道正上方运行,与火星中心的距离为9450km .绕火星1周需7h39min ,若其绕行轨道简化为圆轨道,引力常量G 已知.则由以上信息能求出( )A .“火卫一”的质量B .火星的质量C .“火卫一”受到火星的引力D .火星的密度8、(凤阳荣达学校2009届高三物理第三次月考测试卷)2008年9月25日,我国利用“神州七号”飞船将翟志刚、刘伯明、景海鹏三名宇航员送入太空。
设宇航员测出自己绕地球做圆周运动的周期为T ,离地高度为H ,地球半径为R ,则根据T 、H 、R 和引力常量G ,能计算出的物理量是 ( )A .地球的质量B .地球的平均密度C .飞船所需的向心力D .飞船线速度的大小9、(2011年高考·福建理综卷)“嫦娥二号”是我国月球探测第二期工程的先导星。
若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T ,已知引力常量为G ,半径为R 的球体体积公式343V R π=,则可估算月球的( ) A .密度 B .质量C .半径D .自转周期10、(05北京卷)17 .已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍。
不考虑地球、月球自转的影响,由以上数据可推算出( )A.地球的平均密度与月球的平均密度之比约为9∶8B.地球表面重力加速度与月球表面重力加速度之比约为9∶4C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8∶9D.靠近地球表面沿圆轨道运行的航天器线速度与靠近月球表面沿圆轨道运行的航天器线速度之比约为9∶211、(2011年高考·天津理综卷)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。
已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度v =B .角速度ωC .运行周期T =D .向心加速度2Gm a R = 12、(2009届山东邹城二中高三模拟)2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的神舟七号飞船在中国酒泉卫星发射中心发射成功,9月27日翟志刚成功实施了太空行走。
已知神舟七号飞船在离地球表面h 高处的轨道上做周期为T 的匀速圆周运动,地球的半径R ,万有引力常量为G 。
在该轨道上,神舟七号航天飞船(. )A .运行的线速度大小为2R Tπ B .运行的线速度小于第一宇宙速度 C .运行时的向心加速度大小224()R h T π+ D .地球表面的重力加速度大小为 13、(08宜昌第一次调研)“嫦娥一号”是我国月球探测“绕、落、回”三期工程的第一个阶段,也就是“绕”.2007年10月24日18时05分,我国发射第一颗环月卫星,为防偏离轨道,探测器将先在近地轨道上变轨3次,再经长途跋涉进入月球的近月轨道绕月飞行.已知月球表面的重力加速度为地球表面重力加速度的16月球半径为地球半径的13,探测器在地球表面附近绕地运行的周期不小于80 min,探测器在地球表面附近绕地运行的速度约为7.9 km/s.则以下说法中正确的是( )A.探测器在月球表面附近绕月球运行时的速度约为7.9 km/sB.探测器在月球表面附近绕月球运行时的速度约为7.9 km/sC.探测器绕月球表面运行时的向心加速度大于其绕地球表面运行时的向心加速度D.探测器绕月球表面运行的周期可能小于80 min14、(06滨州高三复习质检)据国家航天局计划,2006年内将启动“嫦娥奔月”工程,届时将发射一艘绕月球飞行的飞船.设另有一艘绕地球飞行的飞船,它们都沿圆形轨道运行并且质量相等,绕月球飞行的飞船的轨道半径是绕地球飞行的飞船轨道半径的1/4.已知地球质量是月球质量的81倍,则绕地球飞行的飞船与绕月球飞行的飞船相比较( )A.向心加速度之比为6∶1B.线速度之比为9∶2C.周期之比为8∶9D.动能之比为81∶427、(江西省九校2012届高三下学期第二次联考理综试卷)某人造卫星绕地球做匀速圆周运动,设地球半径为R ,地面重力加速度为g 。
下列说法正确的是( )A .人造卫星的最小周期为B .卫星在距地面高度RC .卫星在距地面高度R 处的加速度为4g D .地球同步卫星的速率比近地卫星速率小,所以发射同步卫星所需的能量较小15、(2011年高考·江苏理综卷)一行星绕恒星作圆周运动。
由天文观测可得,其运动周期为T ,速度为v ,引力常量为G ,则( )A .恒星的质量为32v T G πB .行星的质量为2324v GT π C .行星运动的轨道半径为2vT π D .行星运动的加速度为2v Tπ 16、宇航员在某一星球上做抛体实验,将一物体从距地面h 处以初速度v 0水平抛出,经测得发现其落地点与抛出点的水平距离为X ;还测得在该星球表面附近绕星球做圆周运动的探测器运行周期为T ;引力常量为G,不考虑该星球的自转,利用上述数据可估算 ( )A .该星球的质量为2gR M G = B .探测器的轨道半径为220222hv T R X π= C .探测器的向心加速度为2022hv a X= D .该星球的密度23GT πρ= 17、设地球的半径为R 0,质量为m 的卫星在距地面R 0高处做匀速圆周运动,地面的重力加速度为g 0,则以下说法错误的是( )A.B.C.卫星的加速度为02g D.卫星的周期2π18、(湖南省长沙市一中2010届高三第五次月考)随着太空技术的飞速发展,地球上的人们登陆其它星球成为可能。
假设未来的某一天,宇航员登上某一星球后,测得该星球表面的重力加速度是地球表面重力加速度的2倍,而该星球的平均密度与地球的差不多,则该星球质量大约是地球质量的 ( )A .0.5倍B .2倍C .4倍D .8倍19、(江苏省赣榆一中2010届高三单元检测)2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r,若另有一颗卫星绕地球做匀速圆周运动的半径为2r,则可以确定( ).A .卫星与“神舟七号”的加速度大小之比为1:4B .卫星与“神舟七号”的线速度大小之比为1:C .翟志刚出舱后不再受地球引力D .翟志刚出舱任务之一是取回外挂的实验样品,假如不小心实验样品脱手,则它做自由落体运动20、( 2010·全国卷Ⅱ·21)已知地球同步卫星离地面的高度约为地球半径的6倍。
若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为( )A .6小时 B. 12小时 C. 24小时 D. 36小时21、( 2010·福建·14)火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。
假设火星探测器在火星表面附近圆形轨道运行的周期1T ,神舟飞船在地球表面附近的圆形轨道运行周期为2T ,火星质量与地球质量之比为p ,火星半径与地球半径之比为q ,则1T 与2T 之比为A.B.C.D.22、(湖北省黄冈中学2012届高三下学期高考模拟试卷)因为“光纤之父”高锟的杰出贡献,早在1996年中国科学院紫金山天文台就将一颗于1981年12月3日发现的国际编号为“3463”的小行星命名为“高锟星”。
假设高锟星为均匀的球体,其质量为地球质量的1/k 倍,半径为地球半径的1/q 倍,则“高锟星” 表面的重力加速度是地球表面的重力加速度的( )A .q/k 倍B .k/q 倍C .q 2/k 倍D .k 2/q 倍23、(07全国卷Ⅰ14)据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600 N 的人在这个行星表面的重量将变为960 N.由此可推知,该行星的半径与地球半径之比约为 ( )A.0.5B.2C.3.2D.424、(09年海南物理)近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和T 2,设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为g 1、g 2,则( )A .411322()g T g T = B . 412321()g T g T = C . 21122()g T g T = D . 21221()g T g T = 25、(2007年江苏苏州)一位勇于思考的同学,为探月宇航员设计了测量一颗卫星绕某星球表面做圆周运动的最小周期的方法.在某星球表面以初速度v 0竖直上抛一个物体,若物体只受该星球引力作用,忽略其他力的影响,物体上升的最大高度为h,已知该星球的直径为d,如果在这个星球上发射一颗绕它运行的卫星,其做匀速圆周运动的最小周期为( )A.dh 0v πB.dh 0v 2π C. h d0v π D. h d 0v 2π 26、(07天津理综17)我国绕月探测工程的预先研究和工程实施已取得重要进展.设地球、月球的质量分别为m 1、m 2,半径分别为R 1、R 2,人造地球卫星的第一宇宙速度为v,对应的环绕周期为T,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为( ) A.T R m R m R m R m 3123212112,v B.T R m R m R m R m 3213121221,v C.T R m R m R m R m 3213122112,v D.T R m R m R m R m 3123211221,v27、(2011年高考·浙江理综卷)为了探测X 星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r 1的圆轨道上运动,周期为T 1。