圆柱、圆锥、圆台、球
- 格式:ppt
- 大小:1.41 MB
- 文档页数:12
圆柱圆锥圆台球的表面积和体积圆柱、圆锥、圆台、球是我们数学中经常遇到的几何图形,它们的表面积和体积也是我们需要掌握的基本概念。
下面我们来分别介绍它们的表面积和体积。
一、圆柱圆柱是由一个圆形和一个平行于圆底的矩形组成的几何体。
它的表面积包括圆底面积、侧面积和顶面积三部分。
其中,圆底面积为πr²,侧面积为2πrh,顶面积同圆底面积为πr²。
因此,圆柱的表面积为2πr²+2πrh。
圆柱的体积为底面积乘以高,即V=πr²h。
二、圆锥圆锥是由一个圆锥形底面和一个顶点连通而成的几何体。
它的表面积包括锥底面积、侧面积和母线长度三部分。
其中,锥底面积为πr²,母线长度为l=√(h²+r²),侧面积为πrl。
因此,圆锥的表面积为πr²+πrl。
圆锥的体积为底面积乘以高再除以3,即V=πr²h/3。
三、圆台圆台是由一个圆形底面和一个上方与底面平行的圆环面连通而成的几何体。
它的表面积包括圆底面积、圆环侧面积和上底面积三部分。
其中,圆底面积为πr₁²,上底面积为πr₂²,圆环侧面积为π(r₁+r₂)l,其中l为斜高。
因此,圆台的表面积为πr₁²+πr₂²+π(r₁+r₂)l。
圆台的体积为底面积乘以高再除以3,即V=(πr₁²+πr₂²+πr₁r₂)h/3。
四、球球是由一个圆形转动一周形成的几何体,它的表面积和体积是所有几何体中最容易计算的。
球的表面积为4πr²,球的体积为4/3πr³。
圆柱、圆锥、圆台、球的表面积和体积都是由其底面积和高或半径计算得出的。
通过学习和掌握这些几何体的公式,我们可以更好地理解和运用它们在实际生活中的应用。
《简单旋转体——球、圆柱、圆锥和圆台》知识清单
知识点1 旋转体
一条平面曲线(包括直线)绕它所在平面内的一条①_________旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.
知识点2圆柱、圆锥、圆台、球
记作:圆柱O'O
记作:圆锥SO
记作:圆台O'O
记作:球O
【答案】
①定直线②矩形③直角边④平行于圆锥底面⑤直径
【知识辨析】判断正误, 正确的画“√”, 错误的画“×”.
1.圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.( )
2.圆台上底面圆周上任意一点与下底面圆周上任意一点的连线都是圆台的母线.( )
【答案】
1.√
2.×经过圆台的轴的平面截圆台得到的等腰梯形的腰才是圆台的母线.如图,
PP
1是母线,而PB不是母线.。