牛顿第二定律、动力学两类基本问题
- 格式:doc
- 大小:205.00 KB
- 文档页数:3
课时规范练8 牛顿第二定律动力学两类基本问题(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,有的只有一项符合题目要求,有的有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.如图甲所示,物块静止在粗糙水平面上。
某时刻(t=0)开始,物块受到水平拉力F的作用。
拉力F在 0~t0时间内随时间变化情况如图乙所示,则物块的速度—时间图像可能是( )解析:拉力较小时,拉力小于最大静摩擦力,物体静止;拉动后,由F-μmg=ma可知,随着拉力的增大,物体加速度增大,所以速度—时间图像切线斜率增大。
答案:D2.质量为2 kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等。
从t=0 时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图所示。
重力加速度g取10 m/s2,则物体在t=0至t=12 s这段时间的位移大小为( )A.18 mB.54 mC.72 mD.198 m解析:物体与地面间最大静摩擦力F f=μmg=0.2×2×10 N=4 N。
由题给F t图像知0~3 s内,F=4 N,说明物体在这段时间内保持静止不动。
3~6 s内,F=8 N,说明物体做匀加速运动,加速度a=-=2 m/s2。
6 s末物体的速度v=at=2×3 m/s=6 m/s,在6~9 s内物体以6 m/s的速度做匀速运动。
9~12 s内又以2 m/s2的加速度做匀加速运动,作v t图像如图。
故0~12 s内的位移x=(×3×6)×2 m+6×6 m=54 m。
故B项正确。
答案:B3.(2013·吉林长春调研)物块A、B的质量分别为m和2m,用轻弹簧连接后放在光滑的水平面上。
对B施加向右的水平拉力F,稳定后A、B相对静止的在水平面上运动,此时弹簧长度为l1;若撤去拉力F,换成大小仍为F的水平推力向右推A,稳定后A、B相对静止的在水平面上运动,此时弹簧长度为l2。
牛顿第二定律的应用(解决动力学的两类基本问题)知识要点:1. 进一步学习分析物体的受力情况,达到能结合物体的运动情况进行受力分析。
2. 掌握应用牛顿运动定律解决问题的基本思路和方法。
重点、难点解析:(一)牛顿第一定律内容:物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。
(二)牛顿第三定律1. 内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一直线上。
2. 理解作用力与反作用力的关系时,要注意以下几点:(1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。
(2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。
)(3)作用力与反作用力分别作用在受力物体和施力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。
(作用力与反作用力能否求和?)(4)作用力与反作用力一定是同种性质的力。
(平衡力的性质呢?)(三)牛顿第二定律1、内容:物体的加速度与物体所受合外力成正比,跟物体质量成反比,加速度方向跟合外力的方向相同。
2、数学表达式:F合=ma3、关于牛顿第二定律的理解:(1)同体性:F合=ma是对同一物体而言的(2)矢量性:物体加速度方向与所受合外力方向一致(3)瞬时性:物体的加速度与所受合外力具有瞬时对应关系牛顿第二定律的应用(一)在共点力作用下物体的平衡1:平衡状态:物体处于静止或匀速直线运动状态,称物体处于平衡状态。
2:平衡条件:在共点力作用下物体的平衡条件是:F合=0。
==(其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力)(二)两类动力学的基本问题1. 从受力情况确定运动情况根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。
2. 从运动情况确定受力情况根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
瞬时性问题、动力学中的两类基本问题一、瞬时问题的两类模型轻绳、轻杆和接触面的弹力能跟随外界条件发生突变;弹簧(或橡皮绳)的弹力不能突变,在外界条件发生变化的瞬间可认为是不变的.二、动力学两类基本问题1.解题指导(1)做好两个分析:①受力分析,表示出合力与分力的关系;②运动过程分析,表示出加速度与各运动量的关系.(2)熟悉两种处理方法:合成法和正交分解法.(3)把握一个关键:求解加速度是解决问题的关键.2.必备知识(1)基本思路(2)基本步骤(3)解题关键(1)两类分析——物体的受力分析和物体的运动过程分析。
(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁。
三、针对练习1、如图甲、乙所示,细绳拴一个质量为m 的小球,小球分别用固定在墙上的轻质铰链杆和轻质弹簧支撑,平衡时细绳与竖直方向的夹角均为53°,轻杆和轻弹簧均水平。
已知重力加速度为g ,sin 53°=0.8,cos 53°=0.6。
下列结论正确的是( )A .甲、乙两种情境中,小球静止时,细绳的拉力大小均为43mgB .甲图所示情境中,细绳烧断瞬间小球的加速度大小为43gC .乙图所示情境中,细绳烧断瞬间小球的加速度大小为53gD .甲、乙两种情境中,细绳烧断瞬间小球的加速度大小均为53g2、如图所示,细线连接着A 球,轻质弹簧两端连接着质量相等的A ,B 球,在倾角为θ的光滑斜面体C 上静止,弹簧与细线均平行于斜面.C 的底面粗糙,在水平地面上能始终保持静止,在细线被烧断的瞬间,下列说法正确的是( ) A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θ B .A 球的瞬时加速度沿斜面向下,大小为2g sin θ C .C 对地面的压力等于A ,B 和C 的重力之和 D .地面对C 无摩擦力3、如图所示,物块1的质量为3m ,物块2的质量为m ,两者通过弹簧相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( ) A .a 1=0,a 2=g B .a 1=g ,a 2=g C .a 1=0,a 2=4 g D .a 1=g ,a 2=4 g4、如图所示,质量分别为m 、2m 的球A 、B 由轻质弹簧相连后再用细线悬挂在正在竖直向上做匀减速运动的电梯内,细线承受的拉力为F ,此时突然剪断细线,在绳断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( ) A .2F 3 2F 3m +gB .F 3 2F3m+gC .2F 3 F 3m+gD .F 3 F3m+g5、如图,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间(重力加速度为g )( ) A .图甲中A 球的加速度不为零 B .图乙中两球加速度均为g sin θ C .图乙中轻杆的作用力一定不为零D .图甲中B 球的加速度是图乙中B 球加速度的3倍6、如图所示,质量为2 kg 的物体B 和质量为1 kg 的物体C 用轻弹簧连接并竖直地静置于水平地面上。
动力学两类基本问题1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再应用运动学公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.3.求解上述两类问题的思路,可用如图所示的框图来表示:解决两类动力学基本问题应把握的关键(1)做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.(2)抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.【典例1】(2013·江南十校联考,22)如图3-3-2所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.图3-3-2教你审题关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s答案(1)4 m/s(2)0.4(3)3.2 m/s1.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个桥梁——物体运动的加速度是联系运动和力的桥梁.2.解决动力学基本问题时对力的处理方法(1)合成法:在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法:若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.3.解答动力学两类问题的基本程序(1)明确题目中给出的物理现象和物理过程的特点.(2)根据问题的要求和计算方法,确定研究对象,进行分析,并画出示意图.(3)应用牛顿运动定律和运动学公式求解.突破训练3如图5所示,在倾角θ=37°的足够长的固定的斜面上,有一质量为m=1 kg的物体,物体与斜面间动摩擦因数μ=0.2,物体受到沿平行于斜面向上的轻细绳的拉力F=9.6 N的作用,从静止开始运动,经2 s绳子突然断了,求绳断后多长时间物体速度大小达到22 m/s?(sin 37°=0.6,g取10 m/s2)图5答案 5.53 s解析此题可以分为三个运动阶段:力F存在的阶段物体沿斜面向上加速,受力分析如图所示,由牛顿第二定律和运动学公式得:F-F f-mg sin θ=ma1F f=μF N=μmg cos θv1=a1t1解得:a1=2 m/s2v1=4 m/s第二阶段为从撤去力F到物体沿斜面向上的速度减为零,受力分析如图所示由牛顿第二定律和运动学公式mg sin θ+μmg cos θ=ma20-v1=-a2t2解得:a2=7.6 m/s2t2=0.53 s第三阶段物体反向匀加速运动(因为mg sin θ>μmg cos θ)mg sin θ-μmg cos θ=ma3v2=a3t3解得:a3=4.4 m/s2t3=5 st=t2+t3=5.53 s题组一动力学两类基本问题1.如图3-2-5所示,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P(可视为质点)以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做的运动均可看作匀变速直线运动)()图3-2-5A.1∶1B.1∶4C.4∶1 D.8∶1解析:选D由牛顿第二定律可知,小物块P在AB段减速的加速度a1=μ1g,在BC段减速的加速度a2=μ2g,设小物块在AB段运动时间为t,则可得:v B=μ2g·4t,v0=μ1gt+μ2g·4t,由x AB=v0+v B2·t,x BC=v B2·4t,x AB=x BC可求得:μ1=8μ2,故D正确。
3.2牛二应用一:动力学的两类基本问题一、学习目标会用牛顿第二定律分析和解决两类基本问题:已知受力情况求解运动情况,已知运动情况求解受力情况。
二、知识梳理1.已知力求运动:知道物体受到的作用力,应用牛顿第二定律求加速度,如果再知道物体的初始运动状态,应用运动学公式就可以求出物体的运动情况——任意时刻的位置和速度,以及运动轨迹。
2.已知运动求力:知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
3.两类基本问题的解题步骤:(1)确定研究对象,明确物理过程;(2)分析研究对象的受力情况和运动情况,必要时画好受力图和运动过程示意图;(3)根据牛顿第二定律和运动学公式列方程;合力的求解常用合成法或正交分解法;要特别注意公式中各矢量的方向及正负号的选择,最好在受力图上标出研究对象的加速度的方向;(4)求解、检验,必要时需要讨论。
三、典型例题1.有三个光滑斜轨道1、2、3,它们的倾角依次是60°,45°,30°,这些轨道交于O点.现有位于同一竖直线上的三个小物体甲、乙、丙分别沿这三个轨道同时从静止自由下滑,如图所示,物体滑到O点的先后顺序是()A.甲最先,乙稍后,丙最后B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达D.乙最先,甲稍后,丙最后2.如图甲所示,为测定物体冲上粗糙斜面能达到的最大位移x与斜面倾角θ的关系,将某一物体每次以不变的初速率v0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x与斜面倾角θ的关系如图乙所示,g取10 m/s2,根据图象可求出()A.物体的初速率v0=3 m/sB.物体与斜面间的动摩擦因数μ=0.75C.取不同的倾角θ,物体在斜面上能达到的位移x的最小值x min=1.44 mD.当θ=45°时,物体达到最大位移后将停在斜面上3.我国歼-15舰载战斗机首次在“辽宁舰”上成功降落,有关资料表明,该战斗机的质量m=2.0v=80 m/s减小到零所用时间t=2.5 ×104 kg,降落时在水平甲板上受阻拦索的拦阻,速度从s.若将上述运动视为匀减速直线运动,求:该战斗机在此过程中(1)加速度的大小a;(2)滑行的距离x;(3)所受合力的大小F.4.如图所示,一质量为m =2kg 的物体静止在水平地面上,物体与水平地面间的动摩擦因数μ=0.2,现对物体施加一水平向右的恒定拉力F =12N ,取g =10m/s 2。
牛顿第二定律、动力学两类基本问题1.水平面加速度问题
’2a ’2F
(3)已知a,θ=时F的最小值=
2.斜面加速度问题
3.竖直方向的运动加速度
4.分解加速度法
5.悬绳加速度问题
6.类悬绳加速度问题
7.瞬间加速度问题
8. 对超重和失重的理解
(1)超重并非物体的重力增加了,失重并非重力减小了,完全失重也不是重力完全消失了。
在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生变化。
(2)即使物体做曲线运动,其速度不是竖直方向,但只要其加速度在竖直方向上有分量即a y ≠0,物就会出现超重或失重状态。
例如,汽车过拱形桥顶端就处于失重状态。
(3)即使物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量即a y ≠0,物体就会出现超重或失重状态。
当a y 方向竖直向上时,物体处于超重状态;当a y 方向竖直向下时,物体处于失重状态。
例如:
(4)即使整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的加速度,整体也会出现超重或失重状态。
例如:
(5)在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如天平失效、液柱不再产生向下的压强、浸在水中的物体不再受浮力等。
9.动力学两类基本问题
10.等时圆问题
x=v 0t+½at 2 v 2-v 02=2ax
受力分析,正交分解
运动分析,知三求一
运动学公式
牛顿第二定律 F 合=ma。