等离子喷涂原理与应用详解 共40页
- 格式:ppt
- 大小:1.32 MB
- 文档页数:40
由几个零部件磨损,导致北京地铁四号线电扶梯发生故障,而造成人员伤亡的案件,至今仍让人深感痛惜。
事件过后,人们不禁反思,几个小小零部件的磨损果真有这么大的威力吗?毋容置疑,得到的答案是肯定的。
事实上,据国外统计资料表明:摩擦消耗掉全世界1/3的一次性能源,约有80%的机器零部件都是因为磨损而失效,每年因此而造成的损失也是相当巨大。
因此,发展表面防护和强化技术,也得到世界各国的普遍关注,这也极大推动了表面工程技术的飞速发展和提高。
表面工程技术能够制备出优于本体材料性能的表面薄层,赋予零部件耐高温、耐磨损及抗疲劳等性能。
其中,等离子喷涂作为是表面工程中的一项重要技术,因其具有涂层硬度高、耐磨性能优异等优点,已在国民经济的各个领域获得广泛应用。
经过整理搜集,下面慧聪小编就为大家简单介绍下等离子喷涂技术。
一、等离子喷涂的工作原理:等离子喷涂是以等离子弧为热源的热喷涂,指利用等离子弧将金属或非金属粉末加热到熔融或半熔融状态,并随高速气流喷射到工件表面形成覆盖层,以提高工件耐蚀、耐磨、耐热等性能的表面工程技术。
其中等离子弧是一种高能密速热源,当喷枪的钨电极(阴极)和喷嘴(阳极)分别接电源负极和正极(工件不带电)时,通过高频振荡器激发引燃电弧,使供给喷枪的工作气体在电弧的作用下电离成等离子体。
由于热收缩效应、自磁收缩效应和机械收缩效应的联合作用,电弧被压缩,形成非转移型等离子弧。
等离子喷涂工作原理点击此处查看全部新闻图片二、等离子喷涂的特点:1、由于热收缩效应、自磁收缩效应和机械收缩效应的联合作用,所形成的非转移型等离子弧可以获得高达10000摄氏度以上的高温,且热量集中,因此可以熔化各种高熔点、高硬度的粉末材料。
2、等离子焰流速度高达1000m/s,喷出的粉粒速度可达180-600m/s,因此可以获得组织致密、气孔率低、与基材结合强度高(65-70MPa)、涂层厚度易于控制的喷涂层。
3、等离子喷涂过程中零件不带电,且受热温度低(表面温度一般不超过250℃),因此喷涂过程中零件基本无变形,母材的组织性能亦无变化,且不改变其热处理性质。
等离子喷涂工作原理
等离子喷涂是一种表面处理技术,它利用高温等离子体产生的高能粒子对待处理物体的表面进行喷涂,从而改变其性质和外观。
其工作原理如下:
1. 等离子体产生:通常使用高频电源将工作气体(如氧气、氮气等)引入到封闭的喷涂系统中,产生一定的气流。
然后通过加高电压或加热等方式,使气体中的分子形成高温等离子体。
2. 高能粒子形成:高温等离子体中的分子会被高能粒子撞击、电离和激发,从而形成高速的带电粒子流。
3. 粒子流喷涂:高速的带电粒子流通过喷嘴,被推向待处理物体的表面。
因为粒子带有正电,所以它们在电场的作用下会受到加速,从而具有很高的动能。
4. 喷涂过程:高速的带电粒子流撞击到待处理物体的表面时,会产生热能和冲击力。
热能可以使物体表面的温度升高,冲击力可以改变物体表面的形貌和结构。
5. 涂层形成:由于高温等离子体产生的高能粒子和物体表面的相互作用,物体表面的一层新的材料会被沉积或熔融,并形成一层均匀、致密、附着力强的涂层。
总结:等离子喷涂工作原理主要包括等离子体产生、高能粒子形成、粒子流喷涂、喷涂过程和涂层形成等环节。
通过这些过程,可以实现对待处理物体表面的清洁、改性和涂层形成,以达到表面处理的目的。
等离子喷涂:包括大气等离子喷涂,保护气氛等离子喷涂,真空等离子喷涂和水稳等离子喷涂。
等粒子喷涂技术是继火焰喷涂之后大力发展起来的一种新型多用途的精密喷涂方法,它具有:①超高温特性,便于进行高熔点材料的喷涂。
②喷射粒子的速度高,涂层致密,粘结强度高。
③由于使用惰性气体作为工作气体,所以喷涂材料不易氧化。
<1>等离子的形成(以N2为例):0°k时,N2分子的两个原子程哑铃形,仅在x,y,z方向上平动;大于10°k时,开始旋转运动;大于10000°k时,原子间产生振动,分子与分子间碰撞,则分子会发生离解变为单原子:N2+Ud——>N+N 其中Ud为离解能温度再升高,原子会发生电离: N+Ui——>N++e 其中Ui为电离能气体电离后,在空间不仅有原子,还有正离子和自由电子,这种状态就叫等离子体。
等离子体可分为三大类:①高温高压等离子体,电离度100%,温度可达几亿度,用于核聚变的研究;②低温低压等离子体,电离度不足1%,温度仅为50~250度;③高温低压等离子体,约有1%以上的气体被电离,具有几万度的温度。
离子、自由电子、未电离的原子的动能接近于热平衡。
热喷涂所利用的正是这类等离子体。
<2>喷涂原理:等粒子喷涂原理如图5-9所示。
等粒子喷涂是利用等离子弧进行的,离子弧是压缩电弧,与自由电弧项比较,其弧柱细,电流密度大,气体电离度高,因此具有温度高,能量集中,弧稳定性好等特点。
按接电方法不同,等离子弧有三种形式:①非转移弧:指在阴极和喷嘴之间所产生的等离子弧。
这种情况正极接在喷嘴上,工件不带电,在阴极和喷嘴的内壁之间产生电弧,工作气体通过阴极和喷嘴之间的电弧而被加热,造成全部或部分电离,然后由喷嘴喷出形成等离子火焰(或叫等离子射流)。
等粒子喷涂采用的就是这类等离子弧。
②转移弧:电弧离开喷枪转移到被加工零件上的等离子弧。
这种情况喷嘴不接电源,工件接正极,电弧飞越喷枪的阴极和阳极(工件)之间,工作气体围绕着电弧送入,然后从喷嘴喷出。
等离子喷涂原理
等离子喷涂是一种将粉末材料加热至等离子体状态,并将其喷涂
在基材表面上的表面处理技术。
其原理为:
1. 等离子体发生器:将惰性气体(如氮气、氩气等)通过高电
压电弧放电器,使气体离子化形成等离子体。
2. 粉末供给系统:将需要喷涂的粉末材料通过喷枪中心的粉末
供给系统喷入等离子体中。
3. 离子密度:气体离子化后,鼓励形成等离子体,从而提高了
离子密度。
4. 粘附和熔化:喷出的粉末材料会随着等离子体流动向基材表
面飘落,与基材表面相互作用后即时熔化,并在表面形成坚韧的涂层。
总的来说,等离子喷涂技术是通过高温等离子体的作用使喷射出
的粉末材料熔化、融合并附着在基材表面上,形成涂层。
这种涂层具
有优异的绝缘、耐摩擦、耐腐蚀和高温稳定性等特性,因此被广泛应
用于多种工业领域。
等离子体喷涂的原理等离子体喷涂是一种表面涂覆技术,常用于改善材料的机械性能、耐磨性、耐蚀性等。
其原理主要包括等离子体产生、喷涂物料离子化、喷涂物料吸附和涂层形成等过程。
等离子体产生是等离子体喷涂的起点。
等离子体是一种物态,主要由离子及带电粒子组成。
在等离子体喷涂中,常采用电弧放电等方式产生等离子体。
电弧放电时,两电极之间的气体会产生局部放电,形成高温、高能量的电弧。
电弧放电会使气体分子发生电离、碰撞等过程,生成等离子体。
物料离子化是等离子体喷涂的关键过程。
在等离子体喷涂中,喷涂物料通常是粉末形式的固态物料。
这些物料需要在等离子体作用下,被离子化成带电的粒子。
通常,离子化的方式包括热电子撞击、热电离、电子束离解和电子束碰撞离子化等。
这些方法都能使喷涂物料中的原子或离子获得较高的动能,使其能够进行喷涂作业。
喷涂物料吸附是等离子体喷涂的关键步骤。
在物料离子化后,带电粒子会带有较高的能量,以较高速度向基材表面运动。
当离子接近到基材表面时,会发生吸附作用。
这是因为基材表面带有静电场,可以吸引离子。
物料粒子在基材表面吸附后,也会与基材表面发生相互作用,通过键合力或化学反应等方式,与基材表面形成结合。
涂层形成是等离子体喷涂的最终目的。
当喷涂物料吸附到基材表面后,会形成涂层。
该涂层通常具有较高的致密程度、较高的附着力和较好的机械性能等特点。
涂层的质量和性能主要取决于喷涂物料的性质、离子能量、基材表面性质等因素。
根据不同的应用需求,可以选择不同的喷涂物料和调整离子能量等参数,来实现涂层的定制化。
总的来说,等离子体喷涂是通过产生等离子体、离子化喷涂物料、喷涂物料吸附和涂层形成等步骤实现的一种表面涂覆技术。
其原理清晰可见,通过控制喷涂参数和材料选择等方面的优化,可以得到理想的涂层性能,从而满足不同领域的应用需求。
等离子体喷涂在航空航天、汽车工业、能源领域等具有重要的应用价值,并且在未来可能会得到更广泛的应用。
等离子喷涂材料研究报告等离子喷涂技术是一种高效的表面涂层技术,它可以在高温高能环境下将材料粉末或线材喷涂到基材表面,形成一种均匀、致密的涂层。
本文主要介绍了等离子喷涂技术的原理和应用,以及当前研究中所涉及的材料类型和性能优化方案。
一、等离子喷涂技术的原理等离子喷涂技术是一种通过等离子体加热和加速材料粉末或线材,将其喷涂到基材表面形成涂层的表面涂层技术。
其主要原理是将一定的气体(如氦气、氮气等)通过高频电场激励,产生等离子体,将材料粉末或线材通过等离子体加热和加速,然后在高速气流的冲击下喷涂到基材表面。
等离子喷涂技术具有以下优点:1. 可以在高温高能环境下喷涂,适用于高熔点的金属和陶瓷等材料。
2. 喷涂速度快,效率高,可以大面积喷涂。
3. 喷涂的涂层均匀、致密,具有良好的耐磨性、防腐性和耐高温性。
二、等离子喷涂技术的应用等离子喷涂技术广泛应用于航空航天、汽车、电子、医疗等领域。
具体应用如下:1. 航空航天领域:用于制造航空发动机、涡轮叶片、燃烧室等部件的涂层。
2. 汽车领域:用于制造汽车发动机、排气管、刹车盘等部件的涂层。
3. 电子领域:用于制造半导体、电子元器件等部件的涂层。
4. 医疗领域:用于制造人工关节、牙科设备等医疗器械的涂层。
三、等离子喷涂材料的研究等离子喷涂涂层材料包括金属、陶瓷、聚合物等多种类型。
其中,金属材料是应用最广泛的一种类型,常用的材料有钨、铬、铝、钛等。
陶瓷材料是应用最广泛的一种非金属涂层材料,常用的材料有氧化铝、氧化锆、氮化硅等。
聚合物材料主要用于医疗领域,常用的材料有聚乳酸、聚酰胺等。
目前,等离子喷涂涂层的研究主要集中在涂层的微观结构和性能优化方案上。
例如,通过控制喷涂参数和材料组成,可以调节涂层的组织形态和晶体结构,从而改善涂层的力学性能、热稳定性和抗腐蚀性。
四、等离子喷涂涂层的性能优化方案等离子喷涂涂层的性能优化方案主要包括以下几个方面:1. 喷涂参数的优化:包括等离子体功率、气体流量、喷涂距离等参数的调节,以实现最佳的涂层形态和性能。