(完整版)中考求阴影部分面积
- 格式:docx
- 大小:523.30 KB
- 文档页数:8
阴影部分面积未命名一、填空题1.如图,已知水平放置的圆柱形污水排水管道的截面半径12cmOB=,截面圆心O到污水面的距离6cmOC=,则截面上有污水部分的面积为________.【答案】48π【分析】连接OA,阴影部分的面积等于扇形AOB的面积与三角形AOB的面积差,计算圆心角∠AOB的大小即可.【详解】如图,连接OA,∵OB=12,OC=6,OC⊥AB,∴sin∠OBA=12OCOB=,AC=BC,∴∠OBA=30°,BC AB=2BC ∵OA=OB,∴∠OAB=∠OBA=30°,∴∠AOB=120°,∴212012=360AOB S π⨯⨯扇形=48π,∴11=622AOB S AB OC ⨯=⨯△∴阴影部分的面积为-AOB AOB S S △扇形=48π故答案为:48π【点睛】本题考查了垂径定理,特殊角的三角函数,扇形的面积,三角形的面积,熟练进行图形面积分割,并运用相应的公式计算是解题的关键.2.如图,已知Rt ABC 中,6AB =,8BC =,分别以点A 、点C 为圆心,以2AC 长为半径画圆弧,则图中阴影部分的面积为____________.(结果保留π)【答案】2524.4π-【分析】 先计算,,A C AC ∠+∠ 再由阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,再分别计算ABC 的面积,圆心角为90,︒ 以12AC 为半径的扇形面积,从而可得答案. 【详解】 解: Rt ABC 中,6AB =,8BC =,90,B ∠=︒90,10,A C AC ∴∠+∠=︒===115,6824,22ABC AC S ∴==⨯⨯= 又阴影部分的面积等于三角形ABC 的面积减去一个圆心角为90,︒ 以12AC 为半径的扇形面积,290525,3604S ππ⨯∴==扇形 2524.4S π∴=-阴影 故答案为:2524.4π- 【点睛】本题考查的是勾股定理的应用,扇形面积的计算,掌握扇形面积的计算是解题的关键.3.如图,在等腰Rt ABC △中,90BAC ∠=︒,BC =A ,B ,C 为圆心,以12AB 的长为半径画弧分别与ABC 的边相交,则图中阴影部分的面积为______.(结果保留π)【答案】82π-【分析】三角形面积公式S=1AC AB 2⨯,扇形面积公式:S =2360n r π,阴影面积=三角形面积—180°扇形的面积,计算即可.【详解】∵等腰Rt ABC △中,90BAC ∠=︒,BC =∴AB=BC•sin45°==42, ∴S △ABC =144=82⨯⨯, ∵∠A+∠B+∠C=180°, ∴1=4=2212AB ⨯, 以2为半径,180°扇形是半圆=212=22ππ⨯, 阴影面积=8-2π.故答案为:8-2π.【点睛】本题主要考查扇形的面积公式,三角形面积,熟知扇形的面积公式的运用,解题的关键是阴影面积=等腰直角三角形的面积-以2为半径180°扇形面积.4.如图,在正方形ABCD 的边长为6,以D 为圆心,4为半径作圆弧.以C 为圆心,6为半径作圆弧.若图中阴影部分的面积分别为12S S 、时,则12S S -=_____________.(结果保留π)【答案】1336π-【分析】根据割补法可进行求解.【详解】解:由题意可得:设以以D 为圆心,4为半径作圆弧所在的扇形面积为S ,则有: 222906904636,==94360360ABCD DCB S S S ππππ⨯⨯====正方形扇形,, ∴12=1336ABCD DCB S S S S S π-=+--正方形扇形;故答案为1336π-.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算是解题的关键.5.如图,矩形ABCD 的对角线交于点O ,以点A 为圆心,AB 的长为半径画弧,刚好过点O ,以点D 为圆心,DO 的长为半径画弧,交AD 于点E ,若AC =2,则图中阴影部分的面积为_____.(结果保留π)【答案】4π 【分析】由图可知,阴影部分的面积是扇形ABO 和扇形DEO 的面积之和,然后根据题目中的数据,可以求得AB 、OA 、DE 的长,∠BAO 和∠EDO 的度数,从而可以解答本题.【详解】解:∵四边形ABCD 是矩形,∴OA =OC =OB =OD ,∵AB =AO ,∴△ABO 是等边三角形,∴∠BAO =60°,∴∠EDO =30°,∵AC =2,∴OA =OD =1,∴图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点睛】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.6.如图,在△ABC 中,∠A =90°,AB =AC =2,以AB 为直径的圆交BC 于点D ,求图中阴影部分的面积为_____.【答案】1【分析】连接AD ,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【详解】解:连接AD ,∵AB =BC =2,∠A =90°,∴∠C =∠B =45°,∴∠BAD =45°,∴BD =AD ,∴BD =AD∴由BD ,AD 组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD 的面积,∴S △ABD =12AD•BD =121.故答案为:1.【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.7.如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆,半圆恰好经过△ABC 的直角顶点C ,以点D 为顶点,作∠EDF =90°,与半圆交于点E 、F ,则图中阴影部分的面积是_______.【答案】142π- 【分析】连接CD ,作DM ⊥BC ,DN ⊥AC ,证明△DMG ≌△DNH ,则S 四边形DGCH =S 四边形DMCN ,求得扇形FDE 的面积,则阴影部分的面积即可求得.【详解】。
2019年山西中考复习——专题一.阴影部分图形面积问题一.专题解读:阴影部分图形面积计算问题 1.考查题型:选择题/填空题 2.常考类型为:①不涉及扇形问题(即多边形结合球阴影面积问题) ②涉及扇形问题考察形式:❶三角形扇形结合问题❷四边形与扇形结合问题3.考查特点:①所求阴影面积大多为不规则图形的面积;②常与旋转,翻折,对称等结合考查。
4.解决办法: (1)转化法(即将所求阴影面积问题转化为几个规则图形面积的和或差来解决)(2)常用的转化方法:①割补法 ②全等法 ③对称法二.例题讲解:例1.图1是以AB 为直径的半圆形纸片,AB =12 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′.如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则由BF ︵,O ′F ,O ′B 围成的阴影部分周长为 cm ,阴影部分面积为 cm 2.图1 图2例2.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 .三.山西8年中考真题命题点1.弧长的计算1.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12, ∠C =60°,则的长为( )A .B .C .ΠD .2π 中考变式:如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,若AD=2,BA 的延长线交⊙A 于点F .则的长为( ) A .π22B .π42 C .Π D .2π命题点2.阴影部分图形面积计算2.如图是某公园的一角,∠AOB =90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是( ) A.(10π﹣)米2B .(π﹣)米2C .(6π﹣)米2D .(6π﹣)米23.如图是某商品的标志图案,AC 与BD 是⊙O的两条直径,首尾顺次连接点A ,B ,C ,D , 得到四边形ABCD .若AC =10cm ,∠BAC = 36°,则图中阴影部分的面积为( ) A .5πcm 2B .10πcm2C .15πcm2D .20πcm 24.如图,正方形ABCD 内接于⊙O ,⊙O 的半 径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积为( ) A .4π﹣4 B .4π﹣8 C .8π﹣4 D .8π﹣85.如图,四边形ABCD 是菱形,∠A =60°, AB =2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A.﹣B .﹣C .π﹣D .π﹣7.如图,△ABC 是等腰直角三角形,∠ACB =90°,BC =AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ′C ′,若AB =2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 (结果保留π).四.课后练习(1)多边形结合求阴影面积问题1.如图,正三角形与正六边形的边长分别为2 和1,正六边形的顶点O 是正三角形的中心, 则阴影部分的面积为( ) A .33B .332C .3D .31(2)三角形扇形结合求阴影面积问题2.如图,A 是半径为3的⊙O 外的一点,OA =6,AB 是⊙O 的切线,B 是切点,弦BC ∥ OA ,连接AC ,则阴影部分的面积为( ) A .π25B .π2C .π23D .π反思:件弧,连半径,得扇形.(3)四边形与扇形结合求阴影面积问题3.如图,在扇形AOB 中∠AOB =90°,正方形 CDEF 的顶点C 是的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A .4π﹣4B .2π﹣2C .4π﹣2D .2π﹣4 4.如图,菱形ABCD 的边长为2cm ,∠A =60°. 是以点A 为圆心、AB 长为半径的弧,是以点B为圆心、BC 长为半径的弧.则阴影部分的面积为( )A .23B .32C .3D .2335.将直角△ABC 绕顶点B 旋转至如图位置,其中 ∠C =90°,AB =2,BC =1,点C 、B 、A ′在同一 直线上,则阴影部分的面积是( ) A .2334+πB .2334-πC .32316+π D .32316-π8.如图,等边三角形ABC 的边长为2,CD ⊥AB 于D ,若以点C 为圆心,CD 为半径画弧,则图形阴影部分的面积是( )A .﹣πB .2﹣πC .2D .2﹣9.在矩形ABCD 中,AB =,BC =2,以A 为圆心,AD 为半径画弧交线段BC 于E ,连接DE ,则阴影部分的面积为( )A.﹣B .﹣C .π﹣D .π﹣10.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC =BC =,则图中阴影部分的面积是( )A .B.C .D .+11.如图,在Rt △ABC 中,∠ACB =90°,AC =2,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .B .C .D .12.如图,在△ABC 中,∠C =90°,AC =BC ,斜边AB =4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,经过点C ,则图中阴影部分的面积为( )A .2π﹣4B .4﹣πC .π﹣2D .4π﹣814.如图,把半径为2的⊙O 沿弦AB ,AC 折叠,使和都经过圆心O ,则阴影部分的面积为( )A .B .C .2D .4 15.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE 、CF 交于点G ,半径BE 、CD 交于点H ,且点C 是弧AB 的中点.若扇形的半径是2,则图中阴影部分的面积等于( )A .2π﹣4B .2π﹣2C .π+4D .π﹣1 21.如图,在平行四边形ABCD 中,以AB 中点E 为圆心,EA 为半径画弧交CD 于点F ,点F 恰好为CD 中点,若∠B =60°,BC =6,则图中阴影部分的面积为 .22.如图,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连接AC ,求阴影部分的面积.6.(2017·荆门)已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A =∠BCD =30°,AC =2,则由劣弧BC ,线段CD 和线段BD 所围成图形(阴影部分)的面积为 .3.(2017·天水)如图所示,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =43,则S 阴影=( ) A .2πB.83πC.43πD.38π3.如图,AB 为半圆O 的直径,C ,D 是弧AB 上的三等分点.若⊙O 的半径为2,E 是直径AB 上任意一点,则图中阴影部分的面积是 .(2)与折叠问题结合考查问题13.如图,半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是()A.18﹣6πB.4﹣πC.9﹣πD.2﹣π4.如图,已知⊙O的半径为2,弦AB⊥半径OC,沿AB将弓形ACB翻折,使点C与圆心O重合,则月牙形(图中实线围成的部分)的面积是.7.(2017·太原二模)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠.若圆弧BC恰好过圆心O,则图中阴影部分的面积是.1.(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,5PB cm,小正六边形的面积为2,则该圆的半径为cm.1.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,5PB cm=,小正六边形的面积2,则该圆的半径为8 cm.【考点】M M:正多边形和圆【专题】55B:正多边形与圆【分析】设两个正六边形的中心为O,连接OP,OB,过O作OG PM⊥,OH AB⊥,由正六边形的性质及邻补角性质得到三角形PMN为等边三角形,由小正六边形的面积求出边长,确定出PM的长,进而求出三角形PMN的面积,利用垂径定理求出PG的长,在直角三角形OPG中,利用勾股定理求出OP的长,设OB xcm=,根据勾股定理列出关于x的方程,求出方程的解即可得到结果.【解答】解:设两个正六边形的中心为O,连接OP,OB,过O作OG PM⊥,OH AB⊥,由题意得:60MNP NMP MPN∠=∠=∠=︒,小正六边形的面积为2,∴,即PM=,2MPNS∆∴=,OG PM⊥,且O为正六边形的中心,12PG PM∴=,72OG==,在Rt OPG∆中,根据勾股定理得:7OP cm=,设OB xcm=,OH AB⊥,且O为正六边形的中心,12BH x∴=,OH=,1(5)2PH x cm∴=-,在Rt PHO∆中,根据勾股定理得:2221)(5)492OP x x=+-=,解得:8x=(负值舍去),则该圆的半径为8cm.故答案为:8【点评】此题考查了正多边形与圆,熟练掌握正多边形的性质是解本题的关键.。
巧求阴影部分的面积求平面图形阴影部分的面积是近年中考的一个热点,其图形多数是由一些基本图形(如三角形、平行四边形、梯形、扇形、圆等)进行组合、重叠而成的。
因此,解此类问题时,要仔细观察和分析图形,明确该图形是由哪些简单而规则的图形组合而成,或是通过观察把不规则的图形转化为规则图形,利用整体思想迅速获解,学会分解和组合图形,明确要计算图形的面积,可以通过哪些图形的和或差得到,切勿盲目计算。
现举例谈谈几种主要的方法:一、利用平移巧求阴影部分的面积例:如图,大半圆O 与小半圆O 1相切于点C ,大半圆的弦AB 与小半圆相切于点F ,且AB ∥CD ,AB=4㎝,求阴影部分的面积。
点评:1、如果直接求阴影部分的面积,必须要知道大半 圆O 与小半圆O1的半径,而从已知条件无法求出。
2、将小半圆O 1沿CD 平移将两个半圆变为同心 圆,将阴影部分面积变为半圆环的面积。
3、连结OF ,利用切线及勾股定理,可求出大圆半径的平方与小圆半径的平方的差。
解:将半圆O 1向右迁移,使点O 1与点O 重合。
∴S 阴=S 半圆O-S 半圆O1∴S 阴=21π(OB 2-OF 2)=21π·BF 2 ∵AB=4㎝ ∴BF=2㎝∴S 阴=2π(㎝2)二、利用对称性巧求阴影部分面积例2:如图,在△ABC 中,AB=AC=5,BC=6,点E 、F 是中线AD 上两点,则图中阴影部分的面积是( )A CA 6B 12C 24D 30 点评:本题是一道无规则的阴影面积的求解问题,及轴对称图形的性质得BC=DC=3,AD ⊥BC ,S △ABC =S △EFB 又AD 2=AB 2-BD 2=52-32 ∴AD=4所以,S 阴=S △ABD =21×3×4=6,故选A 三、利用代数法巧求阴影部分的面积。
例3:如图:正方形ABCD 的边长为a ,分别以A 、B 、C 、D 为圆心,以a 为半径画弧,求阴影部分的面积。
专题-求阴影部分面积一、广东中考1. (2015年广东)16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S △,则图中阴影部分面积是.2.(2014年广东)16、如题16图,△ABC 绕点A 顺时针旋转45° 得到△'''A B C ,若∠BAC=90°,AB=AC=2,则图中阴影 部分的面积等于 。
3.(2013年广东)16.(2013广东省)如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).4.(2012•广东)如图,在▱ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 _________ (结果保留π).5.(2014年佛山)如图,AC ⊥BC,AC=BC=4,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作弧AB .过点O 作AC 的平行线交两弧于点D ,E ,则阴影部分面积是二、典型例题例1 (2009年四川凉山州)如图l ,将ABC 绕点B 逆时针旋转到△A'BC'使点A 、B 、C'在同一直线上,若∠BCA=90°,∠BAC=30°,AB =4cm ,则图中阴影部分面积为_______cm 2.例2 (2010年浙江杭州,有改动)如图2,已知△ABC ,AC=BC=6,∠C=90°.O 是AB 的中点,⊙O 与AC ,BC 分别相切于点D 与点E .点F 是⊙O 与AB 的一个交点,连DF 并延长交CB的延长线于点G.则由DG,GE和 ED围成的图形面积(图中阴影部分)为__________.例3 (2010年云南昆明)如图15,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是( )例4如图,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和围成的阴影部分图形的面积例5.(2014·襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的 AC, AG与线段CG所围成的阴影部分的面积.三、巩固练习1.(2014·东营)如图,已知扇形的圆心角为60°,则图中弓形的面积为( )A.44π- B.4π- C.24π- D.2π-2.(2014·重庆A 卷)如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积是 .(结果保留π)3.一个商标图案如图,矩形ABCD 中,AB=2BC ,且AB=8 cm ,以A 为圆心,AD 长为半径作半圆,求商标图案的面积.4.(2014·沙坪坝模拟)如图,⊙O 的半径是1,PA 、PB 分别切⊙O 于A 、B 两点,连接OA 、OB.若∠P=60°,则图中阴影部分的面积是( )A.3π B.23π C.4π D.5π5.(2014·重庆B 卷)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为( ) A.25π-6 B.252π-6 C.256π-6 D.258π-66.如图,ABCD是矩形,AD=2,AB=1, DE的圆心是点A.(1)求 DE的长;(2)求阴影部分的面积.四、加强训练1、如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是。
专题8 巧求圆中阴影部分的面积【知识解读】求与圆有关的阴影部分的面积,能考查同学们的观察能力、随机应变能力和综合运用数学知识的能力,解答此类问题要注意观察和分析图形的形成,学会分解和组合图形,消除思路中的“阴影”,明确要计算图形的面积,可以通过哪些图形的和或差得到,就能给解决问题带来一片光明,切勿盲目计算;下面介绍几种常用的解法.培优学案【典例示范】等积变换法:是在不改变图形面积的前提下,利用“等底、等高的两个三角形的面积相等”,将不规则图形转化为规则图形的面积来求解的方法.例1 如图1-8-1,点P 是半径为1的⊙O 外一点,OP =2,P A 切⊙O 于点A ,弦AB ∥OP ,连接PB ,则图中阴影部分的面积是.图181AB OP图182ABCDEMNO【跟踪训练】如图1-8-2,AB 是⊙O 的直径,MN 是⊙O 的切线,C 为切点,过点A 作AD ⊥MN 于点D ,交⊙O 于点E .已知AB =6,BC =3,求图中阴影部分的面积.【解答】和差法:是指将阴影部分看作两个规则图形的和或差.例2 如图1-8-3,扇形OAB 中,∠AOB =60°,扇形半径为4,点C 在BC 上,CD ⊥OA ,垂足为点D ,当CD =OD 时,图中阴影部分的面积为.图183BCD图184CEF【跟踪训练】如图1-8-4,在等腰直角三角形ABC 中,∠C =90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AC =2,则图中阴影部分的面积为(结果不取近似值).割补法:是在不改变图形面积的前提下,通过割补,将发散的图形面积集中在一起,把不规则的图形凑合成规则图形的方法.例3 如图1-8-5,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为cm 2.图185ABO图186A 'O 'O ABC【跟踪训练】如图1-8-6,将半圆O 绕直径AB 的端点B 逆时针旋转30°,得到半圆O ′,A ′B 交直径AB 于点C ,若BC =23,则图中阴影部分的面积为 .【提示】连接O ′C ,A ′C ,将阴影部分的面积通过割补,转化为△BO ′C 的面积加上扇形O ′AC 的面积.特殊位置法:是在不改变题意的前提下,通过取特殊位置,将图形特殊化,以方便求解.例4 如图1-8-7,一个半径为r 的圆形纸片在边长为a (a >3r )的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“接触不到的部分”的面积是()A .23r πB 233π- C .()233r πD .2r π【提示】解答本题的关键是搞清楚圆形纸片“不能接触到的部分”的面积,即圆形纸片与正三角形的相邻两边都相切时,两切点与正三角形的一个顶点形成的曲边三角形的面积.图187图188【跟踪训练】如图1-8-8,一张半径为1的圆形纸片在边长为a (a ≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是() A .2a π-B .()24a π-C .πD .4π-整体代换法:是指在解答过程中,可将某些不易求的且不发生变化的量看作整体处理. 例5 如图1-8-9,在Rt △ABC 中,∠C =90°,CA =CB =4,分别以A ,B ,C 为圆心,以12AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是.图189CBA【提示】直接求阴影部分的面积是不可能的,根据题意结合图形,知阴影部分的面积等于直角三角形的面积减去三个扇形的面积,其中A ,B 两个扇形的面积无法直接求出,但若把它们看作一个“整体”,则问题易求.【跟踪训练】1.如图1-8-10,正方形的边长a ,以各边为直径在正方形内画半圆,则图中阴影部分的面积为 . 【提示】图中阴影部分的面积可以看作四个半圆的面积之和与正方形的面积之差.CBAOFEDCBA2.如图1-8-11,⊙A ,⊙B ,⊙C 两两不相交,且半径都是2cm ,则图中三个扇形(即阴影部分)面积之和是 cm 2.【提示】图中3个扇形正好拼成一个圆心角为180°的大扇形。
阴影部分面积的计算专题(对应河南中考第14题)※自学提能力,合作生智慧,展示扬风采一、成功目标: 掌握求阴影部分面积的基本思路,进一步体会几何变换在几何化归中的作用.二、专题概述:对于不规则图形(不能直接利用面积公式求面积的图形)常用以下方法求面积:⑴等积转化法:通过等面积转化,将不规则阴影部分的面积转化为规则图形的面积来计算.如图:DO∥AB,则S阴影=S△DAB+S弓形AmB=S△AOB+S弓形AmB=S扇形OABS阴影22 9013604rrππ==⑵(分割求和法)组合法:将图形适当分割,将阴影部分的面积转化成规则图形面积的和或差.如图:如图,扇形OAB的半径为4,∠AOB=90°,C是AB的中点,D、E分别是OA、OB的中点,连接CD、DE,求图中阴影部分的面积.S阴影=S扇形OBC-S△OGE+S△OCD-S△ODG=S扇形OBC+S△OCD-S△ODE=2222π--;⑶整体作差法:将阴影部分看成一些基本图形覆盖而成的重叠部分,用整体做差法求解.如图:(2012汕头13.2015·安顺)如图,在□ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是133π-(结果保留π).⑷等面积变换法:利用图形在平移、旋转、对称变换前后面积不变的性质,可将阴影部分的面积转化为规则图形的面积进行计算.如图:点D是AB的中点,则S阴影=S△ACD三、河南中考回顾1.(2013·河南)如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3). 若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为______.2.(2014·河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为.POAxyA′P′3.(2015•河南)如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径CD 作交OB 于点D .若OA =2,则阴影部分的面积为 . 4.(2016·河南)如图,在扇形AOB 中,∠AOB =90°,以点A 为圆心, OA 的长为半径作OC 交AB 于点C ,若OA =2,则阴影部分的面积是 .33π-四、2017展望1.(2015•达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B′,则图中阴影部分的面积是( )BA . 12πB . 24πC . 6πD . 36π2.(2014·泰安)如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )AA .(2π﹣1)cm 2 B . (2π+1)cm 2 C . 1cm 2 D . 2πcm 23.(2014•吉林2015·聊城)如图,将半径为3的圆形纸片,按下列顺序折叠.若AB 和BC 都经过圆心O ,则阴影部分的面积是 3π (结果保留π)4.(2016·贵港)如图,在Rt △ABC 中,∠C =90°,∠BAC =60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE ,若AC =1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 (结果保留π).【答案】2π;5.如图,半径为1的半圆纸片,按如图所示方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .【答案】326π-;2015·17题2016·17题6.(2013•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画AC,连结AF,CF,则图中阴影部分面积为4π.7.如图,在扇形OAB中,∠AOB=90°,半径OA=6cm,点C为OB的中点,CD⊥OB交弧AB于点D,则图中阴影部分的面积为.【答案】933+92π-;8.(2014·十堰)如图,在扇形OAB中,∠AOB=60°,扇形半径为4,点C在AB上,CD⊥OA,垂足为D,当△OCD的面积最大时,则图中阴影部分的面积为.【答案】24π-;五、课外练习1.(2013•宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)(83π)2.2016·滨州)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是233π-.3.(2010•衡阳2012青海)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为(结果保留π).【答案】542π-;4.(2015·绥化)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2 ,则图中阴影部分的面积为____________.(结果保留π)【答案】43 32π+;5.(2012·十堰)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为cm2.9 334π-6.(2014•乐山2016用)如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1-S2= .(139 4π-)7.如图,△ABC中,∠A=70°,BC=2,以BC为直径的⊙O与AB、AC分别交于点D、E,则图中阴影部分的面积为.【答案】718π8.(2014·烟台)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.【答案】163π9.(2014•佛山)如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.(5233π-)10.(2014•鄂州)如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.【答案】816433π--;11.(2012•恩施州)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是.【答案】3A.B.2 C.3 D.212.(2014•南昌·)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.13.(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=42,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.。
(人教版)中考数学题型阴影部分面积计算((有答案)(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--题型二 阴影部分面积计算针对演练1. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是( )A. π6B. π3C. 1+π6D. 1第1题图第2题图2. 如图,在半径为2 cm 的⊙O 中,点C 、点D 是AB ︵的三等分点,点E 是直径AB 的延长线上一点,连接CE 、DE ,则图中阴影部分的面积是( )A. 3 cm 2B. 2π3cm 2 - 3 cm 2 + 3 cm 23. 如图,正方形ABCD 的面积为12,点M 是AB 的中点,连接AC 、DM 、CM ,则图中阴影部分的面积是( )A. 6B.C. 4D. 3第3题图第4题图4. (2016桂林)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA ,ED 长为半径画AF ︵和DF ︵,连接AD ,则图中阴影部分面积是( )A. πB. 54π C. 3+π D. 8-π5. 如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.第5题图第6题图6. (2015赤峰)如图,平行四边形ABCD 中,AB =AC =4,AB ⊥AC ,O 是对角线的交点,若⊙O 过A 、C 两点,则图中阴影部分的面积之和为________.7. (2015武威)如图,半圆O 的直径AE =4,点B ,C ,D 均在半圆上,若AB =BC ,CD =DE ,连接OB ,OD ,则图中阴影部分的面积为________.第7题图第8题图8. 如图,在△ABC 中,已知点D 、E 、F 分别为BC ,AD ,CE 的中点,且S △ABC =4 cm 2,则阴影部分的面积为________.9. 如图,在等腰直角三角形ABC 中,∠C =90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AC =2,则图中阴影部分的面积为________(结果保留π).第9题图第10题图10. 如图,在矩形ABCD中,AB=3,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是________.11. 如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C 恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则图中阴影部分的面积为________.第11题图第12题图12. 如图,在矩形ABCD中,点O在BC边上,OB=2OC=2,以O为圆心,OB的长为半径画弧,这条弧恰好经过点D,则图中阴影部分的面积为________.13. 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是________.第13题图第14题图14. 如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm2,S△BQC=25cm2,则图中阴影部分的面积为________cm2.15. 如图,正方形ABCD的边长为1,分别以点A、D为圆心,1为半径画弧BD、AC,两弧相交于点F,则图中阴影部分的面积为________.第15题图第16题图第17题图16. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是________.17. 如图,在矩形ABCD中,AB=6 cm,BC=8cm,E、F分别是BC、CD 的中点,连接BF、DE,则图中阴影部分的面积是________ cm2.【答案】1.B 【解读】在Rt △ABC 中,∵AC =BC =2,∴AB =AC 2+BC 2=2,∴S阴影=S 扇形DAB =30π×22360= π3.第2题解图2.B 【解读】如解图,连接OC 、OD 、CD ,∵点C 、点D 是AB ︵的三等分点,∴∠DOB =∠COD =60°,又∵CO =OD ,∴CO =OD =CD ,∴∠DOB =∠CDO =60°,∴CD ∥AB ,∴S △CED =S △COD ,∴S 阴影=S 扇形COD =60π×22360=2π3cm 2.3.C 【解读】如解图,设DM 与AC 交于点E ,∵四边形ABCD 是正方形,∴AM ∥CD ,AB =CD ,∴△AME ∽△CDE ,∵点M 是AB 的中点,∴AM CD =12,∴AE CE =EM DE =AM CD =12,∵S 正方形ABCD =12,∴S △ABC =12S 正方形ABCD =6,∴S △ACM =12S △ABC =3,∴S △AEM =13S △ACM =1,S △CEM =23S △ACM =2,∴S △AED =2S △AEM =2,∴S 阴影=S △CEM +S △AED =2+2=4,故选C.第3题解图第4题解图4.D 【解读】如解图,过点D 作DH ⊥AE 于点H ,∵∠AOB =90°,OA =3,OB =2,∴AB =OA 2+OB 2=13,由旋转的性质可知,OF =OA =3,OE =OB =2,DE =EF =AB =13,∴AE =OA +OE =5,易证△DHE ≌△BOA ,∴DH =OB =2,∴S 阴影=S △ADE +S △EOF +S 扇形AOF -S 扇形DEF =12AE ·DH +12OE ·OF +90π×OA 2360-90π×DE 2360=12×5×2+12×2×3+90×π×32360-90×π×(13)2360=8-π. 5.15 【解读】∵菱形的两条对角线的长分别为10和6,∴菱形的面积=12×10×6=30,∵点O 是菱形两条对角线的交点,∴阴影部分的面积=12×30=15.第6题解图6.4 【解读】如解图,设BD 与⊙O 交于点E 和F 两点.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵⊙O 过A ,C 两点,∴扇形AOE 与扇形FOC 关于点O 成中心对称,∴S 扇形AOE =S 扇形FOC ,∴S 阴影=S △AOB =12×12AC ·AB =12×12×4×4=4. 7.π【解读】如解图,连接OC ,在半圆O 中,AB =BC ,CD =DE ,∴AB ︵=BC ︵,CD ︵=DE ︵,∴∠AOB =∠BOC ,∠COD =∠DOE ,∴S 阴影=S 扇形OAB +S 扇形ODE =12S 扇形AOC +12S 扇形COE =12S 半圆AOE =12×π×222=π,∴阴影部分的面积为π.第7题解图8.1 cm 2【解读】∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC ,∴S △ABE+S △ACE =12S △ABC =12×4=2 cm 2,∴S △BCE =12S △ABC =12×4=2 cm 2,∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×2=1 cm 2.9.2-π2【解读】∵BC =AC =2,∠C =90°,∴AB =22,∵点D 为AB 的中点,∴AD =BD =2,∴S 阴影=S △ABC -S 扇形EAD -S 扇形FBD =12×2×2-45π×(2)2360×2=2-π2.-π4【解读】根据已知可得∠ABC =90°,∵在Rt △ABC 中,tan ∠CAB =13=33,∠CAB =30°,∴∠BAB ′=30°,∴S 阴影=S △AB ′C ′-S扇形BAB′=12AB ′·B ′C ′-30π·(3)2360=12×3×1-π4=32-π4.11.183【解读】∵MC =6,NC =23,∠C =90°,∴S △CMN =63,由折叠性质得△CMN ≌△DMN ,∴△CMN 与△DMN 对应高相等,∵MN ∥AB ,∴△CMN ∽△CAB 且相似比为1∶2,∴两者的面积比为1∶4,从而得S △CMN ∶S 四边形MABN =1∶3,∴S 阴影=S 四边形MABN =183.第12题解图-3【解读】设弧与AD 交于点E ,如解图,连接OE ,过点O 作OP ⊥AD 于点P ,由题意得,OB =OE =OD ,∴OD =2OC =2,∴∠ODC =30°,则∠ODE =60°,∴△ODE 为等边三角形,∴S △ODE =12×2×3=3,则S 阴影=S 扇形EOD -S △ODE=60×π×22360-3=2π3- 3.第13题解图-3【解读】如解图,连接BD ,设BE 交 AD 于点G ,BF 交CD 于点H ,∵在菱形ABCD 中,∠A =60°,AB =2,∴BD =BC =2,由题意知扇形圆心角为60°,∴∠DBG =∠CBH ,∠GDB =∠C ,∴△DGB ≌△CHB ,∴S 阴影=S 扇形EBF - S△DBC =60×π×22360-12×2×3=2π3- 3.第14题解图14.41 【解读】如解图,连接EF ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴S △EFC =S △BCF ,∴S △EFQ =S △BCQ ,同理,S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16cm 2,S △BQC =25cm 2,∴S 阴影=S △EFP +S △EFQ =16+25=41 cm 2.-π6【解读】如解图,过点F 作FE ⊥AD 于点E ,连接AF 、DF ,∵正方形ABCD 的边长为1,∴AE =12AD =12AF =12,∴∠AFE =∠BAF =30°,∴∠FAE =60°,EF =32,∴△ADF 为等边三角形,∴∠ADF =60°,∴S 弓形AF =S 扇形ADF -S △ADF =60π×12360-12×1×32=π6-34,∴S阴影=2(S 扇形BAF -S 弓形AF )=2×(30π×12360-π6+34)=32-π6.第15题解图16.22-2 【解读】如解图,设CD 与AB 1交于点O ,∵在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,∴AE =BE =2,由折叠性质易得△ABB 1为等腰直角三角形,∴S △ABB1=12BA ·AB 1=2,S △AB1E =1,CB 1=2BE -BC=22-2,∵AB ∥CD ,∴∠OCB 1=∠B =45°,又∵∠B 1=∠B =45°,∴CO =OB 1=2-2,∴S △COB 1=12CO ·OB 1=3-22,∴S 重叠=S △AB1E -S △COB 1=1-(3-22)=22-2.第16题解图第17题解图17.32 【解读】如解图,连接BD ,EF ,设BF 与ED 相交于点G .∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =6 cm ,AD =BC =8 cm ,∴S △ABD =S △BCD =12S 矩形ABCD =12×6×8=24 cm 2,∵E 、F 分别是BC 、CD 的中点,∴EF ∥BD ,EF =12BD ,∴△GEF ∽△GDB ,∴DG =2GE ,∵S △BDE =12S △BCD ,∴S △BDG =23S △BDE =13S △BCD =13×24=8 cm 2,∴S 阴影=S △ABD +S △BDG =24+8=32 cm 2.。
求阴影部分图形面积近年来的中考数学试卷中,围绕图形面积的知识,出现了一批考查应用与创新能力的新题型,归纳起来主要有:一、规律探究型例1宏远广告公司要为某企业的一种产品设计商标图案,给出了如下几种初步方案,供继续设计选用(设图中圆的半径均为r).(1)如图1,分别以线段O1O2的两个端点为圆心,以这条线段的长为半径作出两个互相交错的圆的图案,试求两圆相交部分的面积.(2)如图2,分别以等边△O1O2O3的三个顶点为圆心,以其边长为半径,作出三个两两相交的相同的圆,这时,这三个圆相交部分的面积又是多少呢?(3)如图3,分别以正方形O1O2O3O4的四个顶点为圆心,以其边长为半径作四个相同的圆,则这四个圆的相交部分的面积又是多少呢?(2005年黄冈市中考题)分析(1)利用“S阴=S菱形AO1BO2=4S弓形”即可;(2)利用“S阴=S△O1O2O3+3S弓”即可;(3)•直接求解比较困难,可利用求补法,即“S阴=S正方形O1O2O3O4-S空白”,考虑到四个圆半径相同,若延长O2O1交⊙O1•于A,则S空白=4SO1AB,由(1)根据对称性可求SO1BO4,再由“SO1AB=S扇形AO1O4-SO1BO4”,这样S空白可求.解答(1)设两圆交于A、B两点,连结O1A,O2A,O1B,O2B.则S阴=S菱形AO1BO2+4S弓.∵S菱形=2S△AO1O2,△O1O2A为正△,其边长为r.∴S△AO1O2r2,S弓=-r2=-r2.4260360rπ426rπ4∴S 阴=2×r 2+4(r 2r 2)=r 2r 2.(2)图2阴影部分的面积为S 阴=S △O1O2O3+3S 弓. ∵△O 1O 2O 3为正△,边长为r. ∴S △O1O2O3r 2,S 弓=r 2.∴S 阴r 2+3(r 2)=r 2r 2.(3)延长O 2O 1与⊙O 1交于点A ,设⊙O 1与⊙O 4交于点B ,由(1)知,S O1BO4=(r 2-r 2).∵S O1AB =S 扇形AO1O4-S O1BO4 =-(r 2=r 2)=-r 2+r 2.则S 阴=S 正方形O1O2O3O4-4S O1AB =r 2-4(-r 2r 2)=r 2+r 22=(r 2.46π423π24260360r π4426r π42π21223π2290360r π1223π224r π13π424r π13π413π13π例2 在一块长16m ,宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.小明的设计方案:如图1,其中花园四周小路的宽度相等,经过解方程,•我得到路的宽为2m 或12m .小颖的设计方案:如图2,其中花园中每个角上的扇形都相同. (1)你认为小明的结果对吗?请说明理由. (2)请你帮助小颖求出图中的x (精确到0.1m )(3)你还有其它的设计方案吗?请在右边的矩形中画出你的设计草图,•并加以说明.(2004年新疆建设兵团中考题)分析 (1)由小明的设计知,小路的宽应小于矩形荒地宽的一半,由此判断即可;(2)可由“花园面积为矩形面积一半”列方程求x ;(3)可由图形对称性来设计. 解 (1)小明的结果不对. 设小路宽xm ,则得方程 (16-2x )(12-2x )=×16×12解得:x 1=2,x 2=12.而荒地的宽为12m ,若小路宽为12m ,不符合实际情况,故x 2=12m 不合题意.(2)由题意,4×=×16×12x 2=,x ≈5.5m .(3)方案有多种,下面提供5种供参考:1224x π1296π例3 图中的虚线网格我们称之为正三角形网格,它的每个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形. (1)直接写出单位正三角形的高与面积;(2)图1中的ABCD 含有多少个单位正三角形?ABCD 的面积是多少? (3)求出图1中线段AC 的长(可作辅助线);(4)求出图2中四边形EFGH 的面积.(2005年吉林省中考题)分析 (1)由正三角形边角关系来求;(2)仔细观察图1便可找到答案;(3)考虑到图1中AB=3,BC=4,∠B=60°,可作△ABC 的高AK ,构造直角三角形,•再利用解直角三角形知识即可求得;(4)可利用网格构造特殊格点图形,再由求补法计算四边形EFGH•面积. 解:(1)单位正三角形的角为,面积为,(2)ABCD 含有24个单位正三角形,故其面积为24.(3)如图1,过A 作AK ⊥BC 于K ,在Rt△ACK 中,AK=,KC=.∴.(4)如图3,构造EQSR ,过F 作FT ⊥QG 于T,则S △FQG =FT ·QG=×.同理可求S △GSH S △EHR,S EQSR∴S 四边形EFGH = S EQSR-S △FQG -S △GSH -S△EHR.244325212122四、图形对称型例4 如图,半圆A 和半圆B 均与y 轴相切于点O ,其直径CD 、EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过C 、E 和D•、•F ,•则图中阴影部分的面积是_________.•(2005年河南省中考题)分析 由题意知,图中两半圆和两抛物线组成的图形关于y 轴对称,故y 轴左侧阴影部分面积等于半圆B 中的空白面积,所以所求阴影部分面积为半圆B 的面积,即S 阴=·12=.解答:.12π12π2π五、图形变换型例5 如图,矩形ABCD 的长与宽分别是2cm 和1cm ,AB 在直线L 上,依次为B 、C ′、•D ″,依次为B 、C ′、D ″为中心将矩形ABCD 按顺时针方向旋转90°.这样点A•走过的曲线依次为、、,其中交CD 于点P .(1)求矩形A ′BC ′D ′的对角线A ′C ′的长;(2)求的长;(3)求图中 部分的面积S ;(4)求图中 部分的面积T .(2005年吉林省中考题)分析 (1)要求A ′C ′,因长宽分别为2和1,利用勾股定理即可;(2)要求,因所对圆心角为∠ABA ′=90°,半径AB=2,利用弧长公式即可;(3)因△A ′C ′D•′≌△A ″C ′D ″,故S=S 扇形A`C``A``;(4)连PB ,则PB=AB=2,又BC=1,故∠PBC=60°,∠ABP=30°,•欲求T ,由“T=S 扇形ABP +S △BCP ”即可.解答 (1)A ′C ′cm ).(2)=×2=(cm ).(3)S=S 扇形A`CA``==(cm )(4)连结BP ,在Rt △BCP 中,BC=1,BP=2, ∴∠BPC=30°,ABP=30°,∴T=S 扇形ABP +S △PBC =×22+=(+)cm 2.'A A '''A A '''''A A'A A'A A'A A'A A'A A 90180ππ290360π54π30360π23π2六、实际应用型例6 在栽植农作物时,一个很重要的问题是“合理密植”.如图是栽植一种蔬菜时的两种方法,A 、B 、C 、D 四珠顺次连结成为一个菱形,且AB=BD ;A ′、B ′、•C ′、D ′四株连结成一个正方形,这两种图形的面积为四株作物所占的面积,•两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.在株距都为a ,其他客观因素也相同的条件下,•请从栽植的行距,蔬菜所占的面积,充分生长后空隙地面积三个方面比较两种栽植方法.哪种方法能更充分地利用土地.分析:本题立意很新,要合理密植,充分利用土地,只需分别计算并比较两种方案的行距、阴影面积以及S 和S .对应值小的即为合理密植.解 连结AC 交BD 于点O .在菱形ABCD 中,有AB=AD ,AC ⊥BD ,BO=BD .∵AB=BD=a ,∴BO=OD=a .在Rt △AOD 中,a .∴S 菱形ABCD=2×BD ·AO=a 2, S正方形A`B`C`D`=a 2.设方法(1)中空隙地面积为S 1,方法(2)中空隙地面积为S 2.则S 1=S 菱形ABCD -S ☉A a 2-a 2,S 2=S 正方形A`B`C`D`-S ☉A`=a 2-a 2.∵<1,∴AO<A ′B ′,1212212224π4π2S 菱形ABCD <S 正方形A`B`C`D`,S 1<S 2.∴栽植方法(1)比栽植方法(2)能更充分地利用土地.运用转化思想 巧求阴影面积“转化思想”是中学数学中一种重要的数学思想,将未知转化为已知,将复杂转化为简单,.通过转化,会使问题化繁为简,化难为易,思路清淅,演算简单.而在求与圆有关的阴影部分的面积时,通常是将阴影部分的面积转化为圆、扇形、三角形面积的和或差.现就2008年中考题精选几例解析如下,供同学们参考:例1(2008广西桂林)两同心圆,大圆半径为3,小圆半径为1,则阴影部分面积为分析 本例涉及到同心圆的概念、圆环面积的计算方法.求出圆环的面积,即大圆的面积减去小圆的面积,.将阴影部分的面积转化为圆环面积的一半.解例2(2008湖北孝感)中,,,,两等圆⊙A,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( )A .B .C .D .分析 此例综合考查了圆、扇形面积、勾股定理的知识以及转化的数学思想. 由勾股定理可求得AB=10,则两圆的半径为5,∠A+∠B=900,从而阴影部分的 面积可转化为半径为5, 圆心角为90°的扇形的面积.解Aπππππ8922=-=-=r R S 圆环4πR t ABC △90C ∠=8A C =6B C =254π258π2516π2532π例3(2008四川自贡)如图所示,草地上一根长5米的绳子,一端拴在墙角的木桩上,另一端栓着一只小羊R. 那么,小羊在草地上的最大活动区域的面积是( )A .B .C .D .分析 小羊在草地上的最大活动区域的面积可 转化为1个半径为5米,圆心角为90°的扇形和2个半径为1米,圆心角为90°的扇形的面积之和(即图中)阴影部分的面积).解 B例4(2008广西南宁)如图,Rt △ABC 中,AC=8,BC=6, ∠C=90°,分别以AB 、BC 、AC 为直径作三个半圆,那么 阴影部分的面积为 (平方单位)分析 阴影部分的面积可转化成以AC 、BC 为直径的两个半圆的面积加上Rt △ABC 的面积再减去以AB 为直径的半圆的面积,即 = ===解 24点评 由勾股定理可得2213m π2427m π2213m π2427m π阴影S 22222121221221⎪⎭⎫⎝⎛⋅⋅-⋅⋅+⎪⎭⎫ ⎝⎛⋅⋅+⎪⎭⎫ ⎝⎛⋅⋅AB BC AC BC AC πππ()()()BC AC AB BCAC ⋅⋅+⋅⋅-⋅⋅+⋅⋅21818181222πππBC AC AB BCAC⋅⋅+-+⋅⋅21)(81222πBC AC ⋅⋅210222=-+ABBCAC例5(2008吉林长春)如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是 ( )A .B .C .D .分析 ∠EPF =40°,则∠EAF =80°,连AD,则AD⊥BC,且AD=2 阴影部分的面积可转化为△ABC 与扇形AEF 的面积之差.解 B例6(2008江西南昌)如图,为⊙O 的直径,于 点,交⊙O 于点,于点. (1)请写出三条与有关的正确结论;(2)当,时,求圆中阴影部分的面积分析 连OC, 圆中阴影部分的面积可转化为扇形OAC 与△OAC 的面积之差.94π-984π-948π-988π-98436028024212ππ-=⋅-⨯⨯=-=∆AEF ABC S S S 扇形阴影A B C D AB ⊥E D O F A C ⊥F B C 30D ∠=1B C= B解(1)答案不唯一,只要正确合理均可.例如:①;②;③;④;⑤;⑥;⑦是直角三角形;⑧是等腰三角形.(2)连,则.,∴∠A=∠D=300,则∠AOC=1200.为⊙O的直径,.∴∠ACB=900.在中,,∴AB=2,.,∴AF=CF.,∴OF是的中位线....B C B D=O F B C∥B C D A∠=∠B C E O A F△∽△BEABBC⋅=2222BC CE BE=+A BC△BC D△O C O C O A O B==30D∠=A B90ACB∴∠=R t ABC△1B C=AC=O F A C⊥O A O B=A B C△1122O F B C∴==1112224AO CS AC O F∴==⨯=△2133A O CS O Aπ=π⨯=扇形34AOCAOCS S Sπ∴=-=-△阴影扇形BA。
中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
⌒ 例1. 如图1,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和CD 围成的阴影部分图形的面积为_________________ 。
有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例 4. 如图 4 ,正方形的边长为a,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例 5. 如图5,在四边形ABCD中,AB=2,CD=1,A 60 , B D 90 ,求四边形ABCD所在阴影部分的面积。
例 2.如图2,PA切圆O于A,OP交圆O于B,且PB=1,PA= 3 ,则阴影部分的面积S= ________ .五、拼接法例 6. 如图6,在一块长为 a 、宽为 b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽都是 c 个单位),求阴影部分草地的面积。
六、特殊位置法例7. 如图8,已知两个半圆中长为 4 的弦AB 与直径CD平行,且与小半圆相切,那么图中阴影部分的面积等于 _______ 。
七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
例8. 如图10 ,正方形的边长为a,分别以两个对角顶点为圆心、以 a 为半径画弧,求图中阴影部分的面积。
2、如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是3、如图,扇形OAB,∠ AOB=90 ,⊙ P 与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB 的面积与⊙ P 的面积比是.⌒4、如图,四边形 OABC为菱形,点 B、C在以点 O为圆心的EF 上,若 OA=1,∠ 1=∠2,则扇形 OEF的面积为.5、如下图,AC是汽车挡风玻璃前的刮雨刷.如果AO=65cm,CO=15cm,当AC 绕点O 旋转90°时,则刮雨刷AC 扫过的面积为________ c m2.、如图,在矩形ABCD中,E、F 分别是边AD、BC的中点,点1G、H在DC边上,且GH= DC.若AB=10,BC=12, 则图中阴影部分面积为阴影部分面积练习第 1 题 )HCDG9、如图,在△ ABC 中, AB = AC ,AB = 8,BC = 12,分别以 AB 、AC 为直径作圆12、如图,在 Rt △ABC 中,∠ C=90°, AC=4, BC=2分别以 AC 、BC 为直径画半圆,则图中阴影部分的面积为.(结果保留 π )14、如图.矩形 ABCD 中,AB=1,AD= 2.以 AD 的长为半径的⊙ A 交 BC 边于点 E ,则图中阴影部分的面积 为 . 15. 如图,在半径为 5 ,圆心角等于 450的扇形 AOB 内部 作一个正方形 CDE ,F 使点 C 在OA 上,点 D 、E 在6、如图,AB 是⊙ O 1 的直径, AO 1是⊙ O 2的直径,弦 MN ∥AB ,且 MN 与⊙ O 2相切于 C 点,若⊙ O 1的半径为 2,7、将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧((∠ AOB )为 120o , AO 的长为 4cm ,则图中阴影部分的面积为( )?AB )对应的中心角8、如图,直径 AB 为 6的半径,绕 A 点逆时针旋转 60°,此时点 B 到了点 B ' ,则图中阴影部分的面积是则图中阴影部分的面积是( )10 、如图 3,正方形 ABCD 内接于⊙ O ,直径 MN ∥AD ,则阴影面积占圆面积:O则 O 1B 、 B ⌒N 、 NC 与C ⌒O 1 所围成的阴影部分的面积是C第 9 题第 11 题OB上,点 F在?AB 上,则阴影部分的面积为(结果保留).15、如下图,等腰Rt△ABC的直角边长为4,以 A 为圆心,直角边 AB为半径作弧 BC1,交斜边 AC于点 C1,C1B1 AB于点 B1,设弧 BC1,C1B1,B1B围成的阴影部分的面积为 S1,然后以 A为圆心, AB1为半径作弧B1C2,交斜边 AC于点 C2,C2B2 AB 于点 B2,设弧 B1C2,C2B2,B2B1围成的阴影部分的面积为 S2,按此规律继续作下去,得到的阴影部分的面积S3= .16、如上图,AB是⊙ O的直径,点D在⊙ O上,∠ DAB=45°,BC∥ AD,CD∥AB。
(1)判断直线CD与⊙ O的位置关系,并说明理由;(2)若⊙ O的半径为1,求图中阴影部分的面积(结果保留)17、如下图,△ ABC是直角边长为 a 的等腰直角三角形,直角边圆 O1 相切,则图中阴影部分的面积是52.a3660°的扇形 ABC,将剪下来的扇形围成一个圆19、小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是.18、如图,从一个直径为 2 的圆形铁皮中剪下一个圆心角为锥,则圆锥的底面圆半径为()A.1B. 3C.3D.33634AB是半圆O1 的直径,半圆O2 过C点且与半A.7a2B .5a2C .7a2 36 36 361、如图,矩形ABCD 中,AB=2 ,BC=3 ,以点 A 为圆心AB 为半径画弧交AD 于E,以点 C 为圆心、CB 为半径画弧交CD延长线于F,则图中阴影部分面积为_____________ .(结果保留π)(覆盖法)2、已知,如图,正方形ABCD 是边长为1的正方形,分别以A、B为圆心,1为半径画弧,求阴影部分面积.3、如图,在矩形ABCD 中,AB=1 ,分别以点B、C为圆心,1为半径画弧,与BC 边分别交于点M、N,且与对角线AC 交于同一点P,则图中阴影部分的面积为____________4、如图,矩形ABCD 中,AB=1 ,AD=a ,以点 A 为圆心,a为半径画弧,交BC 于点E,交AB 延长线于点F ,当两个阴影部分面积相等时, a 的值是_________第1题第2题第3题第4题5、如图,在?ABCD 中,AB=6 ,AD=8 ,∠ B=60°,∠ BAD 与∠CDA 的角平分线AE、BF 相交于点G,且交BC 于点 E 、F,则图中阴影部分的面积是_____________6、在平行四边形ABCD 中,∠ B=60 °,AB=4 ,BC=6 ,以点B为圆心,BA 为半径画弧,交BC于E,在以点 D 为圆心,DA 为半径画弧,交DC 的延长线于点 F ,求阴影部分的面积,(覆盖法)7、如图,正方形ABCD 的边长为3,以 A 为圆心,2为半径画弧,以D为圆心,3为半径画弧,若图中阴影部分的面积分别为S1、S2,则S1-S2= _______ (覆盖法)8、如图,正方形ABCD 的边长为4,以CD 为直径作半圆,以 B 为圆心, 4 为半径作圆弧,若图中阴影部分的面积分为S1、S2.则S1-S2= _______________ .(结果保留π)(覆盖法)第9 题第10 题第11 题12、如图,把圆心角为30°,半径为6的扇形OAB 在直线l上向右作无滑动翻滚一周,则圆心O 所经过的路径长为()第5题9、如图,分别以直角三角形S2,S3,则10、如图,在扇形D 处,折痕交OA11、如图,在扇形落在弧AB 上的点第6题ABC 的三边作正三角形,已知AC=6 ,AB=10 ,S1+S3-S2 的值为()(覆盖法)OAB 中,∠ AOB=90 °,半径OA=6 .将沿过点B的直线折叠,点O恰好落弧AB 于点C,求整个阴影部分的面积为___________OAB 中,∠ AOB=105 °,半径OA=10 ,将扇形OAB 沿过点 B 的直线折叠,点O D处,折痕BC 交OA 于点 C ,则图中阴影部分面积为________第8题阴影部分的面积分别记为S1,上点恰好第7题如图,将半径为2、圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A′O′B′处,图中阴影部分面积是多少?14、如图,扇形OAB 中,∠ AOB=60 °,扇形半径为4,点 C 在弧AB 上,CD ⊥ OA ,垂足为点D,当△ OCD 的面积最大时,图中阴影部分的面积为________________16、如图,AB为半圆O的直径,以AO为直径作半圆M ,C为OB的中点,D在半圆M 上,且CD⊥MD ,延长AD 交⊙ O于点E,若AB=4 ,则图中阴影部分的面积为____________________如图,在菱形ABCD 中,AB=1 ,∠ DAB=60 °,把菱形ABCD 绕点A顺时针旋转30°,得到菱形AB' C'D',其中点 C 运动的路径为弧CC ',则图中阴影部分的面积为________________第13 题第14 题第16 题第17 题在△ABC 中,∠ C=90 °,AC=BC ,AB=4 ,O是AB 的中点,以点O为圆心,线段AC的长为半径,画圆心角为90°的扇形OEF ,则图中阴影部分的面积为______________如图,四边形ABCD 是菱形,∠ A=60 °,AB=2 ,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是()第18 题第19 题2、如图1所示,半径OA=2cm ,圆心角为90°的扇形AOB 中,C为的中点,D为OB的中点,求阴影部分的面积。
3、如图,扇形AOB 的圆心角为90°,半径为2,点 C 为OB 中点,点 D 在弧AB 上,将扇形沿直线CD 折叠,若点 B ,O 重合,则图中阴影部分的周长为_____________ .(结果保留π)4、如图,在圆心角为90°的扇形OAB 中,半径OA=2cm ,C 为弧AB 的中点,D、E 分别是OA 、OB 的中点,则图中阴影部分的面积为第2题5、如图,扇形阴影部分的面积为9、如图,半径为 1cm ,圆心角为 90°的扇形 OAB 中,分别以 OA 、OB 为直径作半圆,则图中阴影部分的 面积为( )10 、如图,在扇形 AOB 中,∠ AOB=90 °,以点 A 为圆心, OA 的长为半径作弧 OC 交弧 AB 于点 C ,若 OA=2 ,则阴影部分的面积为—11、如图,扇形 AOB 的圆心角为 60°,四边形 OCDE 是边长为 1 的菱形,点 C 、E 、D 分别在 OA 、OB 和弧 AB上,若过 B 作 BF ∥ED 交 CD 的延长线于点 F ,则图中阴影部分的面积为 _________________ABCD 内接于⊙ O ,直径 MN∥AD ,则阴影部分面积占圆面积的 ____________________________________________12 、如图是某公园的一角,∠ AOB=90 °,弧 AB 半径 OA 长是 6 米, C 是 OA 的中点,点 D 在弧 AB 上, CD ∥OB ,求图中休闲区(阴影部分)的面积 第9题 第 10题 第11题 第12题第 14 题6、如图,在半径为 10 ,圆心角等于45°的扇形 AOB 内部作一个矩形CDEF ,使点 C 在 OA 上,点 D 、E 在 OB 上,点F 在弧 AB 上,且 DE=2CD ,则:(1)弧 AB 的长是 ( 2)图中阴影部分的面积为 _______ (结果保留π)结果保留π) ;7、如图,在半径为 5 ,圆心角等于 45°的扇形 AOB 内部作一个正方形 CDEF ,使点 C 在 OA 上,点D 、 E 在 OB 上,点 F 在弧 AB 上.(1)求正方形 CDEF 的边长;(2)求阴影部分的面积(结果保留π) 8、如图,在扇形 AOB 中,∠ AOB=45 °,点 C 为 OB 的中点,以点 C 为圆心,以 OC 的长为半径画半圆交 OA 于点 D ,若 OB=2 ,则阴影部分的面积为_______1 x2 经过平移得到抛物线 y2=- 1 x2+3x ,其对称轴与两段 2214、如图所示,正方形 cm2.cm 2.第5题 第 7题 第 8题15 、如图,在平面直角坐标系中,抛物线y1= -抛物线所围成的阴影部分的面积是()。