台湾台北第一次中考数学试题
- 格式:docx
- 大小:521.53 KB
- 文档页数:5
2010年 台湾 第一次国民中学学生基本学力测验(台湾中考)数学科题本1. 下列何者是0.000815的科学记号? (A) 8.15⨯10-3 (B) 8.15⨯10-4 (C) 815⨯10-3 (D) 815⨯10-6 。
2. 小芬买15份礼物,共花了900元,已知每份礼物内鄱有1包饼干及每支售价20元的棒棒糖 2支,若每包饼干的售价为x 元,则依题意可列出下列哪一个一元一次方程式?(A) 15(2x +20)=900 (B) 15x +20⨯2=900 (C) 15(x +20⨯2)=900 (D) 15⨯x ⨯2+20=900 。
3. 下列选项中,哪一段时间最长? (A) 15分 (B)114小时 (C) 0.3小时 (D) 1020秒。
4. 图(一)表示D 、E 、F 、G 四点在△ABC 三边上的位置,其中DG 与EF 交于H 点。
若∠ABC =∠EFC =70︒,∠ACB =60︒,∠DGB =40︒,则下列哪 一组三角形相似?(A) △BDG ,△CEF (B) △ABC ,△CEF (C) △ABC ,△BDG (D) △FGH ,△ABC 。
5. 计算 | -1-(-35) |-| -611-67 | 之值为何? (A) -37 (B) -31 (C) 34 (D)311。
6. 下列何者为5x 2+17x -12的因式? (A) x +1 (B) x -1 (C) x +4 (D) x -4 。
7. 计算106⨯(102)3÷104之值为何?(A) 108 (B) 109 (C) 1010 (D) 1012。
8. 如图(二),AB 为圆O 的直径,C 、D 两点均在圆上,其中OD 与AC 交于 E 点,且OD ⊥AC 。
若OE =4,ED =2,则BC 长度为何? (A) 6 (B) 7 (C) 8 (D) 9 。
9. 有数颗等重的糖果和数个大、小砝 码,其中大砝码皆为5克、大砝码 皆为1克,且图(三)是将糖果与砝码放在等臂天平上的两种情形。
2022年台湾省中考数学试卷(第一次)一、选择题(1~27题)1.(3分)(2022•台湾)算式(6+10×15)×3之值为何()A.242 B.12 5 C.1213 D.18 2分析:先算乘法,再合并同类二次根式,最后算乘法即可.解:原式=(6+56)×3=66× 3=182,应选D.点评:此题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.2.(3分)(2022•台湾)假设A为一数,且A=25×76×114,那么以下选项中所表示的数,何者是A的因子()A.24×5 B.77×113C.24×74×114D.26×76×116分析:直接将原式提取因式进而得出A的因子.解:∵A=25×76×114=24×74×114(2×72),∴24×74×114,是原式的因子.应选:C.点评:此题主要考查了幂的乘方运算法那么以及同底数幂的乘方,正确分解原式是解题关键.3.(3分)(2022•台湾)如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥BC.假设AB =10,BE=8,DE=6,那么AD的长度为何()A.8 B.9 C.6 2 D.6 3分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解.解:∵AE⊥BC,∴∠AEB=90°,∵AB=10,BE=8,∴AE=AB2-BE2=102-82=6,∵AD∥BC,∴∠DAE=∠AEB=90°,∴AD=DE2-AE2=(63)2-62=62.应选C.点评:此题考查了梯形,勾股定理,是根底题,熟记定理并确定出所求的边所在的直角三角形是解题的关键.4.(3分)(2022•台湾)有一箱子装有3张分别标示4、5、6的号码牌,小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,假设先后取出2张牌组成二位数的每一种结果发生的时机都相同,那么组成的二位数为6的倍数的机率为何()A .16B .14C .13D .12分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及组成的二位数为6的倍数的情况,再利用概率公式即可求得答案.解:画树状图得:∵每次取一张且取后不放回共有6种可能情况,其中组成的二位数为6的倍数只有54,∴组成的二位数为6的倍数的机率为16. 应选A .点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)(2022•台湾)算式743×369﹣741×370之值为何()A .﹣3B .﹣2C .2D .3分析:根据乘法分配律,可简便运算,根据有理数的减法,可得答案.解:原式=743×(370﹣1)﹣741×370=370×(743﹣741)﹣743=370×2﹣743=﹣3,应选:A .点评:此题考查了有理数的乘法,乘法分配律是解题关键.6.(3分)(2022•台湾)假设二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,那么a +b 之值为何()A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值.解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524. 那么a =2524,b =524,那么a +b =3024=54. 应选A . 点评:此题主要考查了二元一次方程组解法,解方程组的根本思想是消元,正确解方程组是关键.7.(3分)(2022•台湾)果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一竹篮的西红柿,含竹篮秤得总重量为15公斤,付西红柿的钱250元.假设他再加买0.5公斤的西红柿,需多付10元,那么空竹篮的重量为多少公斤()A .1.5B .2C .2.5D .3分析:由加买0.5公斤的西红柿,需多付10元就可以求出西红柿的单价,再由总价250元÷西红柿的单价就可以求出西红柿的数量,进而求出结论.解:由题意,得西红柿的单价为:10÷0.5=20元,西红柿的重量为:250÷20=12.5kg ,∴空竹篮的重量为:15﹣12.5=2.5kg .应选C .点评:此题考查了总价÷数量=单价的运用,总价÷单价=数量的运用,解答时求出西红柿的单价是解答此题的关键.8.(3分)(2022•台湾)以下选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,那么此纸片为何()A .B .C .D .分析:根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案.解:如下列图:应选:A .点评:此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.9.(3分)(2022•台湾)如图,坐标平面上,△ABC 与△DEF 全等,其中A 、B 、C 的对应顶点分别为D 、E 、F ,且AB =BC =5.假设A 点的坐标为(﹣3,1),B 、C 两点在方程式y =﹣3的图形上,D 、E 两点在y 轴上,那么F 点到y 轴的距离为何()A .2B .3C .4D .5分析:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .由AB =BC ,△ABC ≌△DEF ,就可以得出△AKC ≌△CHA ≌△DPF ,就可以得出结论.解:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .∴∠DPF =∠AKC =∠CHA =90°.∵AB =BC ,∴∠BAC =∠BCA .在△AKC 和△CHA 中。
2011年台湾省中考数学试卷(第一次)、选择题(共34小题,每小题4分,满分136 分)1. (4分)坐标平面上,若点(3,b )在方程式3y=2x- 9的图形上,贝U b 值为 何( ) A. - 1B . 2C. 3D . 92. (4分)计算73+ (- 4) 3之值为何( ) A. 9 B . 27 C. 279D . 4073.(4分)化简5 (2x - 3)- 4 (3 -2x )之后,可得下列哪一个结果( )A. 2x - 27B . 8x - 15C. 12x - 15D . 18x - 274. (4分)下列有一面国旗是轴对称图形,根据选项中的图形,判断此国旗为何6. (4分)如图为某校782名学生小考成绩的次数分配直方图,若下列有一选项 为图(一)成绩的累积次数分配直方图,则此图为何( )5. (4分)下列四个多项式,哪一个是A . 2x - 1B . 2x - 3 D . x - 3A .B.)0 10 30-30 44 50 fiO 70 8090100分数(分)7.(4分)若厶ABC 中,2 (/A+Z C ) =3/ B ,则/ B 的外角度数为何( )A. 36 B . 72 C. 108 D . 1448.(4 分)若(7x -a )2=49X 2-bx+9,则 | a+b| 之值为何( ) A. 18 B . 24C. 39D . 459. (4分)在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50 元.李太太买了 11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若 馒—rT\O —O —- O A . 口 3 O一、Q亍 O黒计庆数0 10 20 J0 40S0 刃 100分敷(分)_f ・O0 10 20 30 40 50 60 70 8&90100分救(分)O $10 -.3 O5 5 3 ? 1寰计人熬5 o CJ 0 2 J 5 T5 £- £ 9 I* 2 4 5 -7 5 B6 -rq二勻吝 2 I 舉计人衆O 5 o 5J- O 5- AV头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系()A .B . C. D .10. (4 分)若(a- 1): 7=4: 5,则 10a+8 之值为何( ) A. 54B . 66C. 74D . 8011. (4分)如图数轴上有O , A , B, C, D 五点,根据图中各点所表示的数,判 断—在数轴上的位置会落在下列哪一线段上( )°鸟 E £ Q~Q2.53.6 4J 5.8A. OA B . AB C. BC 12. (4分)判断312是96的几倍( )A. 1B . (-)2C. (-) 6 13. (4分)解不等式--x -3>2,得其解的范围为何( A . x v- 25B . x >- 25C. x v 514.(4分)计算-- - 之值为何( )15. (4分)如图的坐标平面上有一正五边形 ABCDE 其中C 、D 两点坐标分别为 (1, 0)、(2, 0).若在没有滑动的情况下,将此正五边形沿着x 轴向右滚动,16. (4分)已知数轴上A 、B 两点坐标分别为-3、- 6,若在数轴上找一点C, 使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可 能为C 与DD . CDD . (-6)A .- 1B .- —C.-— D .- —C. C D . D则滚动过程中,下列何者会经过点(75, 0)(A . AB . B的距离()A . 2: 1B . 4: 3 C. 3: 1 D . 3: 219. (4分)坐标平面上,二次函数 y=x 2-6x+3的图形与下列哪一个方程式的图 形没有交点( ) A . x=50B . x=- 50C. y=50D . y= - 5020. (4分)如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格 线的交点上,若灰色三角形面积为 一平方公分,则此方格纸的面积为多少平方公分?()17. (4分)计算 -之值为何()A . —B .— C. 一D.——18. (4分)判断图中正六边形 ABCDEF 与正三角形FCG 的面积比为何()A . 0B . 2C. 4D . 6A . 11B . 12 C. 13D . 14A . 1B . 3 C. x - 1 D . 3x -323. (4分)一签筒内有四支签,分别标记号码 1, 2, 3, 4.已知小武以每次取 一支且取后不放回的方式,取两支签,若每一种结果发生的机会都相同,则 这两支签的号码数总和是奇数的机率为()24. (4分)如图,△ ABC 的外接圆上,AB , BC, CA 三弧的度数比为12: 13: 11.自 劣弧BC 上取一点D ,过D 分别作直线AC,直线AB 的平行线,且交于E ,25. (4分)若有两圆相交于两点,且圆心距离为 13公分,贝U 下列哪一选项中的 长度可能为此两圆的半径(C. 1公分,10公分 26. (4分)如图1,将某四边形纸片ABCD 的AB 向BC 方向折过去(其中AB V BC ),使得A 点落在BC 上,展开后出现折线BD,如图2.将B 点折向D ,使 得B 、D 两点重迭,如图3,展开后出现折线CE 如图4.根据图4,判断下 列关系何者正确?()A .B.-C.D.-C. 65° D . 70°A . 25公分,40公分 B. 20公分,30公分D . 5公分,7公分27. (4分)如图为一直棱柱,其中两底面为全等的梯形,其面积和为16;四个侧面均为长方形,其面积和为45.若此直棱柱的体积为24,则所有边的长度 和为()A . 30B . 36 C. 42 D . 4828. (4分)如图为坐标平面上二次函数 y=ax 2+bx+c 的图形,且此图形通(-1 , 1)、(2,- 1)两点.下列关于此二次函数的叙述,何者正确()5k1/ 。
2008年台湾第一次初中升学基本学力测验数 学 科 题 本( D ) 1. 下列哪一个式子计算出来的值最大? (A) 8.53⨯109-2.17⨯108 (B) 8.53⨯1010-2.17⨯109 (C) 9.53⨯109-2.17⨯108 (D) 9.53⨯1010-2.17⨯109 .( C ) 2. 若a :b =3:2,b :c =5:4,则a :b :c =? (A) 3:2:4 (B) 6:5:4 (C) 15:10:8 (D) 15:10:12 .( D ) 3. 在五边形ABCDE 中,若∠A =100︒,且其余四个内角度数相等,则∠C =? (A) 65︒ (B) 100︒ (C) 108︒ (D) 110︒ .( A ) 4. 图(一)表示数在线四个点的位置关系,且它们表示的数分别为p 、q 、r 、s .若 | p -r |=10, | p -s |=12,| q -s |=9,则 图(一)(A) 7 (B) 9 (C)11 (D) 13 .( B ) 5. 如图(二),坐标平面上有一透明片,透明片上有一拋物线及一点P ,且拋物线为二次函 数y =x 2的图形,P 的坐标(2,4).若将此透明片向右、向上移动后,得拋物线的顶点座标为(7,2),则此时P(A) (9,4) (B) (9,6) (C) (10,4) (D) (10,6) .( A ) 6. 二年级学生共有540人,某次露营有81人没有参加,则没参加露营人数和全部二年级学生人数的比值为何? (A)203 (B) 1720 (C) 2017 (D) 173 . ( C ) 7. 有两个多项式M =2x 2+3x +1,N =4x 2-4x -3,则下列哪一个为M 与N 的公因式? (A) x +1 (B) x -1 (C) 2x +1 (D) 2x -1 .( D ) 8. 若二元一次联立方程式⎩⎨⎧=-=-34332y x y x 的解为x =a ,y =b ,则a +b =?(A) 1 (B) 6 (C) 53 ((D) 512.( D ) 9. 如图(三),AB 、CD 分别为两圆的弦,AC 、BD 为两圆的公切线且相交于P 点.若 PC =2,CD =3,DB =6,则△PAB 的周长为何?图(三)pqrsABCD P(A) 6 (B) 9 (C) 12 (D) 14 .( C ) 10. 计算48÷(158+3524)之值为何? (A) 75 (B) 160 (C) 8315 (D) 903524 .( C ) 11. 若大军买了数支10元及15元的原子笔,共花费90元,则这两种原子笔的数量可能相差几支? (A) 2 (B) 3 (C) 4 (D) 5 .( B ) 12. 有一长条型链子,其外型由边长为1公分的正六边形排列而成.图(四)表示此链之任一 段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,(A) 140 (B) 142 (C) 210 (D) 212 .( D ) 13. 如图(五),阿仓用一张边长为27.6公分的正方形厚纸板,剪下边长皆为3.8公分的四个 正方形,图(五)(A) 552 (B) 566.44 (C) 656.88 (D) 704 .( B ) 14. 如图(六), ABC 中,D 、E 两点分别在AC 、BC 上,则AB =AC ,CD =DE .若∠A =40︒, ∠ABD :∠DBC =3:4,则∠BDE =?图(六)(A) 25︒ (B) 30︒ (C) 35︒ (D) 40︒ .( B ) 15. 19的值介于下列哪两数之间? (A) 4.2,4.3 (B) 4.3,4.4 (C) 4.4,4.5 (D) 4.5,4.6 . ( A ) 16. 以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500公尺,再向东直走100公尺可到图书馆. 乙:从学校向西直走300公尺,再向北直走200公尺可到邮局. 丙:邮局在火车站西方200公尺处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站?(A) 向南直走300公尺,再向西直走200公尺 (B) 向南直走300公尺,再向西直走600 公尺 (C) 向南直走700公尺,再向西直走200公尺 (D) 向南直走700公尺,再向西直(单位:公分)CDBA走600公尺 .( A ) 17. 已知f (x )为一次函数.若f (-3)>0且f (-1)=0,判断下列四个式子,哪一个是正确的? (A) f (0)<0 (B) f (2)>0 (C) f (-2)<0 (D) f (3)>f (-2) .( B ) 18. 图(七)为❒ABC 与❒DEC 重迭的情形,其中E 在BC 上,AC 交DE 于F 点, 且AB // DE .若❒ABC 与❒DEC 的面积相等,且EF =9,AB =12,则DF =?图(七)(A) 3 (B) 7 (C) 12 (D) 15 .( C ) 19. 如图(八),圆上有A 、B 、C 、D 四点,圆内有E 、F 两点且E 、F 在BC 上.若四边形 AEFD 为正方形,(A)A B < A D (B) A B = A D (C)A B < B C (D) A B = B C . ( B ) 20. 如图(九)A 、B 、C 、D 四点均在一圆弧上,BC // AD ,且直线AB 与直线CD 相交于 E 点.若∠BCA =10︒,∠BAC =60︒,则∠BEC =?图(九)(A) 35︒ (B) 40︒ (C) 60︒ (D) 70︒ .( C ) 21. 如图(十),❒ABC 的内部有一点P ,且D 、E 、F 是P 分别以AB 、BC 、AC 为对称 轴的对称点.若❒ABC 的内角∠A =70︒,∠B =60︒,∠C =50︒,则∠ADB +∠BEC +∠CFA =?图(十)(A) 180︒ (B) 270︒ (C) 360︒ (D) 480︒ .( B ) 22. 如图(十一),有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选 该边的一条绳子.若每边每条绳子被选中的机会相等,则两人选到同一条绳子的机率ABCDEFABC DEC为何?图(十一)(A)21 (B) 31 (C) 61(D) 91 .( A ) 23. 某篮球队队员共16人,每人投篮6次,且表(一)为其投进球数的次数分配表.若此 队投进球数的中位数是2.5,则众数为何?投进球数 01 2 3 4 5 6 次数(人) 22 a b3 2 1 ( C ) 24. 解不等式32x +1≤92x +31,得其解的范围为何? (A) x ≥23 (B) x ≥32 (C) x ≤ -23(D) x ≤ -32.( B ) 25. 某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧 道.下列何者可能是该车通过隧道所用的时间? (A) 6分钟 (B) 8分钟 (C) 10分钟 (D) 12分钟 .( D ) 26. 关于方程式49x 2-98x -1=0的解,下列叙述何者正确? (A) 无解 (B) 有两正根 (C)有两负根 (D) 有一正根及一负根 .( D ) 27. 某水果店贩卖西瓜、梨子及苹果,已知一个西瓜的价钱比6个梨子多6元,一个苹果 的价钱比2个梨子少2元.判断下列叙述何者正确? (A) 一个西瓜的价钱是一个苹 果的3倍 (B) 若一个西瓜降价4元,则其价钱是一个苹果的3倍 (C)若一个西瓜降价 8元,则其价钱是一个苹果的3倍 (D) 若一个西瓜降价12元,则其价钱是一个苹果 的3倍 .( A ) 28. 小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第 17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有 多少人? (A) 36 (B) 37 (C) 38 (D) 39 .( D ) 29. 如图(十二),G 是❒ABC 的重心,直线L 过A 点与BC 平行.若直线CG 分别与AB 、 L 交于D 、E 两点,直线BG 与AC 交于F 点,则❒AED 的面积:四边形ADGF 的面 积=?图(十二)(A) 1:2 (B) 2:1 (C) 2:3 (D) 3:2 .( D ) 30. 若图(十三)是某班40人投篮成绩次数长条图,则下列何者是图(十三)资料的盒状图?ABGDEF图(十三)(B)(C)(D)( B ) 31. 如图(十四),有两个三角锥ABCD 、EFGH ,其中甲、乙、丙、丁分别表示❒ABC 、❒ACD 、 ❒EFG 、❒EGH .若∠ACB =∠CAD =∠EFG =∠EGH =70︒,∠BAC =∠ACD =∠EGF =∠EHG =50︒,则下列叙述何者正确?图(十四)(A)甲、乙全等,丙、丁全等 (B) 甲、乙全等,丙、丁不全等 (C) 甲、乙不全等,丙、 丁全等 (D) 甲、乙不全等,丙、丁不全等 .( A ) 32. 如图(十五),圆O 为四边形ABCD 的内切圆.若∠AOB =70︒,则∠COD =?图(十五)(A) 110︒ (B) 125︒ (C) 140︒ (D) 145︒ .( A ) 33. 如图(十六),AD 为圆O 的直径.甲、乙两人想在圆上找B 、C 两点,作一个正三角 形ABC ,其作法如下:甲:1. 作OD 中垂线,交圆于B 、C 两点, 2. 连AB 、AC ,❒ABC 即为所求.乙:1. 以D 为圆心,OD 长为半径画弧,交圆于B 、C 两点, 2. 连AB 、BC 、CA ,❒ABC 即为所求. 对于甲、乙两人的作法,下列判断何者正确?图(十六)(A) 甲、乙皆正确 (B) 甲、乙皆错误 (C) 甲正确、乙错误 (D) 甲错误、乙正确 .( C ) 34. 如图(十七),圆O 1、圆O 2、圆O 3三圆两两相切,AB 为圆O 1、圆O 2的公切线,A B 为 投进球数投进球数 投进球数 投进球数 (球) )246 810 次数(人)半圆,且分别与三圆各切于一点.若圆O 1、圆O 2的半径均为1,则圆O 3的半径为何?图(十七)(A) 1 (B)21(C) 2-1 (D) 2+1 .B。
100第一次國民中學基本學力測驗 數學科題本班級: 座號: 姓名:(A ) 1. 座標平面上,若點(3, b )在方程式923-=x y 的圖形上,則b 值為何? (A)-1 (B) 2 (C) 3 (D) 9(C ) 2. 計算33)4(7-+之值為何?(A) 9 (B) 27 (C) 279 (D) 418(D ) 3. 化簡)23(4)32(5x x ---之後,可得下列哪一個結果?(A) 2x -27 (B) 8x -15 (C) 12x -15 (D) 18x -27(D ) 4. 下列有一面國旗是線對稱圖形,根據選項中的圖形,判斷此國旗為何? (A) (B)(C) (D)(A ) 5. 下列四個多項式,哪一個是3522-+x x 的因式?(A) 2x -1 (B) 2x -3 (C) x -1 (D) x -3(A ) 6. 圖(一)為某校782名學生小考成績的次數分配直方圖,若下列有一選項為圖(一)成績的累積次數分配直方圖,則此圖為何?(A)(B)(C)(D)(C ) 7. 若△ABC 中,2(∠A +∠C )=3∠B ,則∠B 的外角度數為何? (A) 36 (B) 72 (C) 118 (D) 144(D ) 8. 若949)7(22+-=-bx x a x ,則b a +之值為何?(A) 18 (B) 24 (C) 39 (D) 45(B ) 9. 在早餐店裡,王伯伯買5顆饅頭,3顆包子,老闆少拿2元,只要50元。
李太太買了11顆饅頭,5顆包子,老闆以售價的九折優待,只要90元。
若饅頭每顆x 元,包子每顆y 元,則下列哪一個二元一次聯立方程式可表示題目中的數量關係?(A)⎩⎨⎧⨯=++=+9.09051125035y x y x(B)⎩⎨⎧÷=++=+9.09051125035y x y x(C)⎩⎨⎧⨯=+-=+9.09051125035y x y x(D)⎩⎨⎧÷=+-=+9.09051125035y x y x(C )10. 若(a -1):7=4:5,則10a +8之值為何?(A) 54 (B) 66 (C) 74 (D) 80(C )11. 圖(二)數線上有O 、A 、B 、C 、D 五點,根據圖中各點所表示的數,判斷18在數線上的位置會落在下列哪一線段上? (A)OA (B)AB (C)BC (D)CD(A )12. 判斷312是96的幾倍?(A) 1(B) (31)2(C) (31)6(D) (-6)2(A )13. 解不等式-51x -3>2,得其解的範圍為何? (A) x <-25 (B) x >-25 (C) x <5 (D) x >5(B )14. 計算)4(433221-⨯++之值為何? (A)-1 (B)-611 (C)-512 (D)-323(B )15.圖(三)的座標平面上有一正五邊形ABCDE ,其中C 、D兩點座標分別為(1,0)、(2,0) 。
2024年台湾省中考数学试卷一、第一部分:选择题(1~25题)1.(3分)算式之值为何?()A.B.C.D.2.(3分)如图为一个直三角柱的展开图,其中三个面被标示为甲、乙、丙.将此展开图折成直三角柱后,判断下列叙述何者正确?()A.甲与乙平行,甲与丙垂直B.甲与乙平行,甲与丙平行C.甲与乙垂直,甲与丙垂直D.甲与乙垂直,甲与丙平行3.(3分)若二元一次联立方程式的解为,则a+b之值为何?()A.﹣28B.﹣14C.﹣4D.144.(3分)若想在如图的方格纸上沿着网格线画出坐标平面的x轴、y轴并标记原点,且以小方格边长作为单位长,则下列哪一种画法可在方格纸的范围内标出(5,3)、(﹣4,﹣4)、(﹣3,4)、(3,﹣5)四点?()A.B.C.D.5.(3分)阿贤利用便利贴拼成一个圣诞树图案,圣诞树图案共有10层,每一层由三列的便利贴拼成,前3层如图所示.若同一层中每一列皆比前一列多2张,且每一层第一列皆比前一层第一列多2张,则此圣诞树图案由多少张便利贴拼成?()A.354B.360C.384D.3906.(3分)箱内有50颗白球和10颗红球,小慧打算从箱内抽球31次,每次从箱内抽出一球,如果抽出白球则将白球放回箱内,如果抽出红球则不将红球放回箱内.已知小慧在前30次抽球中共抽出红球4次,若她第31次抽球时箱内的每颗球被抽出的机会相等,则这次她抽出红球的机率为何?()A.B.C.D.7.(3分)图1有A、B两种图案,其中A经过上下翻转后与B相同,且图案的外围是正方形,图2是将四个A图以紧密且不重叠的方式排列成大正方形,图3是将两个A图与两个B图以紧密且不重叠的方式排列成大正方形.判断图2、图3是否为轴对称图形?()A.图2、图3皆是B.图2、图3皆不是C.图2是,图3不是D.图2不是,图3是8.(3分)若a=3.2×10﹣5,b=7.5×10﹣5,c=6.3×10﹣6,则a、b、c三数的大小关系为何?()A.a<b<c B.a<c<b C.c<a<b D.c<b<a9.(3分)癌症分期是为了区别恶性肿瘤影响人体健康的程度,某国统计2011年确诊四种癌症一到四期的患者在3年后存活的比率(3年存活率),並依据癌症类别与不同分期将资料整理成如图.甲、乙两人对该国2011年确诊上述四种癌症的患者提出看法如下:(甲)一到四期的乳癌患者的3年存活率皆高于50%(乙)在这四种癌症中,三期与四期的3年存活率相差最多的是胃癌对于甲、乙两人的看法,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确10.(3分)下列何者为多项式5x(5x﹣2)﹣4(5x﹣2)2的因式分解?()A.(5x﹣2)(25x﹣8)B.(5x﹣2)(5x﹣4)C.(5x﹣2)(﹣15x+8)D.(5x﹣2)(﹣20x+4)11.(3分)将化简为,其中a、b为整数,求a+b之值为何?()A.5B.3C.﹣9D.﹣1512.(3分)甲、乙两个二次函数分别为y=(x+20)2+60、y=﹣(x﹣30)2+60,判断下列叙述何者正确?()A.甲有最大值,且其值为x=20时的y值B.甲有最小值,且其值为x=20时的y值C.乙有最大值,且其值为x=30时的y值D.乙有最小值,且其值为x=30时的y值13.(3分)如图为阿成调整他的计算机画面的分辨率时看到的选项,当他从建议选项1920×1080调整成1400×1050时,由于比例改变(1920:1080≠1400:1050),画面左右会出现黑色区域,当比例不变就不会有此问题.判断阿成将他的计算机画面分辨率从1920×1080调整成下列哪一种时,画面左右不会出现黑色区域?()A.1680×1050B.1600×900C.1440×900D.1280×102414.(3分)小玲搭飞机出国旅游,已知她搭飞机产生的碳排放量为800公斤,为了弥补这些碳排放量,她决定上下班时从驾驶汽车改成搭公交车.依据图(九)的信息,假设小玲每日上下班驾驶汽车或搭公交车的来回总距离皆为20公里,则与驾驶汽车相比,她至少要改搭公交车上下班几天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量?()每人使用各种交通工具每移动1公里产生的碳排放量●自行车:0公斤●公交车:0.04公斤●机车:0.05公斤●汽车:0.17公斤A.310天B.309天C.308天D.307天15.(3分)甲、乙两个最简分数分别为、,其中a、b为正整数.若将甲、乙通分化成相同的分母后,甲的分子变为50,乙的分子变为54,则下列关于a的叙述,何者正确?()A.a是3的倍数,也是5的倍数B.a是3的倍数,但不是5的倍数C.a是5的倍数,但不是3的倍数D.a不是3的倍数,也不是5的倍数16.(3分)有研究报告指出,1880年至2020年全球平均气温上升趋势约为每十年上升0.08℃.已知2020年全球平均气温为14.88℃,假设未来的全球平均气温上升趋势与上述趋势相同,且每年上升的度数相同,则预估2020年之后第x年的全球平均气温为多少℃?(以x表示)()A.14.88+0.08xB.14.88+0.008xC.14.88+0.08[x+(2020−1880)]D.14.88+0.008[x+(2020−1880)]17.(3分)△ABC中,∠B=55°,∠C=65°.今分别以B、C为圆心,BC长为半径画圆B、圆C,关于A点位置,下列叙述何者正确?()A.在圆B外部,在圆C内部B.在圆B外部,在圆C外部C.在圆B内部,在圆C内部D.在圆B内部,在圆C外部18.(3分)如图,平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,其中E在DC上,F在BC上,C在FG上.若AB=7,AD=5,FC=3,则四边形ECGH的周长为何?()A.21B.20C.19D.1819.(3分)如图的数在线有A(−2)、O(0)、B(2)三点.今打算在此数在线标示P(p)、Q(q)两点,且p、q互为倒数,若P在A的左侧,则下列叙述何者正确?()A.Q在AO上,且AQ<QO B.Q在AO上,且AQ>QOC.Q在OB上,且OQ<QB D.Q在OB上,且OQ>QB20.(3分)四边形ABCD中,E、F两点在BC上,G点在AD上,各点位置如图所示.连接GE、GF后,根据图中标示的角与角度,判断下列关系何者正确?()A.∠1+∠2<∠3+∠4B.∠1+∠2>∠3+∠4C.∠1+∠4<∠2+∠3D.∠1+∠4>∠2+∠321.(3分)如图,、皆为半圆,与相交于E点,其中A、B、C、D在同一直在线,且B为AC 的中点.若=58°,则的度数为何?()A.58B.60C.62D.6422.(3分)如图,△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3.若△ABC 的重心为G,则下列叙述何者正确?()A.△GBC与△DBC的面积相同,且DG与BC平行B.△GBC与△DBC的面积相同,且DG与BC不平行C.△GCA与△DCA的面积相同,且DG与AC平行D.△GCA与△DCA的面积相同,且DG与AC不平行23.(3分)如图1,等腰梯形纸片ABCD中,AD∥BC,AB=DC,∠B=∠C,且E点在BC上,DE∥AB.今以DE为折线将C点向左折后,C点恰落在AB上,如图2所示.若CE=2,DE=4,则图2的BC与AC的长度比为何?()A.1:2B.1:3C.2:3D.3:5请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.(3分)以下为甲、乙两个关于成年女性理想体重的叙述:(甲)有的女性使用算法①与算法②算出的理想体重会相同(乙)有的女性使用算法②与算法③算出的理想体重会相同对于甲、乙两个叙述,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确25.(3分)无论我们使用哪一种算法计算理想体重,都可将个人的实际体重归类为表(二)的其中一种类别.实际体重类别大于理想体重的120%肥胖介于理想体重的110%~过重120%正常介于理想体重的90%~110%介于理想体重的80%~90%过轻小于理想体重的80%消瘦当身高1.8公尺的成年男性使用算法②计算理想体重并根据表(二)归类,实际体重介于70×90%公斤至70×110%公斤之间会被归类为正常.若将上述身高1.8公尺且实际体重被归类为正常的成年男性,重新以算法③计算理想体重并根据表(二)归类,则所有可能被归类的类别为何?()A.正常B.正常、过重C.正常、过轻D.正常、过重、过轻二、第二部分:非选择题(1~2题)26.「健康饮食餐盘」是一种以图画呈现饮食指南的方式,图画中各类食物区块的面积比,表示一个人每日所应摄取各类食物的份量比.某研究机构对于一般人如何搭配「谷类」、「蛋白质」、「蔬菜」、「水果」这四大类食物的摄取份量,以「健康标语」说明这四大类食物所应摄取份量的关系如图1,并绘制了「健康饮食餐盘」如图2.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)请根据图1的「健康标语」,判断一个人每日所应摄取的「水果」和「蛋白质」份量之间的大小关系.(2)将图2的「健康饮食餐盘」简化为一个矩形,且其中四大类食物的区块皆为矩形,如图3所示.若要符合图1的「健康标语」,在纸上画出图3的图形,其中餐盘长为16公分,宽为10公分,则a、b 是否可能同时为正整数?27.某教室内的桌子皆为同一款多功能桌,4张此款桌子可紧密拼接成中间有圆形镂空的大圆桌,上视图如图1所示,其外围及镂空边界为一大一小的同心圆,其中大圆的半径为80公分,小圆的半径为20公分,且任两张相邻桌子接缝的延长线皆通过圆心.为了有效运用教室空间,老师考虑了图2及图3两种拼接此款桌子的方式.这两种方式皆是将2张桌子的一边完全贴合进行拼接.A、B两点为图2中距离最远的两个桌角,C、D 两点为图3中距离最远的两个桌角,且CD与2张桌子的接缝EF相交于G点,G为EF中点.请根据上述信息及图2、图3中的标示回答下列问题,完整写出你的解题过程并详细解释:(1)GF的长度为多少公分?(2)判断CD与AB的长度何者较大?请说明理由.2024年台湾省中考数学试卷参考答案与试题解析一、第一部分:选择题(1~25题)1.(3分)算式之值为何?()A.B.C.D.【分析】根据有理数的减法的运算方法,求出算式的值即可.【解答】解:=+=.故选:A.【点评】此题主要考查了有理数的减法的运算方法,解答此题的关键是要明确有理数减法法则:减去一个数,等于加上这个数的相反数.2.(3分)如图为一个直三角柱的展开图,其中三个面被标示为甲、乙、丙.将此展开图折成直三角柱后,判断下列叙述何者正确?()A.甲与乙平行,甲与丙垂直B.甲与乙平行,甲与丙平行C.甲与乙垂直,甲与丙垂直D.甲与乙垂直,甲与丙平行【分析】画出折叠后的几何体,进行分析甲、乙、丙的位置关系.【解答】解:折叠后如图所示,,∴甲与乙平行,甲与丙垂直,乙与丙垂直,故选:A.【点评】本题考查了展开图折叠问题,关键是画出折叠后的几何体进行分析.3.(3分)若二元一次联立方程式的解为,则a+b之值为何?()A.﹣28B.﹣14C.﹣4D.14【分析】把代入得关于a,b的方程组,解方程组求出a,b,再代入求出a+b的值即可.【解答】解:把代入得:,把②代入①得:5a﹣3×(﹣3a)=28,5a+9a=28,14a=28,a=2,把a=2代入②得:b=﹣6,∴a+b=2+(﹣6)=﹣4,故选:C.【点评】本题主要考查了二元一次方程组的解,解题关键是熟练掌握二元一次方程组的解是使各个方程左右两边相等的未知数的值.4.(3分)若想在如图的方格纸上沿着网格线画出坐标平面的x轴、y轴并标记原点,且以小方格边长作为单位长,则下列哪一种画法可在方格纸的范围内标出(5,3)、(﹣4,﹣4)、(﹣3,4)、(3,﹣5)四点?()A .B .C .D .【分析】根据点的坐标特点解答即可.【解答】解:A 、坐标系中不能表示出点(3,﹣5),不符合题意;B 、坐标系中不能表示出点(3,﹣5),不符合题意;C 、坐标系中不能表示出点(5,3),不符合题意;D 、坐标系中能表示出各点,符合题意,故选:D .【点评】本题考查的是点的坐标,熟知各点坐标在平面直角坐标系中的表示方法是解题的关键.5.(3分)阿贤利用便利贴拼成一个圣诞树图案,圣诞树图案共有10层,每一层由三列的便利贴拼成,前3层如图所示.若同一层中每一列皆比前一列多2张,且每一层第一列皆比前一层第一列多2张,则此圣诞树图案由多少张便利贴拼成?()A.354B.360C.384D.390【分析】根据各层图案使用便利贴的张数,可得出第n层由(6n+3)张便利贴拼成,将前n层图案使用便利贴的张数相加,可得出前n层图案由(3n2+6n)张便利贴拼成,再代入n=10,即可求出结论.【解答】解:根据题意得:第一层由1+3+5=9(张)便利贴拼成,第二层由3+5+7=15(张)便利贴拼成,第三层由5+7+9=21(张)便利贴拼成,…,∴第n(n为正整数)层由2n﹣1+2n+1+2n+3=6n+3(张)便利贴拼成;∵9+15+21+…+6n+3==3n2+6n,∴当n=10时,3n2+6n=3×102+6×10=360,∴此圣诞树图案由360张便利贴拼成.故选:B.【点评】本题考查了规律型:图形的变化类,根据各层图案使用便利贴的张数的变化,找出变化规律“第n层由(6n+3)张便利贴拼成(n为正整数)”是解题的关键.6.(3分)箱内有50颗白球和10颗红球,小慧打算从箱内抽球31次,每次从箱内抽出一球,如果抽出白球则将白球放回箱内,如果抽出红球则不将红球放回箱内.已知小慧在前30次抽球中共抽出红球4次,若她第31次抽球时箱内的每颗球被抽出的机会相等,则这次她抽出红球的机率为何?()A.B.C.D.【分析】让红球的个数除以球的总数即为所求的概率.【解答】解:∵第31次抽球时箱内共有56个球,红球有6个,∴这次她抽出红球的概率为=.故选:D.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.7.(3分)图1有A、B两种图案,其中A经过上下翻转后与B相同,且图案的外围是正方形,图2是将四个A图以紧密且不重叠的方式排列成大正方形,图3是将两个A图与两个B图以紧密且不重叠的方式排列成大正方形.判断图2、图3是否为轴对称图形?()A.图2、图3皆是B.图2、图3皆不是C.图2是,图3不是D.图2不是,图3是【分析】根据轴对称图形的定义判断即可.【解答】解:观察可知,题图2的图形不是轴对称图形,题图3的图形是轴对称图形,对称轴如图所示.故选:D.【点评】本题主要考查线对称图形,本题是在以正方形为背景下来考查线对称图形,以正方形的四条的对称轴为基准,观察题图中的图形是否关于某一条对称.8.(3分)若a=3.2×10﹣5,b=7.5×10﹣5,c=6.3×10﹣6,则a、b、c三数的大小关系为何?()A.a<b<c B.a<c<b C.c<a<b D.c<b<a【分析】根据科学记数法的方法进行解题即可.【解答】解:∵a=3.2×10﹣5=0.000032,b=7.5×10﹣5=0.000075,c=6.3×10﹣6=0.0000063,0.0000063<0.000032<0.000075,∴c<a<b.故选:C.【点评】本题考查科学记数法﹣表示较小的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.熟记相关结论即可.9.(3分)癌症分期是为了区别恶性肿瘤影响人体健康的程度,某国统计2011年确诊四种癌症一到四期的患者在3年后存活的比率(3年存活率),並依据癌症类别与不同分期将资料整理成如图.甲、乙两人对该国2011年确诊上述四种癌症的患者提出看法如下:(甲)一到四期的乳癌患者的3年存活率皆高于50%(乙)在这四种癌症中,三期与四期的3年存活率相差最多的是胃癌对于甲、乙两人的看法,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】由条形图和百分数的意义,即可判断.【解答】解,由图知甲的看法正确,由图判断三期与四期的3年存活率相差最多的是大肠癌,由此乙的看法错误.故选:C.【点评】本题考查百分数的应用,关键是读懂条形图.10.(3分)下列何者为多项式5x(5x﹣2)﹣4(5x﹣2)2的因式分解?()A.(5x﹣2)(25x﹣8)B.(5x﹣2)(5x﹣4)C.(5x﹣2)(﹣15x+8)D.(5x﹣2)(﹣20x+4)【分析】多项式提公因式(5x﹣2)因式分解可得答案.【解答】解:5x(5x﹣2)﹣4(5x﹣2)2=(5x﹣2)[5x﹣4(5x﹣2)]=(5x﹣2)(﹣15x+8).故选:C.【点评】本题考查因式分解,熟练掌握提公因式法因式分解的方法是解题的关键.11.(3分)将化简为,其中a、b为整数,求a+b之值为何?()A.5B.3C.﹣9D.﹣15【分析】把将进行化简,求出a,b的值即可.【解答】解:∵===4+,∴a=4,b=1,∴a+b=4+1=5.故选:A.【点评】本题考查的是二次根式的混合运算及分母有理化,熟知二次根式分母有理化的法则是解题的关键.12.(3分)甲、乙两个二次函数分别为y=(x+20)2+60、y=﹣(x﹣30)2+60,判断下列叙述何者正确?()A.甲有最大值,且其值为x=20时的y值B.甲有最小值,且其值为x=20时的y值C.乙有最大值,且其值为x=30时的y值D.乙有最小值,且其值为x=30时的y值【分析】根据二次函数的最值问题解答即可.【解答】解:∵二次函数y=(x+20)2+60中,a=1>0,∴此函数有最小值,最小值为x=﹣20时y的值,∴A、B错误;∵二次函数y=﹣(x﹣30)2+60中,a=﹣1<0,∴此函数有最大值,最大值为x=30时y的值,∴C正确、D错误,故选:C.【点评】本题考查的是二次函数的最值问题,熟知二次函数y=ax2+bx+c(a≠0)中,当a>0时,函数图象有最低点,所以函数有最小值;当a<0时,函数图象有最高点,所以函数有最大值是解题的关键.13.(3分)如图为阿成调整他的计算机画面的分辨率时看到的选项,当他从建议选项1920×1080调整成1400×1050时,由于比例改变(1920:1080≠1400:1050),画面左右会出现黑色区域,当比例不变就不会有此问题.判断阿成将他的计算机画面分辨率从1920×1080调整成下列哪一种时,画面左右不会出现黑色区域?()A.1680×1050B.1600×900C.1440×900D.1280×1024【分析】根据比例不变,画面左右不会出现黑色区域,即可得出答案.【解答】解:∵1920:1080=1600:900,∴阿成将他的计算机画面分辨率从1920×1080调整成1600×900时,画面左右不会出现黑色区域.故选:B.【点评】本题主要考查比例的性质,熟练掌握比例的性质是解题的关键.14.(3分)小玲搭飞机出国旅游,已知她搭飞机产生的碳排放量为800公斤,为了弥补这些碳排放量,她决定上下班时从驾驶汽车改成搭公交车.依据图(九)的信息,假设小玲每日上下班驾驶汽车或搭公交车的来回总距离皆为20公里,则与驾驶汽车相比,她至少要改搭公交车上下班几天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量?()每人使用各种交通工具每移动1公里产生的碳排放量●自行车:0公斤●公交车:0.04公斤●机车:0.05公斤●汽车:0.17公斤A.310天B.309天C.308天D.307天【分析】设改搭公交车上下班x天,利用减少产生的碳排放量=每天减少产生的碳排放量×改搭公交车上下班的天数,结合减少产生的碳排放量超过她搭飞机产生的碳排放量,可列出关于x的一元一次不等式,解之可得出x的取值范围,再取其中的最小整数值,即可得出结论.【解答】解:设改搭公交车上下班x天,根据题意得:(0.17﹣0.04)×20x>800,解得:x>,又∵x为正整数,∴x的最小值为308,∴至少要改搭公交车上下班308天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.15.(3分)甲、乙两个最简分数分别为、,其中a、b为正整数.若将甲、乙通分化成相同的分母后,甲的分子变为50,乙的分子变为54,则下列关于a的叙述,何者正确?()A.a是3的倍数,也是5的倍数B.a是3的倍数,但不是5的倍数C.a是5的倍数,但不是3的倍数D.a不是3的倍数,也不是5的倍数【分析】利用分数的基本性质,甲的分子分母都乘以5,乙的分子分母都乘以3,然后利用最简分数的定义可判断a为3的倍数,不是5的倍数.【解答】解:∵甲的分子变为50,乙的分子变为54,∴甲的分子分母都乘以5,乙的分子分母都乘以3,∵与为最简分数,∴a为3的倍数,不是5的倍数.故选:B.【点评】本题考查了约分和通分:熟练掌握分数的基本性质是解决问题的关键.16.(3分)有研究报告指出,1880年至2020年全球平均气温上升趋势约为每十年上升0.08℃.已知2020年全球平均气温为14.88℃,假设未来的全球平均气温上升趋势与上述趋势相同,且每年上升的度数相同,则预估2020年之后第x年的全球平均气温为多少℃?(以x表示)()A.14.88+0.08xB.14.88+0.008xC.14.88+0.08[x+(2020−1880)]D.14.88+0.008[x+(2020−1880)]【分析】先求出每年平均气温约上升多少度;再表示出x年平均气温上升多少度;最后加上2020年全球平均气温即可.【解答】解:14.88+x(0.08÷10)=14.88+0.008x,故选:B.【点评】本题考查了列代数式,解题的关键根据题中的数量关系来解答.17.(3分)△ABC中,∠B=55°,∠C=65°.今分别以B、C为圆心,BC长为半径画圆B、圆C,关于A点位置,下列叙述何者正确?()A.在圆B外部,在圆C内部B.在圆B外部,在圆C外部C.在圆B内部,在圆C内部D.在圆B内部,在圆C外部【分析】利用三角形内角和定理求出∠A=60°,再利用三角形中,较大的角所对的边较长,即可解决问题.【解答】解:∵∠B=55°,∠C=65°.∴∠A=60°,∴AB>BC>AC,∴点A在圆B外,在圆C内,故选:A.【点评】本题主要考查了点和圆的位置关系,判断出AB>BC>AC是解题的关键.18.(3分)如图,平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,其中E在DC上,F在BC上,C在FG上.若AB=7,AD=5,FC=3,则四边形ECGH的周长为何?()A.21B.20C.19D.18【分析】根据全等图形的性质、平行四边形的性质求解即可.【解答】解:∵平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,∴AB=CD=HE=FG=7,AD=HG=EF=5,∠DCB=∠GFE,∴EF=EC=5,∵FC=3,∴CG=FG﹣FC=4,∵四边形ECGH的周长=EC+CG+HG+EH=5+4+5+7=21,故选:A.【点评】此题考查了平行四边形的性质,全等图形,熟记平行四边形的对边相等,全等图形的对应边相等、对应角相等是解题的关键.19.(3分)如图的数在线有A(−2)、O(0)、B(2)三点.今打算在此数在线标示P(p)、Q(q)两点,且p、q互为倒数,若P在A的左侧,则下列叙述何者正确?()A.Q在AO上,且AQ<QO B.Q在AO上,且AQ>QOC.Q在OB上,且OQ<QB D.Q在OB上,且OQ>QB【分析】取特殊值法排除A选项,再用倒数的性质排除C、D选项.【解答】解:取P(﹣3),则Q(),则AQ=,OQ=,故A错误;∵p为负数,p、q互为倒数,∴q为负数,∴点Q不可能在OB上,故C、D错误.故选:B.【点评】本题考查利用特殊值和倒数的性质解题.20.(3分)四边形ABCD中,E、F两点在BC上,G点在AD上,各点位置如图所示.连接GE、GF后,根据图中标示的角与角度,判断下列关系何者正确?()A.∠1+∠2<∠3+∠4B.∠1+∠2>∠3+∠4C.∠1+∠4<∠2+∠3D.∠1+∠4>∠2+∠3【分析】通过三角形内角和与四边形内角和,排除错误选项.【解答】解:∵∠1+∠2+∠EGF=180°,∠3+∠4+∠EGF=180°,∴∠1+∠2=∠3+∠4,故A、B选项错误,∵∠1+∠C+∠D+∠EGD=360°,∴∠1+70°+105°+∠4+∠EGF=360°,∴∠1+∠4=185°﹣∠EGF,∵∠2+∠B+∠A+∠AGF=360°,∴∠2+85°+100°+∠3+∠EGF=360°,∴∠2+∠3=175°﹣∠EGF,∴∠1+∠4>∠2+∠3,故选:D.【点评】本题考查了角度之间的大小比较,属于简单题.21.(3分)如图,、皆为半圆,与相交于E点,其中A、B、C、D在同一直在线,且B为AC 的中点.若=58°,则的度数为何?()A.58B.60C.62D.64【分析】连接BE、DE,根据圆心角、弧、弦的关系定理求出∠EBC=58°,根据直角三角形的性质求出∠EDB,进而求出的度数.【解答】解:如图,连接BE、DE,∵B为AC的中点,∴AC为左边半圆的直径,∵的度数为58°,∴∠EBC=58°,∵BD是右边圆的直径,∴∠BED=90°,∴∠EDB=90°﹣58°=32°,∴的度数为:32°×2=64°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系、圆周角定理,熟记直径所对的圆周角为直角是解题的关键.22.(3分)如图,△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3.若△ABC 的重心为G,则下列叙述何者正确?()A.△GBC与△DBC的面积相同,且DG与BC平行B.△GBC与△DBC的面积相同,且DG与BC不平行C.△GCA与△DCA的面积相同,且DG与AC平行D.△GCA与△DCA的面积相同,且DG与AC不平行=5+4+3=12,利用三角形重心性质可得S△GBC=S△ABC=×12=4,进而【分析】由题意可得S△ABC=S△DBC=4,即可判断结论A正确.可得S△GBC【解答】解:∵△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3,=5+4+3=12,∴S△ABC∵△ABC的重心为G,=S△ABC=×12=4,∴S△GBC=S△DBC=4,∴S△GBC∴点D、G到BC的距离相等,且位于BC的同侧,∴DG∥BC,故结论A正确;结论B、C、D错误;故选:A.【点评】本题考查了三角形的中线、重心,三角形面积,熟练掌握三角形的重心的性质是解题关键.23.(3分)如图1,等腰梯形纸片ABCD中,AD∥BC,AB=DC,∠B=∠C,且E点在BC上,DE∥AB.今以DE为折线将C点向左折后,C点恰落在AB上,如图2所示.若CE=2,DE=4,则图2的BC与AC的长度比为何?()A.1:2B.1:3C.2:3D.3:5【分析】先证得△BCE∽△ECD,得出=,即=,求得BC=1,再由AC=AB﹣BC可得AC =3,即可求得答案.【解答】解:如图2,由折叠得:∠DEC′=∠DEC,∠DCE=∠DC′E,DC=DC′,CE=C′E=2,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB=4,∴AB=DC=DE=DC′,∴∠DEC=∠DCE,∵∠B=∠DCE,∴∠B=∠DCE=∠DEC=∠DEC′,∵∠BEC=180°﹣∠DEC﹣∠DEC′,∠CDE=180°﹣∠DCE﹣∠DEC,∴∠BEC=∠CDE,∴△BCE∽△ECD,∴=,即=,∴BC=1,∴AC=AB﹣BC=4﹣1=3,∴=,故选:B.【点评】本题考查了梯形性质,平行四边形的判定和性质,等腰三角形的性质,折叠的性质,相似三角形的判定和性质等,熟练运用相似三角形的判定和性质是解题关键.请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.(3分)以下为甲、乙两个关于成年女性理想体重的叙述:(甲)有的女性使用算法①与算法②算出的理想体重会相同(乙)有的女性使用算法②与算法③算出的理想体重会相同对于甲、乙两个叙述,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】假设甲叙述正确,设女性的身高为x公尺,根据使用算法①与算法②算出的理想体重会相同,可列出关于x的一元二次方程,由根的判别式Δ=﹣24<0,可得出原方程没有实数根,进而可得出假设不成立,即甲叙述错误;假设乙叙述正确,设女性的身高为y公尺,使用算法②与算法③算出的理想体重会相同,可列出关于y的一元一次方程,解之可得出y的值,进而可得出假设成立,即乙叙述正确.【解答】解:假设甲叙述正确,设女性的身高为x公尺,。
2024年台湾省中考数学试卷一、第一部分:选择题(1~25题)1.算式之值为何?( )A.B.C.D.2.如图为一个直三角柱的展开图,其中三个面被标示为甲、乙、丙.将此展开图折成直三角柱后,判断下列叙述何者正确?( )A.甲与乙平行,甲与丙垂直B.甲与乙平行,甲与丙平行C.甲与乙垂直,甲与丙垂直D.甲与乙垂直,甲与丙平行3.若二元一次联立方程式的解为,则a+b之值为何?( )A.﹣28B.﹣14C.﹣4D.144.若想在如图的方格纸上沿着网格线画出坐标平面的x轴、y轴并标记原点,且以小方格边长作为单位长,则下列哪一种画法可在方格纸的范围内标出(5,3)、(﹣4,﹣4)、(﹣3,4)、(3,﹣5)四点?( )A.B.C.D.5.阿贤利用便利贴拼成一个圣诞树图案,圣诞树图案共有10层,每一层由三列的便利贴拼成,前3层如图所示.若同一层中每一列皆比前一列多2张,且每一层第一列皆比前一层第一列多2张,则此圣诞树图案由多少张便利贴拼成?( )A.354B.360C.384D.3906.箱内有50颗白球和10颗红球,小慧打算从箱内抽球31次,每次从箱内抽出一球,如果抽出白球则将白球放回箱内,如果抽出红球则不将红球放回箱内.已知小慧在前30次抽球中共抽出红球4次,若她第31次抽球时箱内的每颗球被抽出的机会相等,则这次她抽出红球的机率为何?( )A.B.C.D.7.图1有A、B两种图案,其中A经过上下翻转后与B相同,且图案的外围是正方形,图2是将四个A图以紧密且不重叠的方式排列成大正方形,图3是将两个A图与两个B图以紧密且不重叠的方式排列成大正方形.判断图2、图3是否为轴对称图形?( )A.图2、图3皆是B.图2、图3皆不是C.图2是,图3不是D.图2不是,图3是8.若a=3.2×10﹣5,b=7.5×10﹣5,c=6.3×10﹣6,则a、b、c三数的大小关系为何?( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a9.癌症分期是为了区别恶性肿瘤影响人体健康的程度,某国统计2011年确诊四种癌症一到四期的患者在3年后存活的比率(3年存活率),並依据癌症类别与不同分期将资料整理成如图.甲、乙两人对该国2011年确诊上述四种癌症的患者提出看法如下:(甲)一到四期的乳癌患者的3年存活率皆高于50%(乙)在这四种癌症中,三期与四期的3年存活率相差最多的是胃癌对于甲、乙两人的看法,下列判断何者正确?( )A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确10.下列何者为多项式5x(5x﹣2)﹣4(5x﹣2)2的因式分解?( )A.(5x﹣2)(25x﹣8)B.(5x﹣2)(5x﹣4)C.(5x﹣2)(﹣15x+8)D.(5x﹣2)(﹣20x+4)11.将化简为,其中a、b为整数,求a+b之值为何?( )A.5B.3C.﹣9D.﹣1512.甲、乙两个二次函数分别为y=(x+20)2+60、y=﹣(x﹣30)2+60,判断下列叙述何者正确?( )A.甲有最大值,且其值为x=20时的y值B.甲有最小值,且其值为x=20时的y值C.乙有最大值,且其值为x=30时的y值D.乙有最小值,且其值为x=30时的y值13.如图为阿成调整他的计算机画面的分辨率时看到的选项,当他从建议选项1920×1080调整成1400×1050时,由于比例改变(1920:1080≠1400:1050),画面左右会出现黑色区域,当比例不变就不会有此问题.判断阿成将他的计算机画面分辨率从1920×1080调整成下列哪一种时,画面左右不会出现黑色区域?( )A.1680×1050B.1600×900C.1440×900D.1280×102414.小玲搭飞机出国旅游,已知她搭飞机产生的碳排放量为800公斤,为了弥补这些碳排放量,她决定上下班时从驾驶汽车改成搭公交车.依据图(九)的信息,假设小玲每日上下班驾驶汽车或搭公交车的来回总距离皆为20公里,则与驾驶汽车相比,她至少要改搭公交车上下班几天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量?( )每人使用各种交通工具每移动1公里产生的碳排放量●自行车:0公斤●公交车:0.04公斤●机车:0.05公斤●汽车:0.17公斤A.310天B.309天C.308天D.307天15.甲、乙两个最简分数分别为、,其中a、b为正整数.若将甲、乙通分化成相同的分母后,甲的分子变为50,乙的分子变为54,则下列关于a的叙述,何者正确?( )A.a是3的倍数,也是5的倍数B.a是3的倍数,但不是5的倍数C.a是5的倍数,但不是3的倍数D.a不是3的倍数,也不是5的倍数16.有研究报告指出,1880年至2020年全球平均气温上升趋势约为每十年上升0.08℃.已知2020年全球平均气温为14.88℃,假设未来的全球平均气温上升趋势与上述趋势相同,且每年上升的度数相同,则预估2020年之后第x年的全球平均气温为多少℃?(以x表示)( )A.14.88+0.08xB.14.88+0.008xC.14.88+0.08[x+(2020−1880)]D.14.88+0.008[x+(2020−1880)]17.△ABC中,∠B=55°,∠C=65°.今分别以B、C为圆心,BC长为半径画圆B、圆C,关于A 点位置,下列叙述何者正确?( )A.在圆B外部,在圆C内部B.在圆B外部,在圆C外部C.在圆B内部,在圆C内部D.在圆B内部,在圆C外部18.如图,平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,其中E在DC上,F在BC上,C在FG上.若AB=7,AD=5,FC=3,则四边形ECGH的周长为何?( )A.21B.20C.19D.1819.如图的数在线有A(−2)、O(0)、B(2)三点.今打算在此数在线标示P(p)、Q(q)两点,且p、q互为倒数,若P在A的左侧,则下列叙述何者正确?( )A.Q在AO上,且AQ<QO B.Q在AO上,且AQ>QOC.Q在OB上,且OQ<QB D.Q在OB上,且OQ>QB20.四边形ABCD中,E、F两点在BC上,G点在AD上,各点位置如图所示.连接GE、GF后,根据图中标示的角与角度,判断下列关系何者正确?( )A.∠1+∠2<∠3+∠4B.∠1+∠2>∠3+∠4C.∠1+∠4<∠2+∠3D.∠1+∠4>∠2+∠321.如图,、皆为半圆,与相交于E点,其中A、B、C、D在同一直在线,且B为AC的中点.若=58°,则的度数为何?( )A .58B .60C .62D .6422.如图,△ABC 内部有一点D ,且△DAB 、△DBC 、△DCA 的面积分别为5、4、3.若△ABC 的重心为G ,则下列叙述何者正确?( )A .△GBC 与△DBC 的面积相同,且DG 与BC 平行B .△GBC 与△DBC 的面积相同,且DG 与BC 不平行C .△GCA 与△DCA 的面积相同,且DG 与AC 平行D .△GCA 与△DCA 的面积相同,且DG 与AC 不平行23.如图1,等腰梯形纸片ABCD 中,AD ∥BC ,AB =DC ,∠B =∠C ,且E 点在BC 上,DE ∥AB .今以DE 为折线将C 点向左折后,C 点恰落在AB 上,如图2所示.若CE =2,DE =4,则图2的BC 与AC 的长度比为何?( )A .1:2B .1:3C .2:3D .3:5请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.以下为甲、乙两个关于成年女性理想体重的叙述:(甲)有的女性使用算法①与算法②算出的理想体重会相同(乙)有的女性使用算法②与算法③算出的理想体重会相同对于甲、乙两个叙述,下列判断何者正确?( )A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确25.无论我们使用哪一种算法计算理想体重,都可将个人的实际体重归类为表(二)的其中一种类别.实际体重类别大于理想体重的120%肥胖介于理想体重的110%~120%过重介于理想体重的90%~110%正常介于理想体重的80%~90%过轻小于理想体重的80%消瘦当身高1.8公尺的成年男性使用算法②计算理想体重并根据表(二)归类,实际体重介于70×90%公斤至70×110%公斤之间会被归类为正常.若将上述身高1.8公尺且实际体重被归类为正常的成年男性,重新以算法③计算理想体重并根据表(二)归类,则所有可能被归类的类别为何?( )A.正常B.正常、过重C.正常、过轻D.正常、过重、过轻二、第二部分:非选择题(1~2题)26.「健康饮食餐盘」是一种以图画呈现饮食指南的方式,图画中各类食物区块的面积比,表示一个人每日所应摄取各类食物的份量比.某研究机构对于一般人如何搭配「谷类」、「蛋白质」、「蔬菜」、「水果」这四大类食物的摄取份量,以「健康标语」说明这四大类食物所应摄取份量的关系如图1,并绘制了「健康饮食餐盘」如图2.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)请根据图1的「健康标语」,判断一个人每日所应摄取的「水果」和「蛋白质」份量之间的大小关系.(2)将图2的「健康饮食餐盘」简化为一个矩形,且其中四大类食物的区块皆为矩形,如图3所示.若要符合图1的「健康标语」,在纸上画出图3的图形,其中餐盘长为16公分,宽为10公分,则a、b是否可能同时为正整数?27.某教室内的桌子皆为同一款多功能桌,4张此款桌子可紧密拼接成中间有圆形镂空的大圆桌,上视图如图1所示,其外围及镂空边界为一大一小的同心圆,其中大圆的半径为80公分,小圆的半径为20公分,且任两张相邻桌子接缝的延长线皆通过圆心.为了有效运用教室空间,老师考虑了图2及图3两种拼接此款桌子的方式.这两种方式皆是将2张桌子的一边完全贴合进行拼接.A、B两点为图2中距离最远的两个桌角,C、D两点为图3中距离最远的两个桌角,且CD与2张桌子的接缝EF相交于G点,G为EF中点.请根据上述信息及图2、图3中的标示回答下列问题,完整写出你的解题过程并详细解释:(1)GF的长度为多少公分?(2)判断CD与AB的长度何者较大?请说明理由.参考答案一、第一部分:选择题(1~25题)1.解:=+=.故选:A.2.解:折叠后如图所示,,∴甲与乙平行,甲与丙垂直,乙与丙垂直,故选:A.3.解:把代入得:,把②代入①得:5a﹣3×(﹣3a)=28,5a+9a=28,14a=28,a=2,把a=2代入②得:b=﹣6,∴a+b=2+(﹣6)=﹣4,故选:C.4.解:A、坐标系中不能表示出点(3,﹣5),不符合题意;B、坐标系中不能表示出点(3,﹣5),不符合题意;C、坐标系中不能表示出点(5,3),不符合题意;D、坐标系中能表示出各点,符合题意,故选:D.5.解:根据题意得:第一层由1+3+5=9(张)便利贴拼成,第二层由3+5+7=15(张)便利贴拼成,第三层由5+7+9=21(张)便利贴拼成,…,∴第n(n为正整数)层由2n﹣1+2n+1+2n+3=6n+3(张)便利贴拼成;∵9+15+21+…+6n+3==3n2+6n,∴当n=10时,3n2+6n=3×102+6×10=360,∴此圣诞树图案由360张便利贴拼成.故选:B.6.解:∵第31次抽球时箱内共有56个球,红球有6个,∴这次她抽出红球的概率为=.故选:D.7.解:观察可知,题图2的图形不是轴对称图形,题图3的图形是轴对称图形,对称轴如图所示.故选:D.8.解:∵a=3.2×10﹣5=0.000032,b=7.5×10﹣5=0.000075,c=6.3×10﹣6=0.0000063,0.0000063<0.000032<0.000075,∴c<a<b.故选:C.9.解,由图知甲的看法正确,由图判断三期与四期的3年存活率相差最多的是大肠癌,由此乙的看法错误.故选:C.10.解:5x(5x﹣2)﹣4(5x﹣2)2=(5x﹣2)[5x﹣4(5x﹣2)]=(5x﹣2)(﹣15x+8).故选:C.11.解:∵===4+,∴a=4,b=1,∴a+b=4+1=5.故选:A.12.解:∵二次函数y=(x+20)2+60中,a=1>0,∴此函数有最小值,最小值为x=﹣20时y的值,∴A、B错误;∵二次函数y=﹣(x﹣30)2+60中,a=﹣1<0,∴此函数有最大值,最大值为x=30时y的值,∴C正确、D错误,故选:C.13.解:∵1920:1080=1600:900,∴阿成将他的计算机画面分辨率从1920×1080调整成1600×900时,画面左右不会出现黑色区域.故选:B.14.解:设改搭公交车上下班x天,根据题意得:(0.17﹣0.04)×20x>800,解得:x>,又∵x为正整数,∴x的最小值为308,∴至少要改搭公交车上下班308天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量.故选:C.15.解:∵甲的分子变为50,乙的分子变为54,∴甲的分子分母都乘以5,乙的分子分母都乘以3,∵与为最简分数,∴a为3的倍数,不是5的倍数.故选:B.16.解:14.88+x(0.08÷10)=14.88+0.008x,故选:B.17.解:∵∠B=55°,∠C=65°.∴∠A=60°,∴AB>BC>AC,∴点A在圆B外,在圆C内,故选:A.18.解:∵平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,∴AB=CD=HE=FG=7,AD=HG=EF=5,∠DCB=∠GFE,∴EF=EC=5,∵FC=3,∴CG=FG﹣FC=4,∵四边形ECGH的周长=EC+CG+HG+EH=5+4+5+7=21,故选:A.19.解:取P(﹣3),则Q(),则AQ=,OQ=,故A错误;∵p为负数,p、q互为倒数,∴q为负数,∴点Q不可能在OB上,故C、D错误.故选:B.20.解:∵∠1+∠2+∠EGF=180°,∠3+∠4+∠EGF=180°,∴∠1+∠2=∠3+∠4,故A、B选项错误,∵∠1+∠C+∠D+∠EGD=360°,∴∠1+70°+105°+∠4+∠EGF=360°,∴∠1+∠4=185°﹣∠EGF,∵∠2+∠B+∠A+∠AGF=360°,∴∠2+85°+100°+∠3+∠EGF=360°,∴∠2+∠3=175°﹣∠EGF,∴∠1+∠4>∠2+∠3,故选:D.21.解:如图,连接BE、DE,∵B为AC的中点,∴AC为左边半圆的直径,∵的度数为58°,∴∠EBC=58°,∵BD是右边圆的直径,∴∠BED=90°,∴∠EDB=90°﹣58°=32°,∴的度数为:32°×2=64°,故选:D.22.解:∵△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3,∴S△ABC=5+4+3=12,∵△ABC的重心为G,∴S△GBC=S△ABC=×12=4,∴S△GBC=S△DBC=4,∴点D、G到BC的距离相等,且位于BC的同侧,∴DG∥BC,故结论A正确;结论B、C、D错误;故选:A.23.解:如图2,由折叠得:∠DEC′=∠DEC,∠DCE=∠DC′E,DC=DC′,CE=C′E=2,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB=4,∴AB=DC=DE=DC′,∴∠DEC=∠DCE,∵∠B=∠DCE,∴∠B=∠DCE=∠DEC=∠DEC′,∵∠BEC=180°﹣∠DEC﹣∠DEC′,∠CDE=180°﹣∠DCE﹣∠DEC,∴∠BEC=∠CDE,∴△BCE∽△ECD,∴=,即=,∴BC=1,∴AC=AB﹣BC=4﹣1=3,∴=,故选:B.请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.解:假设甲叙述正确,设女性的身高为x公尺,根据题意得:22x2=(100x﹣70)×0.6,整理得:11x2﹣30x+21=0,∵Δ=(﹣30)2﹣4×11×21=﹣24<0,∴原方程没有实数根,∴假设不成立,即甲叙述错误;假设乙叙述正确,设女性的身高为y公尺,根据题意得:(100y﹣70)×0.6=(100y﹣158)×0.5+52,解得:y=1.5,∴当女性的身高为1.5公尺时,使用算法②与算法③算出的理想体重会相同,∴假设成立,即乙叙述正确.故选:D.25.解:按照算法③1.8公尺的成年男性理想体重为(100×1.8﹣170)×0.6+62=68,身高1.8公尺的成年男性使用算法②计算理想体重并根据表(二)归类,实际体重介于70×90%公斤至70×110%公斤之间会被归类为正常.这类男性的实际体重为63公斤至77公斤,(63÷68)×100%=92.65%,(77÷68)×100%=113.23%,属于正常或过重,故选:B.二、第二部分:非选择题(1~2题)26.解:(1)因为蔬菜和水果合计占一半,所有蔬菜+水果=肉类+蛋白质,因为蔬菜=肉类,所以,水果=蛋白质;答:每日所应摄取的「水果」和「蛋白质」份量相同;(2)存在,a=4,b=5,由(1)可知,图3中水果和蔬菜两个矩形的宽的和为8公分,蛋白质和肉类的长为8公分,水果的面积为10a,肉类的面积为8(10﹣b),蔬菜的面积为10(8﹣a),蛋白质的面积为8b,10a=8b,8(10﹣b)=10(8﹣a),5a=4b,因为a<8,b<10,a、b同时为正整数为a=4,b=5.27.解:(1)∵大圆的半径为80公分,小圆的半径为20公分,∴EF=大圆的半径﹣小圆的半径=80﹣20=60(公分),∵G为EF中点,∴GF=EF=30公分;答:GF的长度为30公分.(2)CD>AB,理由如下:由题意得:AB=大圆的直径=80×2=160(公分),如图3,延长CH、EF交于点O,延长DK、FE交于点O′,则OC=OE=O′D=O′F=80公分,∵EG=GF=30公分,∴OG=O′G=50公分,∵∠O=∠O′=90°,∴CG===10=DG,∴CD=CG+DG=20公分,∵>8,∴20>160,即CD>AB.。
2018 台北第一次中考 数学真题与简答1.图(一)数在线的O 是原点,A 、B 、C 三点所表示的数分别为a 、b 、c 。
根据图中各点的位置,下列各数的絶对值的比较何者正确?(A) |b |<|c | (B) |b |>|c | (C) |a |<|b | (D) |a |>|c |【解题思路】:首先根据数a 、b 、c ,离开原点的位置,进行特殊值设定。
2-=a ,1=b ,3-=c ;进而得到它们的绝对值,比较大小。
【答案】:A【点评】:本题主要考察了数轴上数的特点以及有理数比较大小,运用特殊值法轻松解决此类问题。
如果利用数轴上数的特点,离原点越远绝对值越大也可以解决。
难度较小。
2. 计算(-3)3+52-(-2)2之值为何?(A) 2 (B) 5 C)-3 (D)-6【解题思路】:首先利用乘方的运算进行求值化简,进而利用有理数的加法求值。
【答案】:D【点评】:本题考察了有理数的运算顺序,以及乘方的知识。
难度较小3.表(一)表示某签筒中各种签的数量。
已知每支签被抽中的机会均相等,若自此筒中抽出一支签,则抽中红签的机率为何? (A) 31 (B)21 (C)53 (D)32【解题思路】:筒中共有签24只,任抽一签有24种可能,红签有16种,有16种可能,所以抽到红签的几率就是322416= 【答案】:D【点评】:本题主要考察了概率的问题,难度不大。
4. 计算75147-+27之值为何? (A) 53 (B) 333 (C) 311 (D) 911【解题思路】:首先把各个被开方数改写为乘积形式,并且把一部分因数写成乘方形式并进行开方。
如37334914772=⨯=⨯=,如果被开方数相同则称为同类二次根式,加减运算时,仅其系数相加减二次根式不变。
【答案】:353)357(333537=+-=+- (A )【点评】:本题主要考察了二次根式的开方和二次根式运算。
二次根式运算与合并同类项类似。
难度较小5.计算x 2(3x +8)除以x 3后,得商式和余式分别为何?(A)商式为3,余式为8x 2 (B)商式为3,余式为8(C)商式为3x +8,余式为8x 2 (D)商式为3x +8,余式为0【解题思路】:运用整式乘法展开,使其成为323)83(x x x ÷+【答案】:A【点评】:本题考查了整式的除法,以及被除式、除式、商式、余数之间的关系。
2011台湾第一次中考(台北) 数学真题与简答
(A ) 1. 图(一)数在线的O 是原点,A 、B 、C 三点所表示的数分别为a 、b 、c 。
根据图中各点的位置,
下列各数的絶对值的比较何者正确
(A) |b |<|c | (B) |b |>|c | (C) |a |<|b | (D) |a |>|c |
(D ) 2. 计算(-3)3+52-(-2)2之值为何
(A) 2 (B) 5 (C)-3 (D)-6 (D ) 3. 表(一)表示某签筒中各种签的数量。
已知每支签被抽中的机会均相等,若自此筒中抽出一支
签,则抽中红签的机率为何
(A) 31 (B) 21 (C)5
3 (D)32 (A ) 4. 计算75147-+27之值为何
(A) 53 (B) 333 (C) 311 (D) 911
(A ) 5. 计算x 2(3x +8)除以x 3后,得商式和余式分别为何
(A)商式为3,余式为8x 2 (B)商式为3,余式为8
(C)商式为3x +8,余式为8x 2 (D)商式为3x +8,余式为0
(A ) 6. 若下列有一图形为二次函数y =2x 2-8x +6的图形,则此图为何
(D ) 7. 化简4
1(-4x +8)-3(4-5x ),可得下列哪一个结果 (A)-16x -10 (B)-16x -4 (C) 56x -40 (D) 14x -10
(C ) 8. 图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。
关于这七个角的度数关
系,下列何者正确
(A)742∠∠∠+=
(B)613∠∠∠+=
(C)︒∠∠∠180641=++
(D)︒∠∠∠360532=++
(C ) 9. 图(三)的坐标平面上,有一条通过点(-3,-2)的直线L 。
若四点(-2 , a )、(0 , b )、(c , 0)、(d ,
-1)在L 上,则下列数值的判断,何者正确
(A) a =3 (B) b >-2 (C) c <-3 (D) d =2
(B )10. 在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求
第10个数为何
(A) 13 (B) 14 (C) 16 (D) 17
(C )11. 计算45.24
7)6.1(÷÷--之值为何 (A)- (B)- (C)- (D)-
(B )12. 已知世运会、亚运会、奥运会分别于公元2009年、2010年、2012年举办。
若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办
(A)公元2070年 (B)公元2071年 (C)公元2072年 (D)公元2073年
(C )13. 若a :b :c =2:3:7,且a -b +3=c -2b ,则c 值为何
(A) 7 (B) 63 (C)221 (D)4
21 (A )14. 图(四)为某班甲、乙两组模拟考成绩的盒状图。
若甲、乙两组模拟考成绩的全距分别为a 、b ;
中位数分别为c 、d ,则a 、b 、c 、d 的大小关系,下列何者正确
(A) a <b 且c >d (B) a <b 且c <d
(C) a >b 且c >d (D) a >b 且c <d
(B )15. 图(五)为梯形纸片ABCD ,E 点在BC 上,且︒=∠=∠=∠90D C AEC ,AD =3,BC =9,CD =8。
若以AE 为折线,将C 折至BE 上,使得CD 与AB 交于F 点,则BF 长度为何
(A) (B) 5 (C) (D) 6
(C )16. 如图(六),BD 为圆O 的直径,直线ED 为圆O 的切线,A 、C 两点在圆上,AC 平分∠BAD 且交BD 于F 点。
若∠ADE =︒19,则∠AFB 的度数为何
(A) 97 (B) 104 (C) 116 (D) 142
(B )17. 如图(七),坐标平面上有两直线L 、M ,其方程式分别为y =9、y =-6。
若L 上有一点P ,
M 上有一点Q ,PQ 与y 轴平行,且PQ 上有一点R ,PR :RQ =1:2,则R 点与x 轴的距离为何
(A) 1 (B) 4 (C) 5 (D) 10
(A )18. 解不等式1-2x x 3
297-≤,得其解的范围为何 (A)61≥x (B)61≤x (C)23≥x (D)2
3≤x (C )19. 若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何
(A)9656710 (B)9356710 (C)6356710 (D)567
10 (B )20. 若一元二次方程式)2)(1()1(++++x x x ax bx + 2)2(=+x 的两根为0、
2,则b a 43+之值为何 (A) 2 (B) 5 (C) 7 (D) 8
(A )21. 坐标平面上有一个线对称图形,)25,3(-A 、)2
11,3(-B 两点在此图形上且互为对称点。
若此图形上有一点)9,2(--C ,则C 的对称点坐标为何
(A))1,2(- (B))23,2(-- (C))9,2
3(-- (D))9,8(- (B )22. 表(二)为某班成绩的次数分配表。
已知全班共有38人,且众数为50分,中位数为60分,
求y x 22-之值为何
(A) 33 (B) 50 (C) 69 (D) 90
(B )23. 如图(八),三边均不等长的ABC ∆,若在此三角形内找一点O ,使得OAB ∆、OBC ∆、OCA
∆的面积均相等。
判断下列作法何者正确
(A) 作中线AD ,再取AD 的中点O
(B) 分别作中线AD 、BE ,再取此两中线的交点O (C) 分别作AB 、BC 的中垂线,再取此两中垂线的交点O
(D) 分别作A ∠、B ∠的角平分线,再取此两角平分线的交点O
(C )24. 下列四个多项式,哪一个是733+x 的倍式
(A)49332-x (B)493322+x (C)x x 7332+ (D)x x 14332+
(B )25. 如图(九),圆A 、圆B 的半径分别为4、2,且AB =12。
若作一圆C 使得三圆的圆心在同
一直在线,且圆C 与圆A 外切,圆C 与圆B 相交于两点,则下列何者可能是圆C 的半径长
(A) 3 (B) 4 (C) 5 (D) 6
(D )26. 图(十)为一ABC ∆,其中D 、E 两点分别在AB 、AC 上,且AD =31,DB =29,AE =30,
EC =32。
若︒∠50=A ,则图中1∠、2∠、3∠、4∠的大小关系,下列何者正确
(A)1∠>3∠ (B)2∠=4∠
(C)1∠>4∠ (D)2∠=3∠
(D )27. 图(十一)为ABC ∆与圆O 的重迭情形,其中BC 为圆O 之直径。
若︒∠70=A ,BC =2,则图
中灰色区域的面积为何
(A)π36055 (B)π360110 (C)π360125 (D)π360
140
(B )28. 某直角柱的两底面为全等的梯形,其四个侧面的面积依序为20平方公分、36平方公分、20
平方公分、60平方公分,且此直角柱的高为4公分。
求此直角柱的体积为多少立方公分
(A) 136 (B) 192 (C) 240 (D) 544
(C )29. 如图(十二),长方形ABCD 中,E 为BC 中点,作AEC ∠的角平分线交AD 于F 点。
若AB =
6,AD =16,则FD 的长度为何
(A) 4 (B) 5 (C) 6 (D) 8
(D )30. 某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元。
该店促销的方式:买
一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠。
若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x 双、乙鞋y 双,则依题意可列出下列哪一个方程式
(A)1800)30(50)30(200=-+-y x (B)1800)30(50)30(200=--+-y x x
(C)1800)60(50)30(200=--+-y x x (D)1800])30(30[50)30(200=---+-y x x
(D )31. 如图(十三),将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形。
根据右
图,若灰色长方形之长与宽的比为5:3,则AD :AB = (A) 5:3 (B) 7:5 (C) 23:14 (D) 47:29
228999931+-=x x y 的图形画
(A )32. 如图(十四),将二次函数在坐标平面上,判断方程式0899993122=+-x x 的两根,下列叙述何者正确
(A)两根相异,且均为正根 (B)两根相异,且只有一个正根
(C)两根相同,且为正根 (D)两根相同,且为负根
(D )33. 图(十五)为一个四边形ABCD ,其中AC 与BD 交于E 点,且两灰色区域的面积相等。
若AD
=11,BC =10,则下列关系何者正确
(A)BCE DAE ∠<∠ (B)BCE DAE ∠>∠
(C)BE >DE (D)BE <DE
(D )34. 图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示
3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。
如图(十七),若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分
(A) 3322- (B)π+16 (C)18 (D)19。