纳米科学与技术-纳米科学的基本理论
- 格式:ppt
- 大小:1.88 MB
- 文档页数:54
一、纳米科技的基本概念和内涵1.1 纳米科学技术(Nano-ST)是20世纪80年代末期刚刚诞生并正在崛起的新科技,他的基本涵义是在纳米尺寸(10-10~10-7)范围内认识和改造自然,通过直接操作和安排原子、分子创新新物质。
纳米科技是研究由尺寸在0.1~100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
纳米科技主要包括:⑴纳米体系物理学;⑵纳米化学;⑶纳米材料学;⑷纳米生物学;⑸纳米电子学;⑹纳米加工学;⑺纳米力学。
纳米(nanometer),是一个长度单位,简写nm。
1nm=10-3μm=10-6mm=10-9m。
纳米科技所研究的领域是人类过去从未涉及的非宏观、非微观的中间领域,从而开辟人类认识世界的新层次,也使人们改造自然的能力直接还原到分子、原子,这标志着人类的科学技术进入了一个新时代——纳米科技时代。
以纳米新科技为中心的新科技革命将成为21 世纪的主导。
1.2 纳米材料的定义把组成相或晶粒结构控制在100纳米(nm)以下的长度尺寸的材料称为纳米材料。
也可以说纳米材料的平均粒径或结构畴尺寸在100nm以下。
可以预料,纳米材料的性质会与别于,而且往往优于那些由粗晶粒组成的传统材料。
在过去的几年中人们已经制备出来纳米结构材料。
从广义上来说合成纳米结构材料具有下列结构特点:⑴原子畴(晶粒或相)尺寸小于100nm;⑵很大比例的原子处于晶界环境:⑶各畴之间存在相互作用。
对于纳米结构材料的兴趣推动了各种纳米材料制备方法的研究和发展。
这些方法包括物理方法、化学方法和机械力学方法等等。
如今人们已经看到:借助于新创造的特殊工艺制备纳米相材料已经成为可能,使用这些方法可以控制尺寸和复杂的形态、相互作用和组织。
首先,在纳米尺寸状态中的原子簇有成千上万个原子,现在使用物理方法或化学方法来制备这些原子簇,再把其组装成材料,并使用各种传统方法来研究这些材料。
第二是纳米结构材料中相的组成是非常重要的。
纳米技术的基础知识纳米技术概述纳米技术是一种以纳米尺度为特征的科学、技术和工程领域。
纳米技术涉及到处理和制造材料、设备和系统,其尺寸通常在1到100纳米之间。
在纳米尺度上,物质的性质和行为与宏观尺度上有着显著的不同,这使得纳米技术成为许多领域的研究热点和创新方向。
追溯纳米技术的起源,可以回溯到20世纪80年代。
然而,纳米技术的进一步发展和应用则是在1990年代末和21世纪初被广泛认识和关注的。
纳米技术的应用领域包括材料科学、生物医学、电子学、能源、化学和环境等,对于科学研究、技术革新和产业发展都具有重要意义。
纳米技术的基本原理是通过控制和操纵材料的结构和性质,实现对其性能和功能的改善和提升。
在纳米尺度下,物质的性质会发生显著的变化,例如导电性、光学性质、磁性等都会发生变化。
通过利用纳米技术,可以制备出具有特殊性能和功能的纳米材料、纳米器件和纳米结构,从而推动科学研究和工程应用的进步。
纳米材料与纳米结构纳米材料是指在纳米尺度下具有特殊性质和性能的材料。
纳米材料可以是纳米颗粒、纳米晶体、纳米管、纳米线、纳米薄膜等。
纳米材料的尺寸通常在1到100纳米之间,具有高比表面积、强化的力学性能、改变的光学和电磁性质等特点。
纳米材料广泛应用于材料科学、电子学、能源学、生物医学等领域。
纳米结构是指在纳米尺度下具有特殊结构和形态的材料。
纳米结构可以是纳米线阵列、纳米孔洞、纳米孪晶、纳米层状结构等。
纳米结构的形成受到物理、化学和生物因素的影响,具有与尺寸相似的特殊性质和应用潜力。
纳米结构在材料科学、化学和生物医学等领域显示出了独特的优势和应用前景。
纳米技术的制备方法纳米技术的制备方法包括自下而上和自上而下两种主要方法。
自下而上的制备方法是通过原子、分子或聚合物等基本单元的自组装或聚集,逐步构建出纳米材料和纳米结构。
自下而上的方法包括溶液法、气相法、凝胶法、磁控溅射等。
这些方法能够实现针对性地合成具有特定性质和功能的纳米材料和结构。
第一章1、纳米科学技术概念纳米科学技术是研究在千万分之一米10–7到十亿分之一米10–9米内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术;2、纳米材料的定义把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料;即三维空间中至少有一维尺寸小于100 nm的材料或由它们作为基本单元构成的具有特殊功能的材料; “功能”概念,即“量子尺寸效应”;3、纳米材料五个类维度0维材料,1维材料,2维材料,体相纳米材料,纳米孔材料4、0、1、2维材料定义、例子0维材料—尺寸为纳米级100 nm以下的颗粒状物质;富勒烯、胶体微粒、半导体量子点1维材料—线径为1—100 nm的纤维管;纳米线、纳米棒、纳米管、纳米丝2维材料—厚度为1 —100 nm的薄膜;薄片、材料表面相当薄的单层或多层膜5、纳米材料与传统材料的主要差别尺寸:第一、这种材料至少有一个方向是在纳米的数量级上;比如说纳米尺度的颗粒,或者是分子膜的厚度在纳米尺度范围内;性能:第二、由于量子效应、界面效应、表面效应等,使材料在物理和化学上表现出奇异现象;比如物体的强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料;6、金属纳米粒子随粒径的减小,能级间隔增大7、与块体材料相比,半导体纳米团簇的带隙展宽,展宽量与颗粒尺寸成反比8、纳米材料的四大基本效应尺寸效应,介电限域效应,表界面效应,量子效应9、什么是量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象;纳米半导体颗粒存在不连续的最高被占据分子轨道HOMO和最低未被占据分子轨道能级LUMO,能隙变宽的现象,均称为量子尺寸效应;10、什么是小尺寸效应当超细颗粒的尺寸与光波波长、德布罗意波长、以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应;11、什么是表界面效应纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例;由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的化学活性,催化活性,吸附活性;表面效应是指纳米粒子表界面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化;12、什么是宏观量子隧道效应微观粒子具有贯穿势垒的能力称为隧道效应;近年来,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应;13、什么是库仑堵塞效应当体系的尺度进入到纳米级一般金属粒子为几个纳米,半导体粒子为几十纳米,体系电荷是“量子化”的,即充电和放电过程是不连续的,充入一个电子所需的能量Ec为e2/2C,e 为一个电子的电荷,C为小体系的电容,体系越小,C越小,能量Ec越大;我们把这个能量称为库仑堵塞能;换句话说,库仑堵塞能是前一个电子对后一个电子的库仑排斥能,这就导致了对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子的传输;通常把小体系这种单电子输运行为称库仑堵塞效应;14、纳米微粒熔点降低的原因与常规粉体材料相比,由于纳米微粒的颗粒小,其表面能高、比表面原子数多;这些表面原子近邻配位不全,活性大,以及体积远小于大块材料的纳米粒子熔化时所需增加的内能小得多,这就使得纳米微粒的熔点急剧下降;15、烧结温度比常规粉体显著降低的原因所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末互相结合成块,密度接近常规材料的最低加热温度;纳米粒子尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面附近的原子扩散、界面中的空洞收缩及空位团的湮没;因此,在较低温度下烧结就能达到致密化目的,即烧结温度降低;16、什么是宽频带强吸收大块金属具有不同颜色的金属光泽,表明它们对可见光范围各种颜色波长的光的反射和吸收能力不同;而当尺寸减小到纳米级时,各种金属纳米微粒几乎都呈黑色;它们对可见光的反射率极低,而吸收率相当高;例如,Pt纳米粒子的反射率为1%,Au纳米粒子的反射率小于10%;这种对可见光低反射率,强吸收率导致粒子变黑;17、纳米材料的红外吸收谱宽化的主要原因1 尺寸分布效应:通常纳米材料的粒径有一定分布,不同颗粒的表面张力有差异,引起晶格畸变程度也不同;这就导致纳米材料键长有一个分布,造成带隙的分布,这是引起红外吸收宽化的原因之一;2 界面效应:界面原子的比例非常高,导致不饱和键、悬挂键以及缺陷非常多;界面原子除与体相原子能级不同外,互相之间也可能不同,从而导致能级分布的展宽;与常规大块材料不同,没有一个单一的、择优的键振动模,而存在一个较宽的键振动模的分布,在红外光作用下对红外光吸收的频率也就存在一个较宽的分布;18、什么是纳米材料吸收光谱的蓝移与大块材料相比,纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波长方向;19、纳米材料吸收光谱蓝移的原因1 量子尺寸效应:即颗粒尺寸下降导致能隙变宽,从而导致光吸收带移向短波方向;Ball 等的普适性解释是:已被电子占据的分子轨道能级HOMO与未被电子占据的分子轨道能级LUMO之间的宽度能隙随颗粒直径的减小而增大,从而导致蓝移现象;这种解释对半导体和绝缘体均适用;2 表面效应:纳米颗粒大的表面张力使晶格畸变,晶格常数变小;对纳米氧化物和氮化物的研究表明,第一近邻和第二近邻的距离变短,键长的缩短导致纳米颗粒的键本征振动频率增大,结果使红外吸收带移向高波数;20、什么是纳米材料吸收光谱的红移现象在一些情况下,当粒径减小至纳米级时,可以观察到光吸收带相对粗晶材料的“红移”现象,即吸收带移向长波长;21、金属纳米颗粒材料电阻增大原因纳米材料体系的大量界面使得界面散射对电阻的贡献非常大,当尺寸非常小时,这种贡献对总电阻占支配地位,导致总电阻趋向于饱和值,随温度的变化趋缓;当粒径低于临界尺寸时,量子尺寸效应造成的能级离散性不可忽视,最后温升造成的热激发电子对电导的贡献增大,即温度系数变负;22、纳米材料的超顺磁性及原因铁磁性纳米颗粒的尺寸减小到一定临界值时,进入超顺磁状态;其原因是:在小尺寸下,当各向异性能减小到与热运动能可比拟时,磁化方向就不再固定在一个易磁化方向上,易磁化方向做无规律的变化,结果导致超顺磁性的出现;此时磁化率不再服从居里-外斯定律;23、纳米材料的高矫顽力及原因纳米粒子尺寸高于超顺磁临界尺寸时,通常呈现高的矫顽力;起源有两种模型:1 一致转动模型;2 球链反转磁化模型;前者的解释是:当粒子尺寸小到某一尺寸时,每个粒子就是一个单磁畴;例如Fe的单磁畴临界尺寸为12nm,Fe3O4 为40nm;每个单磁畴的纳米粒子实际上成为一个永久磁铁,要使该磁铁去磁,必须使每个粒子整体的磁矩反转,这需要很大的反向磁场,因此具有较高的矫顽力;该模型预测值通常偏高;球链模型认为,由于净磁作用球形纳米Ni粒子形成链状,以此作为理论推导的前提;24、“摔不碎的陶瓷碗”的原因"陶瓷材料在通常情况下呈脆性,由纳米粒子压制成的纳米陶瓷材料有很好的韧性;因为纳米材料具有较大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性与延展性;25、纳米材料较高的化学活性和催化活性的原因由于纳米材料的比表面积很大,界面原子数很多,界面区域原子扩散系数高,而表面原子配位不饱和性将导致大量的悬键和不饱和键等,这些都使得纳米材料具有较高的化学活性,许多纳米金属微粒室温下在空气中就会被强烈氧化而燃烧;将纳米Er和纳米Cu 粒子在室温下进行压结就能够发生反应形成CuEr金属间化合物,而很多催化剂的催化效率随颗粒尺寸减小到纳米量级而显著提高,同时催化选择性也增强;第二章1、什么是光催化纳米半导体材料在光的照射下,通过把光能转化为化学能,促进化合物的合成或使化合物有机物、无机物降解的过程称为光催化;2、光照射纳米TiO2的反应可用反应式表示3、光生空穴在光催化剂表面发生的氧化还原反应:4、光生电子在光催化剂表面发生的氧化还原反应:5、纳米TiO2半导体粒子产生光催化作用而相应的体相半导体上却没有任何光催化活性的原因与体相材料不同,纳米半导体材料可以利用太阳能进行光催化反应,例如:粒径为10nm 的TiO2半导体粒子,对于光催化有机物显示出高效率的量子效率,而相应的体相半导体上却没有任何光催化活性1纳米半导体粒子的量子尺寸效应使导带和价带能级变为分立能级,能隙变宽;纳米半导体粒子获得了更强的还原及氧化能力,从而产生了光催化性能;2计算表明,在粒径为1m的TiO2粒子中,电子从体内扩散到表面的时间约为100ns;而在粒径为10nm的微粒中扩散时间仅为10ps,粒径越小,电子与空穴的复合几率越小,电荷分离效果越好,光催化活性提高;6、纳米TiO2光触媒作用的应用有哪些纳米TiO2光触媒灭蚊器纳米二氧化钛具有催化性质,它可以降解汽车尾气7、纳米TiO2光催化降解氧化有机物的产物是什么降解为小分子,直至变成CO2和H2O8、提高TiO2光催化效率的途径纳米TiO2光催化剂被光辐射激发产生的电子-空穴对虽然具有很高的氧化能力,但在实际应用中存在一些缺陷:光生载流子h+,e-很易重新复合,例如在TiO2表面上光生电子和空穴的复合是在小于10-9s的时间内完成,影响了光催化的效率;因此制备高活性光催化剂的突出问题是提高光催化剂中光生电子-空穴的分离效率,抑制电子空穴的重新结合;目前光催化剂的改性研究主要针对TiO2进行金属离子掺杂、贵金属表面沉积、半导体复合、表面光敏化、表面超强酸化等;9、纳米TiO2中掺杂过渡金属离子提高光催化活性的原因当在半导体中掺杂不同价态的过渡金属离子后,半导体的光催化性质被改变;从化学观点看,金属离子是电子的有效接受体,可捕获导带中的电子;由于金属离子对电子的争夺,减少了TiO2表面光生电子与空穴的复合,从而使TiO2表面产生了更多的·OH和O2-,提高了催化剂的光催化活性;10、在纳米TiO2光催化剂的表面沉积贵金属的两个作用是什么有利于光生电子和空穴的有效分离以及降低还原反应质子的还原、溶解氧的还原的超电压;贵金属修饰TiO2通过改变体系中的电子分布,影响TiO2的表面性质,进而改善其光催化活性;11、详述CdS-TiO2复合体系提高光催化效率的过程可以加图示形式CdS的带隙能为, TiO2的带隙能为;当以足够的能量辐射时,CdS和TiO2同时发生电子激发,由于两者导带与价带的差异,光生电子将聚集在TiO2的导带上,而空穴则聚集在CdS的价带上,使得光生载流子得到有效的分离,提高了光催化性能;当激发能不足以激发光催化剂中的TiO2时,却能激发CdS,由于TiO2导带比CdS导带电位高,使得CdS上受激产生的电子更易迁移到TiO2的导带上,激发产生的空穴仍留在CdS的价带,这种电子从CdS向TiO2的迁移有利于电荷的分离,从而提高光催化的效率;分离的电子及空穴可以自由地与表面吸附质进行交换;12、列举气相法制备纳米TiO2粉体的五种方法,并写出反应式TiCl4气相氢火焰水解法TiCl4g+2H2g +O2→TiO2s+4HClgTiCl4气相氧化法TiCl4 g +O2 g →TiO2 s + Cl2 g钛醇盐气相分解法nTiOC4H9R4 g →nTiO2 s + 2nH2O g + 4nC4H8 g钛醇盐气相水解法TiOR4 g + 4H2O g →TiOH4 s +4ROH gTiOH4 s →TiO2 ·H2O s + H2O g TiO2 ·H2O s →TiO2 s + H2O g物理气相法13、列举液相法制备纳米TiO2粉体的五种方法水解法、溶胶-凝胶法、微乳液法、水热反应法、模板法14、叙述水解法制备纳米TiO2粉体的过程将TiCl4和钛醇盐溶液在一定条件下水解生成氢氧化物或水合氧化物沉淀,经加热分解后可得到TiO2纳米粒子;利用这种方法合成的纳米粉体,颗粒分布均匀,性能优异,纯度高,形状易控制;15、叙述溶胶-凝胶法制备纳米TiO2粉体的过程以钛醇盐为原料,无水乙醇为有机溶剂,制得均匀溶胶,加入一定量的酸,起抑制水解的作用,再浓缩成透明凝胶,经干燥热处理即可得TiO2纳米粒子16、叙述溶胶-凝胶法制备纳米TiO2薄膜的过程般选取钛的有机盐如钛酯或无机盐如TiCl4作为原料,将其溶于低碳醇中,然后在室温下加入到中强酸度的水溶液中,搅拌下水解制备TiO2溶胶,然后采用浸渍-提拉或旋涂法在基体上制备TiO2薄膜;它具有制备温度低,工艺简单,不需要昂贵的设备,可制备多组分混合均匀的薄膜,并且得到的薄膜颗粒度均匀,纯度高;17、分析溶胶-凝胶法制备纳米TiO2粉体和薄膜的区别18、列举制备纳米TiO2薄膜的五种方法溶胶-凝胶法、磁控溅射法、化学气相沉积法、液相沉积法、电沉积法19、纳米TiO2制备技术要点和难点国际上纳米TiO2的价格为30~40万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;纳米TiO2的晶型和粒度控制技术;金红石型纳米TiO2的表面处理技术;纳米TiO2应用分散技术;纳米TiO2应用功能的提升技术:纳米TiO2产业化成套技术;第3章碳材料1、C60的结构C60属于碳簇Carbon Cluster分子, •由20个正六边形和12个正五边形组成的球状32面体,直径,其60个顶角各有一个碳原子; •C60分子中碳原子与相邻的3个碳原子形成两个单键和一个双键;五边形的边为单键,键长为,而六边形所共有的边为双键,健长为;整个球状分子就是一个三维的大π键, 其反应活性相当高;C60分子对称性很高;每个顶点存在5次对称轴;2、C60的其它名字富勒烯,巴基球,C60 , 足球烯3、C60整个球状分子就是一个三维的大π键,其反应活性相当高4、C60的制备1、激光蒸发石墨法–1985年Kroto等发现C60就是采用激光轰击石墨表面,使石墨气化成碳原子碎片,在氦气中碳原子碎片在冷却过程中形成含富勒烯的混合物; 该方法产生的富勒烯含量极少; •2.苯燃烧法–1991年Howard等在含Ar的氧气中燃烧苯,燃烧1kg苯得到3gC60和C70混合物,富勒烯产率随燃烧条件不同而有所变化;3.电弧放电法–电弧是一种气体放电现象;通过两石墨电极之间的放电,可产生高于4000℃的高温,使阳极石墨蒸发,而阴极温度低于石墨蒸发温度;在充有氦气压力约为的放电室内,被蒸发的碳原子及碳原子团簇在冷凝时,形成含有富勒烯的烟灰;5、C60和C70的溶解性芳香族类溶剂,例如苯、甲苯或者氯化芳香剂等能溶解少量的富勒烯;CS2也能溶解但不常用,因为剧毒p-p键相互作用有助于富勒烯的溶解富勒烯不溶于水富勒烯呈电负性,因此它在能提供配对电子的溶液中溶解性很好6、富勒烯是化学缺电还是富电性质化学缺电7、如何才能证明金属是内嵌,而不是在笼子的表面呢–气态下用C2单元撞击“内嵌”分子,看金属原子是否会离开表面形成单一的巴基球–用STM或者TEM直接观察–用同步辐射X射线散射法;该法不仅能够观察金属原子是在笼内还是笼外,还能观察金属原子在笼内的具体位置及价态; 实验证明金属原子不处于中心位置8、辨别富勒烯的化学反应主要由氢化反应、卤化反应、亲和加成反应、环加成反应、光化学反应和射线化学反应9、CNT分类,按照石墨烯片的层数,单壁碳纳米管Single-walled nanotubes, SWNT s:由一层石墨烯片组成;单壁管典型的直径和长度分别为~3nm和1~50μm;又称富勒管Fullerenes tubes;2 多壁碳纳米管Multi-walled nanotubes, MWNT s:含有多层石墨烯片;形状象个同轴电缆; 其层数从2~50不等,层间距为±, 与石墨层间距相当;多壁管的典型直径和长度分别为2~30nm和~50μm;10、碳纳米管的制备–电弧放电法–激光蒸发法–CVD法–高温分解C-H化合物法–电弧放电法11、分离CNT,常见的分离办法有1. 按长度分离;CNT的长度不一样,其密度也会不一样; 采用离心法可以分离不同长度的的CNT–按直径分离;采用某些方法,如光照法,可以将CNT 的直径分布限制在某个特定范围内1. 某些硝基盐,如NO2BF4 或者NO2SbF6,它只溶解金属性CNT;所以利用溶液法也可以分离但该办法只适合于直径小于的CNT2. 2003年,双向电泳法出现,它是一种能捕捉到80% 以上金属性CNT的方法12、CNT的化学性质辨别反应类型–CNT的基本反应–氧化还原反应–封闭式或者开放式CNT的官能化–侧壁的官能化–CNT与其他材料的合成–化合物的植入与内壁功能化–CNT的超分子化学13、CNT的应用前景用碳纳米管制成像纸一样薄的弹簧纳米管做成的“纳米秤”碳纳米管制造人造卫星的拖绳碳纳米管整流器场效应晶体管CNT的场发射碳纳米管电视碳纳米管cpu散热器超级电容器碳纳米管仿效骨胶原纤维帮骨折痊愈CNT传感器-物理传感器CNT传感器-化学传感器DNA序列的识别•传输药物或者疫苗,基因手术混合催化储氢材料14、石墨烯结构石墨烯即为“单层石墨片”,是构成石墨的基本结构单元; 石墨烯是二维的,它具有包括六角元胞,如果有五角元胞和七角元胞则构成石墨烯的缺陷;少量的五角元胞会使石墨烯翘曲; — 12个五角元胞会形成富勒烯;碳纳米管被认为是卷成圆筒的石墨烯;碳纳米管是碳的一维晶体结构;石墨烯是构成其他维数碳质材料的基本单元;15、石墨烯特性最薄最轻载流子迁移率最高电阻率最低强度最大最坚硬导热率最高16、石墨烯制备1. 选取一块HOPGHighly Oriented Pyrolytic Graphite,高定向裂解石墨或者普通的石墨薄片2. 用Scotch tape普通的透明胶粘在样品上然后撕开3. 对于石墨薄片,用另外一个透明胶带多粘几次,即可得到石墨烯4. 注意,HOPG得到的一般是单原子层,而石墨片容易获得多原子层17、石墨烯的表面功能化步骤–首先与酸或者碱发生反应,使得表面接上COOH 或者OH–接着与SOCl2 反应形成COCl族–然后与脂族胺反应以接上长链18、功能化后的石墨烯可溶于水或者其他有机溶液19、石墨烯的应用复合材料:高力学性能高电学性能电子器件:室温霍尔效应无损迪拉克费米子极高电子迁移率高透光率储能材料:高表面积高电导率。
《纳米技术》课程大纲一、课程概述课程名称(中文):纳米技术(英文):Nanotechnology课程编号:14371073课程学分:2学分课程总学时:32学时课程性质:专业选修课二、课程内容简介(300字以内)《纳米技术》属于材料科学与工程专业的专业选修课,它研究了纳米材料的结构和性能及制备方法,纳米材料的应用以及纳米技术的新进展。
课程的任务在于通过本课程的学习,使学生对纳米材料这样一种新的材料具有一个比较广泛的了解:能掌握纳米材料的结构和优异性能,掌握纳米材料的制备与应用以及了解纳米结构的测试仪器和技术。
同时开拓科技视野,并通过相关资料查询、阅读、综合分析与讨论,对纳米材料与纳米技术领域内最新进展和成果有所了解。
三、教学目标与要求要求通过本课程的教学,使学生了解、熟悉和掌握如下知识:1.了解纳米材料与技术的基本概述;2.掌握纳米材料的结构和优异性能;3.掌握纳米材料制备;4.掌握纳米材料的应用;5.了解纳米测量技术与仪器;6.了解纳米科技应用的新结合点。
教学要求:开此课前学生应已学过大学物理、无机、有机及物理化学等基础课。
四、教学内容与学时安排第一章纳米科学与技术的基本概念(2学时)1. 教学目的与要求:了解纳米材料的发展史及重要性理解纳米科学与技术掌握纳米材料的定义2. 教学重点与难点:纳米科学与技术、纳米材料的定义第一节纳米科学与技术(0.5学时)第二节纳米科学技术的发展史(0.5学时)第三节纳米材料是纳米科技的重要组成部分(0.5学时)第四节纳米材料的定义(0.5学时)第二章纳米材料的结构和优异性能(9学时)1. 教学目的与要求:了解纳米材料的表面效应、结构相变及量子效应理解小尺寸效应及结构缺陷掌握纳米材料的结构2. 教学重点与难点:纳米材料的结构第一节纳米材料的结构(2学时)一、纳米金属粒子的结晶形态和尺寸分布(1学时)二、富勒烯家族(0.5学时)三、纳米粒子尺寸分布的测定(0.5学时)第二节纳米材料的结构相变(0.5学时)第三节表面效应(0.5学时)第四节纳米材料的结构缺陷(1学时)一、X射线衍射数据随晶粒尺寸、应变和缺陷量的改变(0.5学时)二、应用X射线衍射线形精炼方法和线形分析方法研究纳米Cu和Ag的缺陷(0.5学时)第五节小尺寸效应(2学时)一、特殊的力学性质(0.5学时)二、特殊的热学效应(0.5学时)三、特殊的光学效应(0.5学时)四、特殊的磁性(0.25学时)五、引人注目的化学性质(0.25学时)第六节纳米相块体材料(2学时)一、晶粒(0.75学时)二、原子缺陷和位错(0.25学时)三、微孔(0.25学时)四、晶界(0.25学时)五、稳定性(0.25学时)六、纳米固体材料的力学性能(0.25学时)第七节纳米非晶态材料和纳米晶材料(0.5学时)第八节量子效应(0.5学时)第三章纳米材料的制备(9学时)1. 教学目的与要求:了解纳米材料的一些制备方法,包括溅射法、热蒸发法、溶胶-凝胶法、球磨法等。