石大在线物理实验二伏安特性曲线实验报告
- 格式:doc
- 大小:147.50 KB
- 文档页数:11
大学物理实验伏安特性实验报告一、实验目的1、了解电学元件伏安特性的概念和意义。
2、掌握测量电学元件伏安特性的基本方法。
3、学会使用电流表、电压表、滑线变阻器等仪器。
4、学会分析实验数据,绘制伏安特性曲线,并根据曲线得出元件的特性参数。
二、实验原理伏安特性是指电学元件两端的电压与通过它的电流之间的关系。
对于线性元件(如电阻),其伏安特性曲线是一条直线,符合欧姆定律$U = IR$;对于非线性元件(如二极管),其伏安特性曲线是非线性的。
在测量伏安特性时,通常采用限流电路或分压电路来改变元件两端的电压,从而测量不同电压下通过元件的电流。
限流电路简单,但电压调节范围较小;分压电路电压调节范围大,但电路相对复杂。
三、实验仪器1、直流电源:提供稳定的直流电压。
2、电流表:测量通过元件的电流,量程根据实验需求选择。
3、电压表:测量元件两端的电压,量程根据实验需求选择。
4、滑线变阻器:用于改变电路中的电阻,从而调节元件两端的电压。
5、待测电学元件(如电阻、二极管等)。
6、开关、导线若干。
四、实验内容与步骤1、测量线性电阻的伏安特性按照电路图连接实验电路,选择限流电路。
调节滑线变阻器,使电阻两端的电压从 0 开始逐渐增加,每隔一定电压值记录对应的电流值。
重复测量多次,以减小误差。
2、测量二极管的伏安特性按照电路图连接实验电路,选择分压电路。
正向特性测量:缓慢增加二极管两端的正向电压,记录不同电压下的电流值。
反向特性测量:逐渐增加反向电压,测量并记录反向电流值。
注意反向电压不能超过二极管的反向击穿电压。
3、数据记录设计合理的数据表格,记录测量的电压和电流值。
五、实验数据处理与分析1、线性电阻以电压为横坐标,电流为纵坐标,绘制伏安特性曲线。
根据曲线计算电阻值,与标称值进行比较。
2、二极管分别绘制正向和反向伏安特性曲线。
分析正向特性曲线,找出导通电压。
观察反向特性曲线,了解反向饱和电流和反向击穿现象。
六、实验误差分析1、仪器误差电流表、电压表的精度有限,可能导致测量误差。
中国石油大学(华东)现代远程教育实验报告课程名称:大学物理(二)实验名称:电学元件伏安特性研究实验形式:在线模拟+现场实践提交形式:提交书面实验报告学生:学号:年级专业层次:学习中心:提交时间:年月日一、实验目的1.学会测绘未知物理量之间的关系曲线。
2.学会建立经验公式的基本方法。
3.学习正确选用测量电路来减小系统误差的方法。
4.掌握测量电学元件伏安特性的基本方法,测绘金属膜电阻、半导体二极管和小灯泡的伏安特性曲线。
二、实验原理1.线性元件与非线性元件通过电学元件的电流与两端电压之间的关系称为电学元件的伏安特性。
一般以电压为横坐标、电流为纵坐标作出元件的电压~电流关系曲线,称为伏安特性曲线,如图1所示。
伏安特性曲线为直线的元件称为线性元件,如碳膜电阻、金属膜电阻、绕线电阻等一般电阻元件;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管、光敏电阻、热敏电阻等。
从伏安特性曲线遵循的规律,可以得知元件的导电特性,从而确定元件在电路中的作用。
这种通过测量伏安特性曲线研究元件特性的方法称为伏安法,主要用于非线性元件特性的研究。
图1 伏安特性曲线当一个元件两端加上电压、元件有电流通过时,电压与电流之比称为元件电阻。
线性元件和非线性元件的电阻不同。
线性元件的伏安特性曲线是一条直线,通过元件的电流I与加在元件两端的电压U成正比,电阻R为一定值,即。
非线性元件的伏安特性曲线不是一条直线,通过元件的电流I与加在元件两端的电压U不成线性关系变化,电阻随电压或电流的变化而变化。
因此,分析非线性元件的电阻必须指出其工作状态(电压或电流)。
对于非线性元件,电阻可以用静态电阻和动态电阻两种方法表示,静态电阻(也称直流电阻)等于工作点的电压和电流之比;动态电阻(也称特性电阻)等于工作点附件的电压改变量和电流改变量之比,即工作点切线的斜率。
如图1所示,工作点Q的静态电阻为(1)动态电阻为(2)显然,非线性元件的电阻是工作状态的函数。
第1篇一、实验概述伏安特性实验是电学基础实验之一,旨在通过测量电学元件在电压与电流作用下的关系,绘制出伏安特性曲线,从而分析元件的电阻特性。
本实验采用逐点测试法,对线性电阻、非线性电阻元件的伏安特性进行了测量和绘制。
二、实验目的1. 理解伏安特性曲线的概念,掌握伏安特性曲线的绘制方法。
2. 通过实验验证欧姆定律,了解电阻元件的伏安特性。
3. 分析非线性电阻元件的特性,掌握其应用领域。
三、实验原理1. 伏安特性曲线:在电阻元件两端施加电压,通过电阻元件的电流与电压之间的关系称为伏安特性曲线。
根据伏安特性的不同,电阻元件分为线性电阻和非线性电阻。
2. 线性电阻:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,斜率代表电阻值。
其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关。
3. 非线性电阻:非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
四、实验步骤1. 准备实验仪器:直流稳压电源、直流电压表、直流电流表、电阻元件、导线等。
2. 连接实验电路:将电阻元件与直流稳压电源、直流电压表、直流电流表连接成闭合回路。
3. 测量电压与电流:逐步调节直流稳压电源的输出电压,记录对应的电流值。
4. 绘制伏安特性曲线:以电压为横坐标,电流为纵坐标,将实验数据绘制成曲线。
五、实验结果与分析1. 线性电阻伏安特性曲线:实验结果表明,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线。
斜率代表电阻值,与实验理论相符。
2. 非线性电阻伏安特性曲线:实验结果表明,非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线。
在低电压下,电阻值较小,随着电压的增大,电阻值逐渐增大,直至趋于饱和。
这与实验理论相符。
3. 伏安特性曲线的应用:通过伏安特性曲线,可以分析电阻元件在不同电压下的电阻值,从而了解电阻元件的电阻特性。
在工程实践中,伏安特性曲线对于设计电路、选择电阻元件具有重要意义。
伏安特性曲线实验报告伏安特性曲线实验报告引言:伏安特性曲线是电子学中最基本的实验之一,它描述了电阻元件的电压与电流之间的关系。
通过实验测量和分析伏安特性曲线,可以深入理解电阻元件的特性和行为。
本实验旨在通过测量不同电阻元件的伏安特性曲线,探究电阻元件的性质和特点。
实验目的:1. 了解伏安特性曲线的基本概念和原理;2. 学习如何使用电压表和电流表进行测量;3. 掌握测量电阻元件的伏安特性曲线的方法;4. 分析不同电阻元件的特性和行为。
实验仪器和材料:1. 电源;2. 电压表和电流表;3. 不同电阻元件;4. 连接线。
实验步骤:1. 将电源、电压表和电流表依次连接起来,组成电路;2. 将不同电阻元件依次连接到电路中;3. 分别调节电源的电压,记录电压表和电流表的读数;4. 根据记录的数据,绘制伏安特性曲线。
实验结果与分析:通过实验测量得到的伏安特性曲线如下图所示:[插入伏安特性曲线图]从图中可以观察到以下几点特点和行为:1. Ohm定律的验证:当电阻元件为线性电阻时,伏安特性曲线呈直线,证明了Ohm定律的成立。
即电流与电压成正比,电阻恒定。
2. 非线性电阻元件的特性:当电阻元件为非线性电阻时,伏安特性曲线呈非线性关系。
这说明电阻元件的电流与电压之间的关系不再是简单的线性关系,而是受到其他因素的影响。
3. 电阻元件的阻值和功率:通过伏安特性曲线可以计算电阻元件的阻值和功率。
根据电流和电压的关系,可以得出电阻元件的阻值。
而根据电流和电压的乘积,可以得出电阻元件的功率。
这些参数对于电阻元件的选用和设计非常重要。
4. 温度对电阻的影响:伏安特性曲线的变化还可以反映电阻元件受温度影响的情况。
随着温度的升高,电阻元件的电阻值也会发生变化,从而导致伏安特性曲线的形状发生改变。
结论:通过本次实验,我们深入了解了伏安特性曲线的概念、原理和测量方法。
通过观察和分析伏安特性曲线,我们可以了解电阻元件的特性和行为,包括线性和非线性关系、阻值和功率的计算以及温度对电阻的影响。
二极管伏安特性曲线实验报告实验名称:二极管伏安特性曲线实验报告实验目的:通过对二极管的伏安特性进行测量,了解二极管的基本特性和工作原理。
实验器材:二极管、直流电源、万用表、电阻箱实验原理:二极管是一种半导体元件,具有单向导电性。
二极管正向导通电压较低,反向击穿电压较高。
在正向电压下,二极管两端间的电流与电压之间的关系可以用伏安特性曲线表示。
伏安特性曲线是指在不同电流下,二极管正向电压与两端电压之间的关系。
实验步骤:1. 将二极管连接在直流电源的正极与万用表的红色表笔之间,将直流电源的负极与万用表的黑色表笔之间连接一个小电阻,相当于串联一个电阻作为二极管的负载。
2. 通过调节直流电源的输出电压,从 0V 开始逐渐增加正向电压,每增加 0.1V 记录一组电压和电流数值,直到二极管正向电流较大时停止测量。
3. 将直流电源的极性反向,继续测量二极管反向电压下的电流和电压数值。
实验结果:正向电流(mA)正向电压(V)反向电流(uA)反向电压(V)0 0.00 0 0.000.2 0.10 0 0.101.0 0.20 0 0.205.0 0.30 0 0.3010.0 0.40 0 0.4030.0 0.50 0 0.5050.0 0.60 0 0.6070.0 0.70 0 0.7080.0 0.80 0 0.8090.0 0.90 0 0.90100.0 1.00 2.5 1.00150.0 1.10 27.1 1.10200.0 1.20 204.3 1.20250.0 1.30 614.7 1.30300.0 1.40 3485.8 1.40350.0 1.50 22382.9 1.50实验分析:根据伏安特性曲线,当二极管正向电压超过其正向击穿电压时,电流会急剧增加。
在正向电流较小时,正向电压与电流呈线性关系。
但当正向电流达到一定值时,二极管会进入饱和状态,使电流增加速度变慢,且电压变化范围也会明显缩小。
电工实验报告本学院:班级:学号:姓名:指导教师:成绩:、实验名称:伏安特性的测定二、实验目的:1、熟悉电工综合实验装置;2、掌握几种元件的伏安特性的测试方法,加深对线性电阻元件、非线性电阻元件伏安特性的理解;3、掌握实际电压源使用调节方法;4 、学习常用直流电工仪表和设备的使用方法。
三、实验原理电路元件的伏安特性一般用该元件上的电压U 与通过该元件的电流I 之间的函数关系U=f(I) 来表示。
伏安特性以U和I分别作为纵坐标和横坐标绘制成曲线,即伏安特性曲线或外特性曲线。
电路元件的伏安特性可以用电压表、电流表测定,称为伏安测量法(伏安表法) 。
四、实验步骤及任务1、测试线性电阻R 的伏安特性曲线电路电路图:图1-1-2 测试线性电阻R 的伏安特性仿真截图:2, 测试二极管的伏安特性线路电路图:图1-1-4 测试二极管的伏安特性五、思考题:用电压表和电流表测量元件的伏安特性时,电压表可接在电流表之前或之后,两者对测量误差有何影响?实际测量时应根据什么原则选择?(画图并说明)答:伏安特性曲线,有电流表外接和内接。
当电流表外接时:由于电压表的分流作用,有欧姆定律可知,R测<R真。
所以分流越小,误差越小,所以这个适合用来测量小电阻。
即R<<Rv. 当电流表内接时:由于电流表的分压作用,由欧姆定律,R测>R真。
所以分压越少,误差越小,所以这个适合用来测量大电阻。
R>>RA.六、实验结论及收获实验结论以及数据处理:1,线性电阻的的伏安特性曲线为过原点的一条直线,也说明它为线性电阻,电压变化与电流变化是正比关系。
2,二极管的伏安特性曲线为一条曲线,所以为非线性元件。
由图可见,当加二极管上正向电压较小时,正向电流几乎等于0,只有当其两端电压超过某一数值时,正向电流才明显增大。
在此实验数据中加正向电压<0.7V 时, 电流随电压变化较缓慢,当电压超过0.7V时,电流随电压变化很快。
伏安特性曲线的测量实验报告篇一:电路实验报告二极管伏安特性曲线的测量二极管伏安特性曲线的测量实验报告实验摘要1. 实验内容简介1搭接一个含电位器的调压电路,实现电压1-5V连续可调;○2在面包板上搭接一个测量二极管伏安特性曲线的电路;○3连接直流电压源,测量二极管的正向伏安特性,记录数据并作○出图形;4给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,○用示波器观察该电路的输入输出波形(未做)。
2. 名词解释电位器电位器是具有三个引出端、阻值可按某种变化规律调节的电阻元件。
电位器通常由电阻体和可移动的电刷组成。
当电刷沿电阻体移动时,在输出端即获得与位移量成一定关系的电阻值或电压。
电位器既可作三端元件使用也可作二端元件使用。
后者可视作一可变电阻器。
二极管二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种能够单向传导电流的电子器件。
在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。
面包板面包板是专为电子电路的无焊接实验设计制造的。
由于各种电子元器件可根据需要随意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。
实验目的1. 通过对二极管正向电流电压的测量,更直观的感受二极管的正向导电性;2. 熟悉对电位器的使用,方便之后的实验教学与安排;3. 使用示波器和函数信号发生器,复习之前的操作。
实验环境(仪器用品等)实验地点:实验时间:实验仪器与元器件:二极管、镊子、数字万用表、面包板、电阻、导线若干、实验箱、电位器、函数信号发生器、示波器等本次实验的电路图如下图所示:(来自Multisim 12)实验原理测量原理:在实验箱所给的稳恒电压下,运用数字万用表可以方便地测得流过二极管的电流值和两端的电压值,由此便可方便地记录数据,以及制图。
※实验步骤※1. 准备工作:检查万用表是否显示正常;选取合适电阻;调节实验箱1检查万用表的使用状况,确定万用表的读数无误,量程正确;○2根据色标法读出电阻的阻值,大约为100Ω;○3打开实验箱,选择直流电压档,调节旋钮,使输出端输出5V电○压,并用万用表电压档测量是否准确。
中国石油大学(华东)现代远程教育
实验报告
课程名称:大学物理(二)
实验名称:电学元件伏安特性研究
实验形式:在线模拟+现场实践
提交形式:提交书面实验报告
学生姓名:学号:
年级专业层次:
学习中心:
提交时间:年月日
一、实验目的
1.学会测绘未知物理量之间的关系曲线。
2.学会建立经验公式的基本方法。
3.学习正确选用测量电路来减小系统误差的方法。
4.掌握测量电学元件伏安特性的基本方法,测绘金属膜电阻、半导体二极管和小灯泡的伏安特性曲线。
二、实验原理
1.线性元件与非线性元件
通过电学元件的电流与两端电压之间的关系称为电学元件的伏安特性。
一般以电压为横坐标、电流为纵坐标作出元件的电压~电流关系曲线,称为伏安特性曲线,如图1所示。
伏安特性曲线为直线的元件称为线性元件,如碳膜电阻、金属膜电阻、绕线电阻等一般电阻元件;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管、光敏电阻、热敏电阻等。
从伏安特性曲线遵循的规律,可以得知元件的导电特性,从而确定元件在电路中的作用。
这种通过测量伏安特性曲线研究元件特性的方法称为伏安法,主要用于非线性元件特性的研究。
图1 伏安特性曲线
当一个元件两端加上电压、元件内有电流通过时,电压与电流之比称为元件电阻。
线性元件和非线性元件的电阻不同。
线性元件的伏安特性曲线是一条直线,通过元件的电流I与加在元件两端
的电压U成正比,电阻R为一定值,即。
非线性元件的伏安特性曲线不是一条直线,通过元件的电流I与加在元件两端的电压U不成线性关系变化,电阻随电压或电流的变化而变化。
因此,分析非线性元件的电阻必须指出其工作状态(电压或电流)。
对于非线性元件,电阻可以用静态电阻和动态电阻两种方法表示,静态电阻(也称直流电阻)等于工作点的电压和电流之比;动态电阻
(也称特性电阻)等于工作点附件的电压改变量和电流改变量之比,即工作点切线的斜率。
如图1所示,工作点Q的静态电阻为
(1)
动态电阻为
(2)显然,非线性元件的电阻是工作状态的函数。
2.二极管的伏安特性
半导体二极管根据所用材料的不同可分为硅二极管和锗二极管等。
二极管最重要的导电特性就是PN结的单向导电性。
当外加正向电压时,二极管呈现的电阻值很小,能够通过很大的电流。
当外加反向电压时,二极管所呈现的电阻则很大,流过的电流却很小。
二极管的电流随电压变化的规律常用伏安特性曲线描述,某种二极管的伏安特性曲线如图2所示。
在二极管的正端接高电位、负端接低电位(正向接法)的条件下,两端电压不到1V时,电流就可达400mA。
在二极管的负端接高电位、正端接低电位(反向接法)条件下,两端电压小于100V时,反向电流很小;但电压超过110V 时,反向电流就会急剧增加。
根据二极管正向电流和正向电压的对应关系作图,就可以得到正向伏安特性曲线;根据二极管反向电流和反向电压的对应关系作图,就可以得到反向伏安特性曲线。
图2 某种二极管的伏安特性曲线
由伏安特性曲线可以看出,当二极管为正向接法时,随着电压U的逐渐增加,电流I也增加。
但是,在开始一段,由于外加电压很低,PN结的内电场对载流子的运动仍起阻挡作用,基本上没有电流流过PN结,这一段称为死区。
硅管的死区电压约0~0.5V之间,锗管的约为0~0.2V之间。
当外加电压U超过死区电压以后,电流随电压的上升就增加得很快,但电流和电压并不成正比。
当二极管反向接法时,只能有少数载流子形成反向电流,电流值很小,一般硅管反向电流小于几十微安,锗管小于几百微安。
由于载流子数量少,所以电流值基本上不随反向电压变化而变化。
但是,当反向电压增加到一定数值时,外电场将把半导体内被束缚的电子强行拉出来,造成反向电流突然增加,这种现象称为反向击穿。
对于普通二极管,反向击穿可导致管子发热被烧毁,这是由于普通二极管最大耗散功率不够,无法在反向击穿区工作。
稳压二极管一般能承受较大的工作电流和耗散功率,可以工作在反向击穿区。
2CW型硅稳压二极管的伏安特性曲线如图3所示。
当反向电压加到A点时,管子开始击穿,如果进一步增加输入电压,则稳压管两端的电压几乎不再增加,只是反向电流从A点增到B点达到C点,因此起到了稳压作用。
稳压二极管在反向击穿区工作时,
只要不超过最大工作电流和最大耗散功率,一般是不会烧毁的。
图3 2CW型硅稳压二极管的伏安特性曲线
3.伏安特性的测量
用伏安法测量元件的伏安特性时,常有两种电路连接方法,分别是电流表内接法和电流表外接
法,如图4所示。
简化处理时直接采用电压表读数U和电流表读数I之比得出被测元件电阻R,由于电压表和电流表都有一定的内阻,所以无论采用哪种连接方法都会引进一定的系统误差。
图4 伏安法的两种电表接线方式
(1)电流表内接法
当电流表内接时,电流表的读数I为通过电阻Rx的电流,而电压表的读数为,所以实验中测得的电阻值为
(3)式(3)中RA为电流表内阻。
因此,采用电流表内接法,测得的R值比实际值Rx偏大,只有当时才有,所以电流表内接法适合测量高值电阻。
(2)电流表外接法
当电流表外接时,电压表的读数U为电阻Rx两端的电压,而电流表的读数为,所以实验中测得的电阻值为
(4)式(4)中RV为电压表内阻。
因此,采用电流表外接法,测得的R值比实际值Rx偏小,只有当时才有,所以电流表外接法适合测量低值电阻。
根据式(3)和式(4)可知,已知电流表和电压表的内阻RA和RV时,可以利用下列公式对被测元件电阻Rx进行修正。
电流表内接时
(5)电流表外接时
(6)
因此,采用式(5)和式(6)可分别消除电流表内接法和电流表外接法因电表内阻引入的系统误差。
在简化处理的实验场合,只简单地采用作为被测元件电阻Rx值时,为了减小因电表内阻引入的系统误差,应合理地选择电表的连接方法。
一般被测元件的电阻值很高时,选用电流表内接法;
反之,选用电流表外接法。
在具体选择时可用比较法,先粗测被测电阻Rx的值,比较和的大小,当时,选用电流表外接法;反之,选用电流表内接法。
图5 测量稳压二极管伏安特性的电路
因此,在设计测量电学元件伏安特性的电路时,必须了解被测元件和所需仪器的规格,所加电压和通过电流均不能超过元件和仪器的使用范围。
同时还要考虑根据这些条件所选用的电路连接方式(内接法或外接法),应尽可能减小测量的系统误差。
测量稳压二极管伏安特性的参考电路如图5所示,如果电压或电流细调程度不够,也可以采用两个滑线变阻器或电位器组成二级分压或制流电路。
4.经验公式的建立
物理过程中所涉及的物理量相互之间往往按照确定的规律变化。
例如,加在电阻元件上的电压U和通过的电流I;流体的温度T与粘滞系数η等。
当其中一个量变化时,另一个量也发生变化。
要研究这些相关物理量的变化规律,首先应该测绘出物理量之间的关系曲线;要进一步揭示变化规律,还需找出经验公式,也就是要找出所得关系曲线的解析表达式。
通过实验方法探索物理规律,寻找两个相关物理量之间的函数关系式即建立经验公式,其基本方法如下:
① 测量两个相关物理量之间变化关系的实验数据。
②用直角坐标做出物理量之间的关系曲线,并根据曲线形状选择合适的函数形式,建立数学模型。
常见曲线的形状与对应的函数形式可参阅有关的数学书籍。
③ 利用数据处理的有关知识,求解函数关系式中的常数,确定经验公式。
一般采用最小二乘法通过计算机进行曲线拟合,也可以通过曲线改直,用作图法、最小二乘法、逐差法等数据处理方法进行计算。
④ 用实验数据验证经验公式。
下面通过举例具体说明建立经验公式的方法和步骤。
例如,建立2CW104稳压二极管正向电压U 和电流I之间关系的经验公式。
① 实验测出二极管的正向U、I变化关系的数据
由小到大给二极管加正向电压,并测出电压U和电流I的对应数据如表1所示。
表1 二极管正向电压和电流数据记录表
② 在直角坐标纸上作出U~I关系图,如图6所示,观察曲线符合的数学形式,写出函数式的
一般表达式。
图6 2CW104正向伏安曲线
由图6可知,除去约0~0.5V的死区外,正向伏安特性曲线近似为对数曲线,故设曲线方程为
(7)
这是一个斜率为A、截距为B的直线方程,根据表1中的数据,利用曲线改直的方法,把I取对数,在直角坐标纸上作出图线,如图7所示。
③ 求函数式中的未知常数
图7 2CW104正向对数伏安曲线
由图7可以看出,变化规律近似为一直线。
这说明对数关系成立,可按直线处理来求出式中的B和A。
当时,,可得B=0.60,A为斜率的倒数,在直线上取M、N两点可得
这样就可确定描述2CW104正向伏安特性的经验公式为
(8)
④ 用实验数据验证经验公式
为了验证经验公式的正确性,可从实验数据中任取一个电流值I,代入经验公式,看算出的电压U是否与原值相近。
若相近,说明所建立的经验公式正确,否则要重新建立。
例如,取I=18mA,代入式(8)中,可算出U=0.70V,对应实验数据U=0.70V,符合得很好;再取I=80mA,算出U=0.75V,对应实验数据U=0.75V。
通过验证表明所建立的经验公式是符合这种二极管的伏安特性。