整式的乘法教学反思.doc
- 格式:doc
- 大小:16.52 KB
- 文档页数:5
《整式的乘法》教学反思一、尽量做到关注每一位学生,注重学生的差异性。
在师生互动环节,我关注思维活跃的学生,引导他们说出自己的想法,对于基础较差的学生,通过让他们重复别人的回答,达到理解知识,记忆知识的效果。
在当堂达标环节,我让思维活跃的学生做较难题目,让那些基础较差的学生做较容易的题目,以增强他们的信心。
二、尽量让学生自主探索、合作交流。
本节课我让学生以小组合作的形式探究单项式乘以单项式及单项式乘以多项式的计算方法,在独立思考的基础上进行小组交流,最后全班交流,在生生互动中总结出单项式乘以单项式及单项式乘以多项式的计算法则。
在探究多项式乘以多项式的计算方法时也是让学生通过自主探索、合作交流的方式进行,最后教师引导总结。
这样的设计充分发挥了学生的主体作用,培养了学生的创新能力。
三、尽量让学生体验成功。
本节课我尊重学生的个体差异,让不同层次的学生都能体验到成功的乐趣。
在口算抢答环节我设计了一些较容易的题目让那些基础较差的学生回答,对于思维活跃的学生则设计一些稍难一些的题目。
这样既让所有的学生都能体验到成功,又使他们在原有的基础上得到充分的发展。
四、尽量做到关注学生的长远发展。
本节课我不仅关注学生是否学会,还关注学生是否会学,在引导学生探究单项式乘以单项式及单项式乘以多项式的计算方法时,不仅让学生知道怎样计算,还让学生知道为什么要这样计算及计算的依据是什么。
在总结单项式乘以单项式及单项式乘以多项式的计算法则时,不仅让学生知道法则的内容是什么,还让学生知道法则的来源是什么。
另外还让学生通过小组合作、自主探索的方式探究多项式乘以多项式的计算方法。
这样的设计不仅让学生学会知识,还让学生学会学习的方法及获得知识的途径。
不仅关注学生的现在,还关注学生的将来。
整式的乘法(多项式乘多项式)的教学反思
葛艳青
本人认为教学反思应包括两个方面:优点和缺点。
本节课的优点:1、教师精神饱满,教态自然。
2、教学流程顺畅。
3、精心制作课件。
4、语言简洁,精炼。
5、承认自己的错误,让学生意识到数学的严密性。
作为年轻教师,我认为自身需要学习的东西很多,更需要像同事学习、虚心学习。
我希望自己以后在以下几个方面完善:
1、在备课上在花多点的时间,把细节处理更完美,比如多思考情境的处理方法,怎么简平快。
2、加强自身用数学语言的严谨性,注重培养学生数学语言表达,训练思维的完整性与条理性,提高学生质疑能力。
3、把课堂还给学生,让学生成为学习的主体,给学生充足的表达时间与空间,特别是同学之间的相互交流、合作。
4、关注全体,深入学生中,顾及全体学生,提问不同层次的学生,不遗忘角落,让全体学生有不同的收获,体会成就感,肯定学生的价值观。
5、提高自身的教学机智,抓住课堂生成的资讯,尝试着
放手,最重要的是相信学生。
6、落实教学行为。
在课堂上,发出的每一个教学行为,都要抓落实,比如看书,要检测学生看书的情况。
7、提高教师的基本功,规范板书,做好榜样。
《整式的乘法——单项式与多项式相乘》教学反思引言整式的乘法是初中数学中的重要概念之一,掌握整式的乘法是学习代数的基础。
在教学实践中,单项式与多项式的相乘是学生较难理解和掌握的内容之一。
本文将对教学中遇到的问题进行反思,并提出改进措施,以期提高学生对整式乘法的理解和运用能力。
教学目标通过本节课的学习,我们希望学生能够: - 掌握单项式与单项式相乘的方法;- 理解单项式与多项式相乘的过程; - 运用代数运算性质,简化乘法过程; - 训练学生的逻辑思维和推理能力。
问题分析在过去的教学中,我发现学生对于单项式与多项式相乘的过程不够理解,存在以下问题: 1. 学生对乘法的概念理解不深刻,将乘法视为简单的相加运算; 2. 学生对单项式的特点理解不足,导致无法正确运用乘法法则; 3. 学生在展开式的结果中容易出现计算错误,并且对结果的含义不够把握; 4. 学生对代数运算性质掌握不牢固,不会利用乘法运算的交换律和结合律简化运算过程。
改进措施针对以上问题,我将采取以下改进措施,以提高学生的学习效果: 1. 引导学生理解乘法的本质:乘法是重复的加法,可以帮助学生树立正确的乘法观念; 2.强化单项式的特点学习:通过具体的例子和练习,加深学生对单项式的理解,特别是单项式的系数和次数的概念; 3. 引导学生准确运用乘法法则:帮助学生掌握单项式与多项式相乘的过程,特别是注意次数和系数的运算; 4. 通过案例分析和训练题,培养学生的逻辑思维和推理能力,提高他们的整式运算能力; 5. 强化代数运算性质的训练:引导学生灵活运用乘法运算的交换律和结合律,简化乘法过程。
教学实施为了达到上述改进目标,我将采取以下教学步骤: ### 步骤一:复习乘法概念 - 提醒学生乘法是重复的加法,通过具体例子进行解释和计算演示; - 引导学生发现乘法中的交换律和结合律,并与加法进行对比。
步骤二:引导学生理解单项式的特点•提示学生单项式的定义和格式,并通过例子解释单项式的系数和次数的含义;•练习题:计算给定单项式的系数和次数。
整式的乘法教学反思引言整式的乘法是初中数学中的重要内容,对学生的数学思维能力和逻辑推理能力有很大的提升作用。
然而,在实际的教学过程中,我们发现学生对整式的乘法常常存在一定的困惑和不理解。
本文对整式的乘法教学进行反思,探讨存在的问题及其改进方法,以期提高学生的学习效果。
教学问题分析学生对整式乘法的概念理解不足在教学中发现,学生对整式乘法的概念理解不足。
他们往往只是机械地按照公式进行计算,缺乏对整式乘法的本质理解。
这导致他们在解决实际问题时常常无法正确应用整式乘法的原理。
学生对整式乘法的步骤掌握不够整式乘法的计算过程较为繁琐,学生往往在展开和合并同类项的过程中出现错误。
特别是在多项式中含有括号时,学生常常无法正确地运用分配律,导致计算结果错误。
学生对整式乘法与实际问题的联系不清晰整式乘法是一种抽象的数学运算,与实际问题的联系不直观。
因此,学生往往难以将整式乘法与实际问题相结合,应用于解决实际问题的过程中。
改进教学方法强调整式乘法的概念理解在教学过程中,应重点强调整式乘法的概念和本质。
通过具体的例子,引导学生理解整式乘法是将多项式中的每一项相乘,并且注意同类项的合并。
同时,强调整式乘法与实际问题的联系,让学生意识到整式乘法在解决实际问题中的作用。
分步教学整式乘法的计算过程为了帮助学生掌握整式乘法的计算过程,可以分步进行教学。
首先,引导学生通过展开括号和同类项的合并,逐步完成整式乘法的计算。
然后,通过例题让学生巩固和运用所学的知识。
最后,提供一些综合性的习题,让学生在实际问题中应用整式乘法。
多样化的教学资源和活动设计为了增加学生对整式乘法的兴趣和主动性,可以设计多样化的教学资源和活动。
例如,可以利用数学软件进行互动教学,让学生通过操作实践整式乘法的计算过程。
此外,也可以设计一些小组合作活动,让学生在团队中相互讨论、合作解决实际问题。
实施效果评估学生对整式乘法的理解有所提升通过实施改进后的教学方法,学生的整式乘法的概念理解有所提升。
第十四章整式的乘法与因式分解14.1.4 整式的乘法第3课时一、教学目标【知识与技能】1.探究同底数幂除法的性质和单项式除以单项式、多项式除以单项式的法则,并会应用法则计算.2.会进行单项式除以单项式、多项式除以单项式的运算,理解整式除法运算的原理.【过程与方法】1.经历探究整式的除法的运算性质的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值,体会转化思想在整式除法中的作用.【情感、态度与价值观】感受数学法则、公式的简洁美、和谐美.二、课型新授课三、课时第3课时四、教学重难点【教学重点】应用整式除法法则进行计算.【教学难点】根据乘、除互逆的运算关系得出同底数幂的除法运算法则.五、课前准备教师:课件、直尺、计算器等。
学生:练习本、钢笔或圆珠笔。
六、教学过程(一)导入新课木星的质量约是1.9×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?(出示课件2)木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.想一想:上面的式子该如何计算?(二)探索新知1.师生互动,探究同底数幂的除法法则教师问1:请完成下面的题目:(出示课件4)(1)25×23;(2)x6×x4;(3)2m×2n.学生回答:(1)28;(2)x10;(3)2m+n.教师问2:本题是直接利用什么乘法法则计算的?学生回答:同底数幂的乘法法则:底数不变,指数相加.教师问3:思考下面的题该如何计算?(1)( )( )×23=28 (2)x6·( )( )=x10(3)( )( )×2n=2m+n学生回答:可以把乘法法则反过来利用.教师问4:反过来就我们今天要学的同底数幂的除法,能不能先试着写成除法形式?学生讨论后解答:(1)28÷23=?;(2)x10÷x6=?;(3)2m+n÷2n=?教师问5:你是如何计算的呢?学生回答:本题逆向利用同底数幂的乘法法则计算.教师问6:能不能试着完成下列各题:计算:(1)28÷23;(2)x10÷x6;(3)2 m+n÷2n学生回答:(1) 28÷23=25;(2) x10÷x6=x4;(3) 2 m+n÷2n =2m教师问7:观察下面的等式,你能发现什么规律?(出示课件5)(1)28÷23=25=28-3;(2) x10÷x6=x4=x10-6;(3) 2 m+n÷2n =2m =2m-n学生回答:底数不变,指数相减.教师总结:同底数幂相除,底数不变,指数相减.教师问8:以上法则能用字母表示吗?学生总结:a m÷a n=a m-n.教师问9:对指数有何要求吗?学生回答:m,n都是正整数,且m>n.教师总结:a m ÷a n=a m–n(m,n都是正整数,且m>n)教师问10:如何验证其正确性呢?学生回答:验证:因为a m–n·a n=a m–n+n=a m,所以a m ÷a n=a m–n.教师问11:对于除法运算,有没有什么特殊要求呢?学生回答:对于除法运算应要求除数(或分母)不为零,所以底数不能为零.即a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).教师问12:计算:a m÷a m学生计算a m÷a m时,可能会出现1或a0两个答案.教师顺势归纳:从除法的意义可知商为1,另一方面,如果依照同底数幂的除法计算,得a0.所以规定:a0=1(a≠0).教师问13:为什么规定a0=1(a≠0)时要说明a≠0呢?学生回答:因为当a=0时,分母或除数为0,式子无意义.总结点拨:(出示课件6)同底数幂的除法一般地,我们有a m÷a n=a m–n(a ≠0,m,n都是正整数,且m>n)即同底数幂相除,底数不变,指数相减.规定:a0=1(a ≠0)这就是说,除0以外任何数的0次幂都等于1.例1:计算:(出示课件7)(1)x8÷x2; (2) (ab)5÷(ab)2.师生共同解答如下:解:(1)x8 ÷x2=x8–2=x6;(2) (ab)5÷(ab)2=(ab)5–2=(ab)3=a3b3.总结点拨:计算同底数幂的除法时,先判断底数是否相同或变形相同,若底数为多项式,可将其看作一个整体,再根据法则计算.例2:已知a m=12,a n=2,a=3,求a m–n–1的值.(出示课件9)师生共同解答如下:解:∵a m=12,a n=2,a=3,∴a m–n–1=a m÷a n÷a=12÷2÷3=2.总结点拨:解此题的关键是逆用同底数幂的除法,对a m–n–1进行变形,再代入数值进行计算.2.复习旧知,探究单项式除以多项式的法则教师问14:计算:4a2x3·3ab2学生回答:4a2x3·3ab2=12a3b2x3教师问15:计算:12a3b2x3÷ 3ab2学生讨论回答:(出示课件11)解法1:12a3b2x3÷ 3ab2相当于求( )·3ab2=12a3b2x3.由(1)可知括号里应填4a2x3.解法2:原式=4a2x3· 3ab2÷ 3ab2=4a2x3.理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3–1,b的指数0=2–2,而b0=1,x的指数3=3–0.教师问15:类比上述研究过程计算以下两题.(1)-2x3÷(-x);(2)8m2n2÷2m2n.学生回答:(1)2x2 ;(2)4n教师问16:通过计算,你又发现什么规律?学生回答:单项式相除,把系数和同底数的幂分别相除.师生互动合作交流,得出单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.总结点拨:(出示课件12)单项式除以单项式的法则:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.例3:计算:(出示课件13)(1)28x4y2÷7x3y;(2)–5a5b3c ÷15a4b.师生共同解答如下:解:(1)原式=(28 ÷7)x4–3y2–1=4xy;(2)原式=(–5÷15)a5–4b3–1c=- 1ab2c.3总结点拨:单项式除以单项式要按照法则逐项进行,不得漏项,并且要注意符号的变化.3.师生互动,学习多项式除以单项式的法则教师问17:一幅长方形油画的长为(a+b),宽为m,求它的面积.(出示课件16)学生回答:面积为(a+b)m=ma+mb.教师问18:若已知油画的面积为(ma+mb),宽为m,如何求它的长?学生回答:长为(ma+mb)÷m.教师问19:如何计算(am+bm) ÷m?(出示课件17)学生讨论后回答:计算(am+bm) ÷m就相当于求( ) ·m=am+bm,教师问20:()填什么呢?学生回答:a+b教师问21:am ÷m+bm ÷m=?学生回答:a+b教师问22:观察上边的问题,你发现了什么?学生回答:(am+bm) ÷m=am ÷m+bm ÷m教师问23:计算下列各式:(1)(ax+bx)÷x; (2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.学生回答:(1) a+b; (2) a+b;(3) 2x+y.教师问24:说你是怎样计算的?学生回答:多项式除以单项式,用多项式的每一项除以单项式.教师问25:它们的项数之间有什么发现吗?师生共同解答如下:在学生独立解决问题之后,及时引导学生反思自己的思维过程,并对自己计算所得的结果进行观察,总结出计算的一般方法和结果的项数特征:商式与被除式的项数相同.教师问26:你能归纳出多项式除以单项式的法则吗?(出示课件18)学生归纳,教师点拨:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师问27:你能把这句话写成公式的形式吗?学生回答:(am+bm)÷m=am÷m+bm÷m.关键:应用法则是把多项式除以单项式转化为单项式除以单项式.例4:计算:(12a3–6a2+3a) ÷3a. (出示课件19)师生共同解答如下:解:(12a3–6a2+3a) ÷3a=12a3÷3a+(–6a2) ÷3a+3a÷3a=4a2+(–2a)+1=4a2–2a+1.总结点拨:多项式除以单项式,实质是利用乘法的分配律,将多项式除以单项式问题转化为单项式除以单项式问题来解决.计算过程中,要注意符号问题.例5:先化简,后求值:[2x(x2y–xy2)+xy(xy–x2)]÷x2y,其中x=2015,y=2014.(出示课件21)师生共同解答如下:解:原式=[2x3y–2x2y2+x2y2–x3y]÷x2y,=x–y.把x=2015,y=2014代入上式,得原式=x–y=2015–2014=1.(三)课堂练习(出示课件24-29)1.下列说法正确的是( )A.(π–3.14)0没有意义B.任何数的0次幂都等于1C.(8×106)÷(2×109)=4×103D.若(x+4)0=1,则x≠–42.下列算式中,不正确的是( )A.(–12a5b)÷(–3ab)=4a4B.9x m y n–1÷3x m–2y n–3=3x2y2C. 4a2b3÷2ab=2ab2D.x(x–y)2÷(y–x)=x(x–y)3.已知28a3b m÷28a n b2=b2,那么m,n的取值为( )A.m=4,n=3 B.m=4,n=1C.m=1,n=3 D.m=2,n=34.一个长方形的面积为a2+2a,若一边长为a,则另一边长为_____________.5. 已知一多项式与单项式–7x5y4 的积为21x5y7–28x6y5,则这个多项式是______.6.计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)–21a2b3c÷3ab; (4)(14m3–7m2+14m)÷7m.7. 先化简,再求值:(x+y)(x–y)–(4x3y–8xy3)÷2xy,其中x=1,y=–3.8. (1)若32•92x+1÷27x+1=81,求x的值;(2)已知5x=36,5y=2,求5x–2y的值;(3)已知2x–5y–4=0,求4x÷32y的值.参考答案:1.D2.D3.A4.a+25. –3y3+4xy6. 解:(1) 6a3÷2a2=(6÷2)(a3÷a2)=3a.(2) 24a2b3÷3ab=(24÷3)a2–1b3–1=8ab2.(3)–21a2b3c÷3ab=(–21÷3)a2–1b3–1c= –7ab2c;(4)(14m3–7m2+14m)÷7m=14m3÷7m-7m2÷7m+14m÷7m= 2m2–m+2.7. 解:原式=x2–y2–2x2+4y2=–x2+3y2.当x=1,y=–3时,原式=–12+3×(–3)2=–1+27=26.8. 解:(1)32•34x+2÷33x+3=81,即3x+1=34,解得x=3;(2)52y=(5y)2=4,5x–2y=5x÷52y=36÷4=9.(3)∵2x–5y–4=0,移项,得2x–5y=4.4x÷32y=22x÷25y=22x–5y=24=16.(四)课堂小结今天我们学了哪些内容:a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n)a0=1(a≠0)(am+bm)÷m=am÷m+bm÷m.(五)课前预习预习下节课(14.2)的相关内容。
2023年《整式的乘法》教学反思(精选5篇)2023年《整式的乘法》教学反思(精选5篇)1《整式的乘法》是八年级上学期的最后一部分内容,也是比较有难度的内容。
主要包括,同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法的两个公式。
整式乘法是整式乘除与因式分解的基础,是学好最后一章的关键,因此是我教学的重点内容。
而其中的'同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。
在这一部分教学时,我主要采用归纳式教学法。
首先,举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。
例如:a×a=a,a×a×a=a,a×a=5a×a×a×a ×a=a···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。
这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。
得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题。
教学时发现学生很容易把一些运算的法则搞混淆。
例如:进行以下计算(a)=a,a412×a=a,这就是混淆了运算的法则。
出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。
数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。
所以,我认为数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。
在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。
对于发现的问题,应及时解决,趁热打铁。
整式的乘法教学反思
1、本节知识包括三大块:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。
其中以单项式乘以单项式为基础,因此需要扎实基础。
2、需要强调符号问题。
3、学生容易把两数相乘,负负得正与两个负数相加的运算混为一体,需要注意对比练习。
4、在进行单项式与多项式相乘时,我在两个班尝试了不同的教法。
一班严格按法则进行教学,二班用了法则的前半部分,即把单项式与多项式的每一项分别相乘,后面的再把所得的积相加则没有予以强调,而是用了有理数的乘法的法则,提醒学生要注意符号问题。
结果是两个班的学生都较好的掌握了这部分知识。
5、因为有了前面的铺垫,所以多项式乘以多项式只提了个分配律之后,学生就基本都可以独立运算了。
可见打好基础则后面学起来就会比较轻松,学生心理上也会觉得比较容易控制。
七年级数学《整式的乘除》教学反思七年级下册第一章《整式的乘除》已经学完了。
本章主要分两大块:一、基本公式的学习:同底数幂的乘法(或除法)、幂的乘方、积的乘方的法则及公式和零指数幂、负指数幂的计算公式、科学计数法(针对一个多位小数);二、整式的乘法、整式的除法、平方差公式、完全平方公式。
第一部分是学习本章内容的基础,法则(公式)需要理解及熟记,才能为第二块整式的乘除打下坚实的基础。
但需要注意的是在计算同底数幂的除法、零指数幂、负指数幂的时候,其底数不能等于零这一点要考虑到,此知识点很容易出错。
对于科学计数法的学习和上一学期的学习有很多相同之处,但也有不同之处。
相同:把一个数写成a乘10的n次方的形式(a要大于等于1小于10,n为负整数)。
要想正确的把一个多位小数写成科学计数法的形式,只需要满足2点(1)找a(2)找n。
要找到a,只需要把原小数的小数点右移到第一个不是零的数字的右下角,删去该数字左边所有的零,剩余部分照抄;要找到n,紧接上一步,数原小数点与新小数点之间数的位数,是几个数字n就等于几。
对于第二部分的学习,只要前面的基础知识学的比较好,在掌握单项式乘(除以)单项式的算理学习起来就比较轻松。
因此,单项式乘(除以)单项式是整式乘除的基础。
在学习此内容时,不能只按书上的法则照本宣科,要能把它变成自己的话来理解记忆。
例如:单项式乘单项式分为3部分:(1)系数与系数相乘(2)同底数幂相乘(3)剩余部分照抄。
这样好理解也便于记忆。
在学习多项式的乘法及多项式除以单项式时特别要注意的是“符号容易出错”。
因此遇到该类题目要先确定符号,再根据法则来计算。
也就是说确定符号以后,不管是单项式是负的还是多项式的负项都变成正项进行运算,这样有关符号的计算就能做到不重不漏,也就不容易出错了。
平方差公式的学习只需要满足2条:(1)找条件:找相同项、相反项(2)得结论:相同项的平方减相反项的平方。
(此环节前后位置不能反)完全平方公式:口诀“左平方,右平方,2倍的乘积在中央,加是加来减是减”还要注意,完全平方公式的展开结果为3项,而不是两项。
编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是整式的乘除教学反思,是优秀的数学教案文章,供老师家长们参考学习。
整式的乘法教学反思《整式的乘法》是华师大版八年级上学期第十三章的一部分内容,主要包括同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法公式。
整式乘法是整式乘除与因式分解的基础,是学好本章的关键,是教学的重点内容。
而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。
在这一部分教学时,我主要采用归纳式教学法。
首先举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。
例如a×a=a2,a×a×a=a3,a2×a3=a×a×a×a×a=a5···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。
这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。
得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题,在相互纠正的过程中让学生逐步掌握运算法则,并能熟练的应用法则进行运算。
教学时发现学生很容易把一些运算的法则搞混淆。
例如:进行以下计算(a2)3=a5,a3×a4=a12,这就是混淆了运算的法则。
出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。
数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。
所以,通过本章的教学,使我更进一步的认识到数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。
在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。
对于发现的问题,应及时解决,趁热打铁。
整式的乘法教学反思
整式的乘法是在学生学习了同底数幂的乘法、幂的乘方、积的乘方等知识之后安排的有关整式的运算学习。
下面是由我为大家带来的关于整式的乘法教学反思,希望能够帮到您!
整式的乘法教学反思一
这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸.这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。
整式的乘法这一部分内容主要分成三部分内容。
第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。
这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。
第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。
第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。
在混合运算中注意括号运算,不要漏括号。
在整个这一部分的内容教学中,难点与易错点主要是:
1、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。
2、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。
3、注意实际问题主要是图形的面积问题的正确解决。
注重难点与学习方法。
1、关注对教学难点的教学。
新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。
2、关注对学生学习方法的指导。
建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。
3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。
本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用"兵教兵"的方法,组织学生开展合作学习。
在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解
决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。
4、让学生在"做"中学。
依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。
由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。
5、加强反思,注重对学生数学思想方法的渗透。
美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。
所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的"转化"的思想,运用乘法分配律时的"整体"思想,拼图列式中运用的"数形结合"思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到"授之以渔"的作用。
整式的乘法教学反思二
本节是学习了同底数幂的乘法、幂的乘方、积的乘方后的综合运用,是因式分解的逆运算,也是进行因式分解的基础,其中,单项式乘以单项
式是本节的重点,单项式乘以多项式中项的符号的确定是本节的难点,而单项式乘以多项式有转化到单项式与单项式的相乘,因此,掌握好单项式乘以单项式是关键,本人从以下几方面作反思:
(1)成功之处
也从课本开头的问题引入,具体的数据,问题较简单,学生很快进入了状态,激发了学生求知的兴趣引出本节内容。
然后将上式作适当的变形,用字母表示叙述几个例子,引出单项式乘以单项式法则的内容,通过类比的思想方法,由数的运算引出式的运算规律,体现了数学知识间具体与抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,从课堂学生做习题的情况来看,掌握的比较好。
在讲解第二个知识点时,用形象的图形来揭示多项式乘以多项式公式,学生也较易掌握,而在突破符号这一难点时,设计让学生先找多项式中由哪些项所组成,然后用单项式去乘以这些项,添回原先和式中省略了的加号,结果在练习中学生也突破了最容易犯的符号错误。
并提出通过多项式乘以多项式的法则,把这个问题转化到单项式乘以单项式中,而单项式乘以单项式又转化到数的乘法与同底数幂的乘法,体现新知识与已学知识间的联系,注意转化的思想方法。
整堂课中学生参与性较强,气氛活跃,知识落实到位。
(2)不足之处
在公式的推导过程中,还应更加让学生自己去得出结论,体现认识知识循序渐进的过程。
例题的讲解不妨让学生尝试去做,让学生去犯错,然后去加以纠正,以加深印象,防止同样错误的发生。
在小结时,还可以
让学生再次去总结本节课中常犯的错误。
一节平常的数学课,经过反思,会发现许多值得推敲的地方,在许多细节的地方需要精心设计,这样才能做到以学生为主体,使学生学活学透,真正完成教学目标。