高频通道基础知识简介
- 格式:doc
- 大小:67.50 KB
- 文档页数:17
继电保护用高频通道知识简介继电保护用高频通道是闭锁式纵联保护重要的组成部分,事关纵联保护能否正常运行及正确动作。
在现实工作中高频通道异常是造成纵联保护被迫退出的主要原因。
本文将较全面的对高频通道及其异常情况进行分析,供大家在工作中参考。
一、高频通道的构成情况:1.输电线路尽管我们平时并不注意,其实输电线路是高频信号传输的必由通道。
我们常见的情况是线路检修时,如果线路上挂有地线,则高频信号的传输就会产生极大的衰耗,基本上不能在两侧间传输。
闭锁式高频保护的通道一般采用相-地制,也就是说高频信号被调制设备耦合在输电线路和大地之间。
正常情况下高频信号除了在输电线路上传播外还会在大地中进行传播,其中由于地阻抗很大所以高频信号在输电线路上传播占主体。
输电线路除了耦合电容器连接的相别是高频通道外,另外两相输电线路由于和被耦合相线路之间存在电容等耦合途径也会成为高频信号传输的通道。
考虑到中间相(一般为B相)与另外两相耦合关系最紧密、相应的阻抗最小,所以一般认为高频通道采用中间相最佳。
而我们实际工作中,中间相往往被通讯专业使用,继电保护一般使用A、C相。
另外输电线路作为高频信号传输通道其输入阻抗这一参数我们必须给予重视,常见的220kV输电线路不分裂的导线输入阻抗为400欧姆,双分裂的导线输入阻抗为300欧姆。
请大家参照实际情况正确整定结合滤波器相应的线路侧阻抗情况。
2.高频阻波器它是一个高频谐振回路,对高频信号呈高阻抗,可以有效的将高频信号限制在两侧阻波器之间,一来防止高频信号流到其它线路造成对其它设备的干扰,二来可以减少高频信号的分流衰耗。
阻波器损坏,常见现象就是高频对试时收讯电平的降低。
阻波器对工频信号呈低阻性,可以保证电能传输不受阻碍。
3.耦合电容器和结合滤波器两者共同组成滤波器,允许高频信号流过,阻止工频信号侵入收发讯机。
同时还实现高频电缆和输电线路的阻抗匹配,保证高频信号的可靠高效传输。
这里我们需要注意耦合电容器电容量和结合滤波器相匹配的问题,实际工作中存在两者阻抗不匹配的情况会影响信号的传输。
1、在哪些情况下要进行高频通道测试?高频通道检查时,如何判断高频通道是否正常?2、答:1)每日进行通道测道;3、2)高频保护投入前;4、3)装有闭锁式高频保护的出线复役后;5、4)高频保护在旁路代出线操作时旁路开关和被代线路开关均合闸的切换过程中需要进行切换。
6、判断高频保护的正常:通道信号交换试验时,“收信启动”灯、“收信”灯、“运行”灯、“正常”灯、灯应亮,“3db告警”灯和“停信”灯应不亮,若有“正常”灯熄灭现象,并且“3db告警”灯亮,说明通道异常。
1)闭锁式保护是在系统故障时,收到对侧信号保护将被闭锁,收不到对侧信号保护动作跳闸。
闭锁式高频保护在正常情况下,高频通道内无高频信号,当线路保护启动时,低定值启动发信,当判定为正方向时保护高定值动作停信,当区内故障时,两侧都判定为正方向,两侧都停信,两对都收不到对侧高频信号,保护动作跳闸。
闭锁式保护线路可以旁路代。
2)允许式保护是在系统故障时,收到对侧信号保护动作跳闸,收不到对侧信号保护将被闭锁。
允许式保护在正常情况下两侧通过高频通道进行数据交换,并对通道进行检查。
光纤差动保护通过实时计算线路两侧的电流和来判断是否为区内故障,当区内故障时,两侧的电流和为故障电流,当区外故障时,两侧的电流和为零。
光纤差动保护线路不可以旁路代。
2、隔离开关电动操作拒动时,应如何检查处理?答:闸刀不能正常操作的原因可能有:1、闸刀机构电源电压不正常,应测量机构电源空开与控制电源空开两端的电压是否正常。
2、闸刀机构内的远近控切换开关是否切换到位,可重新切换一次。
3、检查电动机热保护热偶继电器是否动作,可复位一次。
4、检查手动操作闭锁回路已回复,复位一下手动操作闭锁的电气闭锁开关。
5、检查闸刀操作分、合闸的限位块已到位,手摇操作后可能造成闸刀机构限位块错位。
6、检查测控装置上间隔层的闭锁回路是否已开放。
(功能投入时)7、鹿田变曾发生因外送电源相序错误造成所有闸刀不能正常操作。
220kV线路高频保护通道组成,作用及如何测试高频通道?一、220kV线路高频保护通道的组成:• 1.输电线路• 2.高频阻波器• 3.耦合电容器• 4.结合滤波器(连接阻波器)• 5.高频电缆• 6.放电间隙(保护间隙)•7.接地开关•8.收发信机•二.各组成部分的作用•.1.输电线路A、B、C三相线路都用以传送高频信号其中B相输电线路除作为保护通道外,还是公用通道;A、C相只作为保护专用通道使用。
• 2.高频阻波器的作用:高频阻波器的电感线圈合可调电容器组成并联谐振回路,当其谐振频率为选用的载波频率时,对载波电流呈现很大的阻抗(在1000Ω以上),从而使高频电流限制在被保护线路的输电线路以内(即两侧高频阻波器内),而不致流到相邻线路上去。
对50Hz工频电流而言,高频阻波器的阻抗仅是电感线圈的阻抗,其值约为0.04Ω,因而工频电流可以畅通无阻• 3.耦合电容器的作用:耦合电容器的电容量很小,对工频电流具有很打的阻抗,可防止工频高压侵入高频收发信机。
对高频电流则阻抗很小,高频电流可顺利通过。
耦合电容器与结合滤波器(连接滤波器)共同组成带通滤波器,只允许此带通频率内的电流通过。
• 4.结合滤波器(连接滤波器)的作用:由于电力线路的波阻抗约为400Ω,电力电缆的波阻抗约为100Ω或75Ω,因此利用结合滤波器与他们其阻抗匹配作用,以减小高频信号的衰耗,使高频收信机收到的高频功率最大同时还利用结合滤波器进一步使高频收发信机与高压线路隔离,以保证高频收发信机及人身安全。
• 5.高频电缆的作用:高频电缆的作用是把户外的带通滤波器和户内保护屏上的收发信机连接起来,并屏蔽干扰信号。
• 6.接地开关:接地开关是高频通道的辅助设备。
在检查、调试高频保护时,将接地刀闸合上,可防止高压窜入确保保护设备和人身安全.•7.高频收发信机的作用:收发信机是发送和接收高频信号的设备.1.输电线路2.高频阻波器3.耦合电容器4.结合滤波器(连接阻波器)5.高频电缆6.放电间隙(保护间隙)7.接地开关8.收发信机阻波器是载波通信及高频保护不可缺少的高频通信元件,它阻止高频电流向其他分支泄漏,起减少高频能量损耗的作用。
继电保护高频通道基本知识及调试方法高频通道基本知识及调试方法高频通道基本知识及调试方法第一节用途在超高压电力系统,系统的稳定问题比较突出。
随着电网的日益发展和强大,对系统的稳定要求也越来越高。
如果系统稳定被破坏,将造成事故的扩大而影响电力系统的安全运行。
因此,目前220KV以上的超高压输电线路都配置了双套主保护,作为提高系统稳定的重要措施。
在超高压电力系统,简单的距离保护和零序保护是不能作为线路主保护的。
因为它们在原理上只反应一侧电气量的变化,因而无法区分本线路末端和相邻线路首端的故障,不能保证选择性。
而为了要保证选择性,瞬动段的保护范围就要缩小。
这样一来,就不能做到全线速动。
所以,这种类型的保护不能作为主保护。
为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。
这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。
快速性、选择性都得到了保证。
为了将线路一端的保护动作信号传送到对端,一般采用电力线载波的方式,将线路一端的工频电气量或保护动作信号与高频信号经过调制,利用电力线本身进行传送。
我们都知道,电力线本身是传送工频电力的,而且属于高电压和大电流。
然而,通过对输电线路进行加工和改造,就可以使它能够同时传送工频电力和高频信号。
经过调制后的高频信号送到线路对端后经过解调,将其变成具有工频特征的电气量或脉冲形式的保护动作信号,送至保护装置。
这就是电力线载波的传输方式。
采用高频信号的原因是便于与工频信号区分开。
采用电力线复用的方式,主要是经济可靠,节省人力和投资。
而且电力线路杆塔坚固,绝缘程度高。
不利的因素是危险的高电压及强大的杂音干扰。
但若采取适当的措施是可以解决这些问题的。
综上所述,可以看出,高频保护是利用被保护线路作为高频信号传输通道的。
因此,继电保护高频通道的基本用途就是用来加工和传输含有保护动作信号特征的高频信号,以构成快速的继电保护装置。
High Speed Cable 高频基础知识简介January 17, 2014Jet Shen前言随着科技的进步,人类对信息通讯产品愈加倚赖,信息电子产品之指令周期传输信息量皆大幅提升,电子零组件之高频特性愈发重要。
例如,PCB、线缆、连接器等过去被视为单纯桥接作用之组件,现有规格都增加了衰减(Insertion Loss)、回损(Return Loss)、特性阻抗(Impedance)、串音(Cross talk)、传输延迟(Propagation delay)、Propagation delay skew、隔离效果(Shielding effectiveness)、等高频特性要求。
内容目录高频的概念高频的参数高频的测试高频与制程的联系高频的概念多快才算高频?一般而言,当待测物长度>( 或=) 信号波长1/10. (有些数据定为波长1/20)我们经常见到的高频传输cable有USB3.0, SATA, SAS, Infiniband, PCIe, Mini-SAS, QSFP, SFP+….等.高频的概念----时域和频域时域和频域的关系•对同一对象的不同观察角度“时域”用来观察信号随着时间轴变化的情形“频域”用来显示信号在不同频率点上的能量分布状况•频域和时域的信息可以藉由傅利叶变换(Foruier Transform)来转换•用于时域的仪器:示波器和TDR(Time Domain Reflectometry)•用于频域的仪器频谱分析仪和网络分析仪(Network Analyzer)高频的概念----时域和频域时域和频域的关系振幅(能量)时域测试方法频域测试方法高频的概念----dBdB值的观念与定义均由能量(Energy) 或功率(Power)的观点出发( Power等于Energy对时间的微分, 或单位时间输出的能量),dB值重要处在于:1. 对数值显示可以看更广的范围。
2. 仪器制造商以dB值来表示产品性能。
高频通道改造原理及调试方法The Principles of Pilot Channel Reconstruction andCommissioning张新来1(邯郸供电公司,河北邯郸 056035)摘要:以一项工程实践为例,介绍高频通道改造为光纤通道的基本工作内容、作业方法,保护定值整定的注意事项,线路两端保护联调的基本原则和光纤通道在日常运行中的注意事项。
关键词:高频保护;光纤通道;联调Abstract:This paper introduces the basic work and method of reconstructing the pilot channel into fiber optic channel,the notice of revising the setting of protection ,the principle of protection coordinate commissioning between two sides of the line,the m atters needing attention of fiber optic channel in daily running.Key words: pilot protection;fiber optic channel;coordinate commissioning.随着光纤通信技术的普及和光纤成本的下降,光差保护已成为线路纵联保护主流,但系统中仍有部分高频保护设备运行。
由于高频通道的组成复杂、受外界环境干扰大,日常运行中通道故障的发生几率较大,给保护设备的安全可靠运行带来许多不利影响。
通过将高频通道改造成光纤通道,可以消除传统高频保护的不利因素,既减少了保护装置更换的工作量和费用又提高了系统安全稳定运行的可靠性。
本文以某220kV线路高频闭锁保护通道改造工程为例,介绍高频通道改造的原理和调试方法。
线路纵联(高频)保护基本知识1、什么是输电线路的纵联差动保护?其特点是什么?输电线路的纵联差动保护是指用某种通信通道(简称通道)将输电线两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是范围之外,从而决定是否切断被保护线路。
2、纵联保护的通道可分为几种类型?纵联保护的通道类型有:(1)电力线载波纵联保护(简称高频保护)。
(2)微波纵联保护(简称微波保护)。
(3)光纤纵联保护(简称光纤保护)。
(4)导引线纵联保护(简称导引线保护)。
3、什么是信号?需要传送的信息就是信号。
继电保护装置信号的作用就是信号与保护之间的逻辑关系。
例如:在故障启动发信方式中,高频电流的出现为信号;在长期发信方式中,高频电流的无成为信号;高频保护的信号有以下三种:4、通道的工作方式故障时发信、长期发信;5、高频信号的分类及作用(1)闭锁信号:他是阻止保护动作于跳闸的信号。
换言之,无闭锁信号时保护作用于跳闸的必要条件。
同时满足本端保护元件动作和无闭锁信号两个条件时,保护才作用于跳闸。
其逻辑框图如图3-4(a)所示。
(2)允许信号:它是允许保护动作于跳闸的信号。
换言之,有允许信号是保护动作于跳闸的必要条件。
只有同时满足本端保护元件动作和有允许信号两个条件时,保护才动作于跳闸,其逻辑框图如图3-4(b)所示。
(3)跳闸信号。
它是直接引起跳闸的信号。
此时与保护元件是否动作无关,只要收到跳闸信号,保护就作用于跳闸,如图3-4(c)所示。
远方跳闸式高频保护就是利用跳闸信号。
6、纵联保护出现的理由:(1)电流、距离保护存在问题:不能瞬时切除全线故障(切除线路末端故障时有一定的延时);(2)电压等级提高,要求全线瞬时切除故障,电流、距离保护无法做到,纵联保护能瞬时切除全线故障7、高频通道的构成原理8、纵联保护的分类:(1)按通道分有:A、电力线载波纵联保护(简称高频保护);B、微波纵联保护(简称微波保护);C、光纤纵联保护(简称光纤保护);D、导引线纵联保护(简称导引线保护);(2)按判定故障是在区内还是在区外的方式分有:方向高频(比较电流或功率方向)和相差高频(比较电流相位);(3)按信号方式分有:允许式高频和闭锁式高频;(4)启动方式分:距离、9、各类高频保护的特点:(1)导引线纵联保护(也称输电线路纵差动保护):A、构成原理:通过比较被保护线路两端电气量(电流、功率)大小和方向原理构成;B、纵差动保护存在问题:⏹可瞬时动作切除全线范围内故障⏹需要敷设与输电线路等长的导引线,经济上不划算⏹导引线故障的监视问题如何解决?C、纵差动保护原理接线:采用环流法接线;(2)相差高频保护:比较被保护线路两端电流的相位,内部短路时线路两端电流方向均为母线流向线路,而外部短路时靠近故障点侧电流方向由线路流向母线,如图:通过鉴别高频信号的连续性可以判别是内部还是外部短路工作原理:起动元件:I2、I4低灵敏度,I1、I3高灵敏度,用于起动收发信机操作元件:控制收发信机发信比相元件:比较电流相位(3)方向高频保护:比较被保护线路两端的功率方向,以判别输电线路内部或外部故障;其工作基本原理是:若约定由母线送至线路的方向为正,则在外部故障时,两侧功率方向相反,保护不动作;内部故障时,两侧功率近似同相,保护应动作,因此只要得知线路两侧功率同时为正,就发出跳闸脉冲。
高频通道及其检验第一章概述§1 高频保护基本知识§1.1 高频保护的含义及其分类为使线路纵联保护及高频保护的描述、定义和分类更清晰,根据有关文献,加上新技术在继电保护领域的应用,归纳起来,特作如下概括性的阐述。
利用通道将输电线路一侧的某一个或某些电气量传至线路另一侧,每一侧分别按照已定的判据,比较线路两侧相应电气量,以判别是内部故障还是外部故障的继电保护,统称之为线路纵联保护。
利用导引线通道将输电线路一侧的某一个或某些电气量传至线路另一侧,每一侧分别按照已定的判据,比较线路两侧电气量,以判别是内部故障还是外部故障的继电保护,称之为导引线纵联保护。
例如,利用导引线通道将输电线路一侧的电流量传至线路另一侧,每一侧分别按照已定的判据,比较线路两侧相应电流矢量之和,以判别是内部故障还是外部故障的继电保护,称之为导引线纵联电流差动保护,简称线路纵差保护。
利用微波通道将输电线路一侧的某一个或某些电气量传至线路另一侧,每一侧分别按照已定的判据,比较线路两侧相应电气量,以判别是内部故障还是外部故障的继电保护,称之为线路微波纵联保护,简称微波保护。
利用光纤通道将输电线路一侧的某一个或某些电气量传至线路另一侧,每一侧分别按照已定的判据,比较线路两侧相应电气量,以判别是内部故障还是外部故障的继电保护,称之为线路光纤纵联保护,简称光纤保护。
若选用单模长波长光纤的架空地线复合光缆(OPGW型式的光缆),采用有八个继电保护接口(八发八收)34MHz的光电端机,则不仅能节省载波频率和通道的开销,且各种形式的光纤保护将具有良好的性能,特别是安全性、可依靠性和抗干扰性能尤为突出。
采用光纤通道,分相光纤纵差易于实现,且业已实现。
在国内,光纤保护已开始采用。
随着光纤通信的推广普及,光纤保护已成为线路纵联保护的发展方向。
利用电力线载波通道将输电线路一侧的某一个或某些电气量传至线路另一侧,每一侧分别按照已定的判据,比较线路两侧相应电气量,以判别是内部故障还是外部故障的继电保护,称之为电力线载波纵联保护,简称高频保护。
继电保护用高频通道知识简介继电保护用高频通道是闭锁式纵联保护重要的组成部分,事关纵联保护能否正常运行及正确动作。
在现实工作中高频通道异常是造成纵联保护被迫退出的主要原因。
本文将较全面的对高频通道及其异常情况进行分析,供大家在工作中参考。
一、高频通道的构成情况:1.输电线路尽管我们平时并不注意,其实输电线路是高频信号传输的必由通道。
我们常见的情况是线路检修时,如果线路上挂有地线,则高频信号的传输就会产生极大的衰耗,基本上不能在两侧间传输。
闭锁式高频保护的通道一般采用相-地制,也就是说高频信号被调制设备耦合在输电线路和大地之间。
正常情况下高频信号除了在输电线路上传播外还会在大地中进行传播,其中由于地阻抗很大所以高频信号在输电线路上传播占主体。
输电线路除了耦合电容器连接的相别是高频通道外,另外两相输电线路由于和被耦合相线路之间存在电容等耦合途径也会成为高频信号传输的通道。
考虑到中间相(一般为B相)与另外两相耦合关系最紧密、相应的阻抗最小,所以一般认为高频通道采用中间相最佳。
而我们实际工作中,中间相往往被通讯专业使用,继电保护一般使用A、C相。
另外输电线路作为高频信号传输通道其输入阻抗这一参数我们必须给予重视,常见的220kV输电线路不分裂的导线输入阻抗为400欧姆,双分裂的导线输入阻抗为300欧姆。
请大家参照实际情况正确整定结合滤波器相应的线路侧阻抗情况。
2.高频阻波器它是一个高频谐振回路,对高频信号呈高阻抗,可以有效的将高频信号限制在两侧阻波器之间,一来防止高频信号流到其它线路造成对其它设备的干扰,二来可以减少高频信号的分流衰耗。
阻波器损坏,常见现象就是高频对试时收讯电平的降低。
阻波器对工频信号呈低阻性,可以保证电能传输不受阻碍。
3.耦合电容器和结合滤波器两者共同组成滤波器,允许高频信号流过,阻止工频信号侵入收发讯机。
同时还实现高频电缆和输电线路的阻抗匹配,保证高频信号的可靠高效传输。
这里我们需要注意耦合电容器电容量和结合滤波器相匹配的问题,实际工作中存在两者阻抗不匹配的情况会影响信号的传输。
另外,在进行结合滤波器的调整时我们还要注意输电线和高频电缆的阻抗匹配情况,减少传输衰耗。
4.高频电缆高频电缆将收发讯机和结合滤波器结合起来。
现在常用的高频电缆的特性阻抗为75欧。
5.保护间隙保护间隙位于结合滤波器和耦合电容器之间。
防止过电压造成收发讯机和高频电缆的损坏。
新型的结合滤波器中放电器(避雷器)替代了保护间隙,但由于无法从外观确定放电器的状态,因此也存在其击穿造成高频信号无法传递的隐患。
6.接地刀闸在高频通道上工作时,应将其合入以保证人身安全。
但一定要注意的是高频保护运行中不能合入,否则高频信号会被直接导入地,无法在保护间传送,从而在系统发生故障时造成保护不正确动作。
7.高频收发讯机高频收发讯机用来发出和接收高频信号,与保护装置进行逻辑上的配合。
收发讯机的简化原理图如图一所示,图中虚线框内部分为收发讯机。
图一收发讯机简化原理图其中晶振电路利用晶振芯片提供工作频率的信号f0给发讯回路,提供另一频率为fl=f0+12KHZ的信号给解调回路用于进行信号解调最后形成12KHZ中频信号供收发讯机用来进行解调、放大、输出。
前置放大和功率放大元件共同构成信号的发大回路;滤波元件的作用主要是保证滤除非工作频率的信号,保证收发讯机的正常运行。
这里需要注意的是滤波元件的工作频率与收发讯机工作频率必须保持一致且一般无法整定,因此一旦该元件损坏我们无法简单随意的更换其它备件来解决问题,即使有些型号的收发讯机的滤波插件的频率能够现场整定,考虑到现场工作条件以及元件品质、特性等问题我们也不主张现场变更滤波元件的工作频率。
控制电路是整个收发讯机的控制单元,它最主要的功能是从保护装置接到发讯的命令后将晶振电路提供的工作频率信号提供给放大回路从而实现发信。
它还控制信号切换回路保证一旦本机发讯时,高频信号从前置放大回路单独提供给收信解调回路且断开对侧信号进入的通道,而在只有对侧发讯时收到的对侧的高频信号单独进入收讯解调回路,这种功能可以保证在两侧均发讯时不会出现因为两侧信号混叠可能造成的差排现象。
解调输出元件主要是类似触发器的功能,一旦收到信号即动作并提供开关量输出告知保护装置。
二、高频通道检查闭锁式纵联保护对高频通道的依赖性非常高,如果通道不正常就会造成保护的不正确动作。
而由于闭锁式纵联保护的通道在正常时没有监视信号传递,我们无法察觉通道中存在的不正常状态。
因此闭锁式纵联保护中专门设立了通道对试逻辑,通过运行人员进行的通道对试试验可以检查包括两侧保护装置、收发讯机及高频通道在内的与闭锁式纵联保护正确动作有关的各个环节,如图二所示。
图二通道对试试验可以检查的各个环节示意图高频通道对试的过程一般为:启动对试侧按下试验按钮后启动发讯200毫秒(一般不能被我们注意到,可以不考虑)然后停讯,对侧收到信号后连续发讯10秒,本侧在连续收到对侧信号5秒后开始再次发讯10秒。
因此一个高频通道对试过程约为15秒。
通道中的信号与时间的对应关系如表一所示:表一通道对试信号分时情况表对试过程中应注意上述对试过程是否完整以及信号裕度指示与正常值是否一致,特别是有无通道告警信号。
整个过程中我们应注意前5秒(对侧信号)以及后5秒(本测信号)的信号情况,而对于中间阶段的信号因为其是两侧信号的叠加因此没有实际意义。
另外,收发讯机提供的信号指示表(灯)的指针指示的功率或裕度情况只有参考意义,用来定性的确定信号传输情况是否正常,其具体读数不能用作定量分析。
整个对试过程的逻辑部分由继电保护装置控制,因此我们通过对试试验也可以检查纵联保护装置与收发讯机之间联系的正确性。
三、通道异常检查示范方案1. 高频通道异常现象中最常见的是通道对试试验不能完成,处理这种情况可遵循如下原则:1.1外观检查:两侧的收发讯机、保护装置是否正常,有无异常及电源损坏的情况。
1.2按通道试验按钮,检查收发讯机有无发讯指示:判断收发讯机是否发讯可以观察收发讯机发讯指示灯是否点亮及信号指示表(灯)的指示情况。
发讯指示灯通常接在收发讯机的控制回路,当收到继电保护装置的发讯命令时点亮并启动发讯,此灯一般为自保持。
信号指示表一般接在收发讯机与高频电缆的连接处,反应通道口的信号情况。
因为通道试验时本侧最初只发讯200毫秒,因此对信号指示表的观察应该仔细。
通道试验的检查两侧均应进行,以大致的确定问题所在。
✧如果按下试验按钮后收发讯机无任何反应应检查:●收发讯机各电源是否良好;有无异常信号;●试验按钮接触是否良好;●按下试验按钮后,检查继电保护装置是否有通道试验的开关量输入;●继电保护装置的发讯接点是否导通;●在未发讯状态时,继电保护发讯接点两端是否有电位,即收发讯机开关量公共正电和发讯输入端间的电位,一般为直流24V。
此项检查宜在保护装置端子排和收发讯机端子排分别进行;●收发讯机切换把手的接点导通情况;●在收发讯机背板端子排上用开入量公共正电点启动发讯开入端,检查收发讯机是否发讯;✧如果按下收发讯机后发讯指示灯点亮,而信号(功率)指示灯无指示应检查:●令收发讯机发讯(通道试验或点启动发讯开入)用选频电平表测量通道口处信号情况,以确认信号指示表是否指示正确;●在收发讯机发讯状态下测量收发讯机载供(晶振)、前置放大、功率放大、线滤等插件处的电平情况,以确定问题所在;●如果载供(晶振)处信号正常,而在收发讯机发讯指示灯点亮的情况下无高频信号输出,可怀疑控制回路(接口插件)存在问题;1.3收发讯机有发讯指示收发讯机通道口有信号,检查本侧高频通道:✧如果结合滤波器电缆侧无信号的情况下应检查:●一般认为高频电缆存在问题,最常见的为高频电缆断线。
推荐检查方法为自收发讯机出口断开高频电缆与收发讯机的连接,将高频电缆的芯线和屏蔽线短接并接地。
在结合滤波器处分别测量芯线和屏蔽层以及分别对地的电阻情况即可确定高频电缆是否有断线。
当然如果高频电缆断线了是很难采用常规方法检查到的,一旦发生大多只能更换电缆。
因此我们在高频电缆的铺设过程中一定要防止出现挤压、严重弯曲等现象,也要采取必要的防冻措施避免高频电缆因冰冻受损。
●如果高频电缆没有断线情况,我们还要考虑是否存在高频电缆的长度接近高频信号波长的四分之一或四分之一的整数倍。
这时也会出现高频电缆类似开路的情况,从而使高频信号不能传输。
尽管这种情况很少见,我们也要给予重视。
●还有一种情况也很少见,就是高频电缆与结合滤波器以及收发讯不匹配。
目前高频保护的通道中收发讯以及高频电缆一般均采用75欧姆的阻抗,但在早期也曾经使用过100欧姆的高频电缆。
这时就会造成通道不匹配的情况出现,从而使的通道衰耗急剧变大,出现高频信号近似不能传递的情况。
●还需要检查高频电缆的芯线与屏蔽线或地线有无短路的情况。
因为高频电缆芯线裸露较长或屏蔽层处理不好以及芯线和屏蔽层之间绝缘损坏都会造成芯线与屏蔽层之间发生短路,从而造成高频信号被短路点屏蔽。
✧结合滤波器电缆侧有信号而耦合电容器侧无信号的情况下应检查:●检查耦合电容器内部有无断线、虚接,短路的情况;●检查结合滤波器处接地刀闸位置是否在合位,以及有无类似的接地短路情况;●还可能存在结合滤波器内部放电器(避雷器)击穿的情况;●注意在耦合电容器和结合滤波器之间串接的设备(比如电压抽取装置)是否存在异常。
●有时候在结合滤波器内部耦合电容器侧测量有信号而到结合滤波器外部与耦合电容器连接部分测量没有信号,这种情况一般为连接不好,或是外部接线锈蚀严重导致信号衰耗过大;1.4本侧发讯正常,在耦合电容器处(结合滤波器耦合电容器侧,推荐在外部接线处测量)测量信号正常的情况下,考虑对侧配合检查:✧如果发讯侧信号检查正常,而收讯侧收发讯机没有收讯指示则注意检查:●令本侧收发讯机长发讯(短接收发讯机起讯接点,但注意不要时间太长,否则会对发讯回路特别是功放元件造成损坏),收讯侧无收讯指示,在收发讯机通道口测量有无信号,如果信号正常而收发讯机无收讯指示则可以参考说明书分别在收发讯机滤波单元、收讯单元、解调单元等处的测点测量信号状态以确定问题所在。
这里还要考虑控制单元是否有问题,因为如果信号切换部分如果不能正常工作也会造成信号不能进入收发讯机解调单元。
●令本侧收发讯机长发讯(短接收发讯机起讯接点,但注意不要时间太长,否则会对发讯回路特别是功放元件造成损坏),如果在收发讯机通道口测量高频信号不正常,则应分别在结合滤波器耦合电容器侧、结合滤波器高频电缆侧处测量高频信号,检查有无异常,从而确定或排除异常点。
具体的检查方法可以参照上面描述的发讯侧发讯回路的检查方法。
1.5 对侧发讯及本侧收讯均正常,而本侧能在收到信号后不能发讯从而不能完成通道对试逻辑时应注意检查:●本侧收发讯机收讯输出单元是否有问题,测量在收讯时收讯输出的接点是否闭合;●在收讯输出接点闭合的情况下,检查保护装置是否有收讯开关量输入;●检查本侧按下通道试验按钮时本侧收发讯机是否能发讯;(具体方法见1.2)2. 通道衰耗过大为了保证高频保护的可靠运行,我们对高频信号的大小有着明确的要求。