2015-2016年广东省珠海市香洲区八年级上学期期末数学试卷带答案word版
- 格式:doc
- 大小:311.52 KB
- 文档页数:21
广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A、B、C、D、2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A、SASB、ASAC、AASD、HL中的m、n的值同时扩大到原来的5倍,则此分式的值()9、分式+A、不变B、是原来的C、是原来的5倍D、是原来的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A、90°-αB、αC、90°+αD、360°-α二、填空题(每小题4分,共24分)有意义,则x的取值范围为。
11、若分式+12、分解因式:m2-3m=。
13、若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是。
14、若正多边形的一个内角等于135°,那么这个正多边形的边数是。
广东省珠海市香洲区八年级(上)期末数学试卷、选择题(本大题 10小题,每小题 3分,共30分)每小题给出四个选项在只有一个是正确的,请把答题卡上对应题目所选的选修涂黑。
F 列图形中,不是轴对称图形的是( 2. 3. C . B .F 列长度的三条线段,能组成三角形的是( A . 3, 4, 8 B . 6, 7, 8 C . 点A (2,- 1)关于x 轴对称的点B 的坐标为( A . ( 2, 1) B . (- 2, 1) C . 5, 6, 11 (2, - 1)4.若分式」有意义,则X 的取值范围是 X M 1C . X M - 1D . X 取任意实数5.下列计算正确的是( B . ( a 2) 3= a 6C . a 6* a 2= a 3D . 1, 4, 7D . (- 2,- 1)D . 2a x 3a =6aA . a 2+a 3= a 5 DF 丄 BC ,A . / C =ZBB . DF // AE 垂足分别为 E , F , CE = BF ,下列结论错误的是( CF = BE7.下列多项式能用完全平方公式进行因式分解的是( A . a 2 - 1 B . a 2+4 a 2+2a+1a2- 4a - 48.如果把分式.中的X , y 都扩大3倍,那么分式的值(9.如图,在△ ABC 中,/ B= 50。
,/ A = 30°, CD 平分/ ACB , CE丄AB 于点E,则/ DCE 的度数是()B . 8°“丄祠、一甲图中阴影部分面和,.°、”,•如图,设a > b > °),则有(、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。
(4 分)214.(4分)如图,在△ ABC中,AB = AC,/ A= 40 ° , AB的垂直平分线MN交AC于点D,则/DBC =A •扩大3倍B •不变C.缩小3倍 D •扩大2倍D • 15)A . 0v k v2C. 0v k v 1 D • 1 v k v 2C. 10°度.A •5°口I乙曲B • V kV 111•,则/ AOB的度数为-119. 四、20.21. (6分)解方程:「二」解答题(二)(本大题 3小题,每小题7分,共21 分) s 2-lx(7分)先化简,再求值:二;厂(,卄1),其中x=- 2018.(7分)如图,在△ ABC 中,点D 在BC 上, AB = AC = BD , AD =。
广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A B C D2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A B、ASA C、AAS D、HL9中的m、n的值同时扩大到原来的5倍,则此分式的值()A、不变B C、是原来的5倍D、是原来的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P)A、90°B C、90°D、360°-α二、填空题(每小题4分,共24分) 11、若分式x 的取值范围为 。
12、分解因式:m 2-3m = 。
13、若点A (2,m )关于y 轴的对称点是B (n ,5),则mn 的值是 。
14、若正多边形的一个内角等于135°,那么这个正多边形的边数是 。
广东省珠海市香洲区第一学期期末考试八年级数学试卷一、选择题(每小题 3分,共30分)F 列四个手机 APP 图标中,是轴对称图形的是()1、 2、3、 4、5、 6、7、 9、 A 、下列图形中具有稳定性的是() A 、正方形B 、长方形C 、等腰三角形下列长度的三根木棒能组成三角形的是()A 、1 , 2 , 4 已知某细菌直径长约A 、152 >05 米 下列运算正确的是()2 2 A 、 (a+1) =a + 1(x + m ) 与 4 如图,已知点的依据是() SAS Zmi 中的 m + n如果A 、 A 、 分式不变lei平行四边形B 、2 , 2 , 4C 、2 , 3 , 40.0000152米,那么该细菌的直径长用科学计数法可表示为 B 、1.52 >0「5米 C 、— 1.52 >05米 D 、 1.52 >10 ,6() 4米82423 347B 、a -^a = a c 、3a (-a) =_3a D 、x x = x第6题第(X —4)的乘积中不含 B 、- 4 D 、C 、F 在同一直线上, C 、 x 的一次项,则 m 的值为() 0 D 、1 AB = DE , AD = CF ,且/ B = Z E = 90 °,判定△ ABC DEFB 、ASAn 的值同时扩大到原来的C 、A AS D 、 HL5倍,则此分式的值1B 、是原来的5C 、是原来的5倍D 、是原来的10倍10、如图,在四边形 1A 、90 ° —尹ABCD 中,/ A + Z D = a / ABC 的平分线与/ BCD 的平分线交于点 P ,则/ P =()1 90 °+-a D 、360 °— a24分,共24分) 二、填空题(每小题 11、 若分式—有意义,则x 的取值范围为。
x + 2212、 分解因式:m — 3m =。
13、 若点A (2, m )关于y 轴的对称点是 B (n , 5),则mn 的值是。
2015-2016学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x5 3.(3分)下列各组长度线段能组成三角形的是()A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cmD.1cm,2cm,2cm4.(3分)已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于()A.100°B.40°C.50°D.100°或40°5.(3分)以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.6.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.77.(3分)如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠A CA′的度数是()A.20°B.30°C.35°D.40°8.(3分)若分式中的x、y的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的D.是原来的一半9.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2 10.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于()A.50°B.30°C.20°D.15°二、填空题(共6小题,每小题4分,满分24分)11.(4分)在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为.12.(4分)当x时,分式有意义.13.(4分)分解因式:x3﹣xy2=.14.(4分)计算:2﹣2×46=.15.(4分)正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为.16.(4分)如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.三、解答题(共9小题,满分66分)17.(6分)计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.18.(6分)解方程:+=1.19.(6分)已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.20.(7分)先化简,再求值:(1﹣)÷,其中x=3.21.(7分)如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.22.(7分)某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?23.(9分)如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.24.(9分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.25.(9分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM的形状,并说明理由.2015-2016学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.2.(3分)下列计算正确的是()A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x5【解答】解:A、x6÷x3=x6﹣3=x3,选项错误;B、不是同类项,不能合并,选项错误;C、(x2)3=x6,故选项错误;D、x2•x3=x5,故选项正确.故选:D.3.(3分)下列各组长度线段能组成三角形的是()A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cmD.1cm,2cm,2cm【解答】解:根据三角形的三边关系,得A、1+3<5,不能组成三角形,故此选项错误;B、1+1=2,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、1+2>2,能够组成三角形,故此选项正确.故选:D.4.(3分)已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于()A.100°B.40°C.50°D.100°或40°【解答】解:根据三角形的内角和定理,100°的内角是顶角,所以,两个底角为:(180°﹣100°)=40°,故选:B.5.(3分)以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.【解答】解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.故选:B.6.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.7.(3分)如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′=70°,∴∠ACA′=∠ACB﹣∠A′CB=40°故选:D.8.(3分)若分式中的x、y的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的D.是原来的一半【解答】解:分式中的x、y的值都变为原来的3倍,则此分式的值原来的,故选:C.9.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.10.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于()A.50°B.30°C.20°D.15°【解答】解:如图所示,∵a∥b,∴∠3=∠2,∵∠B=60°,∴∠A=30°,∴∠3=∠1+∠A=20°+30°=50°,∴∠2=50°,故选:A.二、填空题(共6小题,每小题4分,满分24分)11.(4分)在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为(﹣1,2).【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2),故答案为:(﹣1,2).12.(4分)当x≠﹣2时,分式有意义.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2,故答案是:≠﹣2.13.(4分)分解因式:x3﹣xy2=x(x+y)(x﹣y).【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).14.(4分)计算:2﹣2×46=1024.【解答】解:2﹣2×46=×46=1024.故答案为:1024.15.(4分)正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.【解答】解:设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数的3倍,∴这个正多边形的一个内角为:3x°,∴x+3x=180,解得:x=45,∴这个多边形的边数是:360°÷45°=8.故答案为:8.16.(4分)如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.【解答】解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,=S△ABD,S△CPD=S△ACD,∴S△BPD∴S=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,△BPC∵△ABC的面积为3,=×3=.∴S△BPC故答案为:.三、解答题(共9小题,满分66分)17.(6分)计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.【解答】解:原式=x2﹣1+2x2+2x﹣3x2=2x﹣1.18.(6分)解方程:+=1.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.19.(6分)已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.【解答】证明:∵点D是△ABC的边BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE中,,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.20.(7分)先化简,再求值:(1﹣)÷,其中x=3.【解答】解:原式=•(x﹣1)2+3x﹣4=(x﹣2)(x﹣1)+3x﹣4=x2﹣3x+2+3x ﹣4=x2﹣2,当x=3时,原式=9﹣2=7.21.(7分)如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.【解答】解:(1)如图所示:(2)∵∠CAB=60°,∠B=30°,∴∠C=90°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°,∴AD=2CD=2,∠B=∠DAB,∴DB=2.22.(7分)某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?【解答】解:设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x,由题意得+30=,解得:x=20经检验x=20是原分式方程的解.0.5x=10答:第一次购进的蓝莓的单价是20元,第二次购进蓝莓的单价为10元.23.(9分)如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠EDF=60°,∴∠BDF=60°,∴△BDF是等边三角形;(2)解:如图2,由(1)得:∠1=60°,∵CF∥AB,∴∠2+∠3=60°,∠B=∠6=60°,∵∠B=60°,∠C=78°,∴∠A=∠3=42°,∴∠2=60°﹣42°=18°,∴∠5+∠6=60°+78°=138°,∴∠4=∠180°﹣18°﹣138°=24°.24.(9分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【解答】解:(1)1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.25.(9分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM的形状,并说明理由.【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)解:△DEM是直角三角形;理由如下:过点E作EH⊥AB于H,如图所示:则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴∠DEM=90°,∴△DEM是直角三角形.。
广东省珠海市香洲区八年级(上)期末数学试卷一、选择题:(本大题5小题,每小题3分,共15分)1.(3分)如图所示的几个是国际通用的交通标志,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列分式是最简分式的是()A.B.C.D.3.(3分)若(x+2)(x﹣3)=x2+ax+b,则a,b的值分别为()A.a=5,b=6B.a=﹣1,b=6C.a=5,b=﹣6D.a=﹣1,b=﹣64.(3分)如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=8米,OB=6米,A、B间的距离不可能是()A.12米B.10米C.15米D.8米5.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2二、填空题:(本大题5小题,每小题4分,共20分)6.(4分)点P(﹣2,3)关于x轴的对称点的坐标是.7.(4分)计算:40+2﹣2=.8.(4分)分解因式:2m2+4m+2=.9.(4分)如图,△ABC≌△FDE,∠C=35°,∠F=115°,则∠B等于.10.(4分)一个多边形的内角和为720°,那么从这个多边形的一个顶点出发共有条对角线.三、解答题(一):(本大题5小题,每小题6分,共30分)11.(6分)计算:3a•a3﹣(2a2)2.12.(6分)化简:(x+2y)2﹣y(x+2y).13.(6分)解方程:.14.(6分)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.15.(6分)如图,在△ABC中,AB=AC.(1)尺规作图:AB的垂直平分线,与AB交于D点,与AC交于E点.(保留作图痕迹,不写作法)(2)连接BE,若△BCE的周长为8,BC=3,则BD=.四、解答题(二):(本大题4小题,每小题7分,共28分)16.(7分)先化简,再求值:,其中.17.(7分)如图,∠A=∠D=90°,AC=BD,(1)求证:AB=CD;(2)请判断△OBC的形状,并说明理由.18.(7分)如图,在Rt△ACB中,∠ACB=90°,点D是AB上一点.将△BCD 沿CD折叠,使B点落在AC边上的B′处.(1)若∠A=28°,求∠ADB′的度数;(2)若CD=CB,求∠ADB′的度数.19.(7分)2014年12月26日,西南真正意义上的第一条高铁(贵阳至广州高速铁路)开始试运行,从贵阳到广州,乘特快列车的行程约为1800km;高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车和高铁列车的平均速度.五、解答题(三):(本大题3小题,每小题9分,共27分)20.(9分)某同学在计算(4+1)•(42+1)时,运用了以下方法运算:(4+1)•(42+1)====85.模仿这位同学的运算方法,解答以下问题:(1)计算:(2+1)•(22+1)•(24+1);(2)计算:.21.(9分)已知:如图,AB=AC,AD是BC边上的高,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:BE=DC;(2)当∠BAC=度时,使得BE∥AC,请说明理由.22.(9分)在平面直角坐标系中的△ABC,AB=BC=5,点A坐标为(0,4),点B坐标为(﹣3,0).(1)若点C在坐标轴上,则点C的坐标是;(2)如图1,当∠ABC=90°时,则点C的坐标是;(3)如图2,当∠ABC=60°,BC边与y轴交于点D,点E为AC边上一点,且AE=CD,连接BE与y轴交于点P,求证:PB=2PO.广东省珠海市香洲区八年级(上)期末数学试卷参考答案一、选择题:(本大题5小题,每小题3分,共15分)1.B;2.D;3.D;4.C;5.C;二、填空题:(本大题5小题,每小题4分,共20分)6.(﹣2,﹣3);7.;8.2(m+1)2;9.30°;10.3;三、解答题(一):(本大题5小题,每小题6分,共30分)11.;12.;13.;14.;15.2.5;四、解答题(二):(本大题4小题,每小题7分,共28分)16.;17.;18.;19.;五、解答题(三):(本大题3小题,每小题9分,共27分)20.;21.60;22.(0,﹣4),或(﹣8,0),或(2,0);(1,﹣3);。
广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.2.(3分)下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形3.(3分)下列长度的三根木棒能组成三角形的是()A.1,2,4B.2,2,4C.2,3,4D.2,3,6 4.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米5.(3分)下列运算正确的是()A.(a+1)2=a2+1B.a8÷a2=a4C.3a•(﹣a)2=﹣3a3D.x3•x4=x76.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AB=2BD B.AD⊥BC C.AD平分∠BAC D.∠B=∠C 7.(3分)如果(x+m)与(x﹣4)的乘积中不含x的一次项,则m的值为()A.4B.﹣4C.0D.18.(3分)如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A.SAS B.ASA C.AAS D.HL9.(3分)分式中的m、n的值同时扩大到原来的5倍,则此分式的值()A.不变B.是原来的C.是原来的5倍D.是原来的10倍10.(3分)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α二、填空题(每小题4分,共24分)11.(4分)使分式有意义的x的取值范围为.12.(4分)分解因式:m2﹣3m=.13.(4分)若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是.14.(4分)若一个正多边形的一个内角等于135°,那么这个多边形是正边形.15.(4分)如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为.16.(4分)如图,平面直角坐标系中,等腰三角形△OPQ的顶点P的坐标为(4,3),腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为.三、解答题(每小题6分,共18分)17.(6分)解方程:=.18.(6分)在△ABC中,AB=AC,∠ABC=70°(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法)(2)在(1)的条件下,∠BDC=.19.(6分)长方形和正方形按如图的样式摆放,求图中阴影部分的面积.四、解答题(每小题7分,共21分)20.(7分)先化简,再求值:(1﹣)÷,其中a=(2018﹣π)0.21.(7分)台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.22.(7分)如图,已知Rt△MBN的两条直角边与正方形ABCD的两邻边重合,∠M=30°,O为AB中点,NO平分∠BNM,EO平分∠AEN.(1)求证:△MON为等腰三角形;(2)求证:EN=AE+BN.五、解答题(每小题9分,共27分)23.(9分)阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p =m+n,则可以把x2+px+q因式分解成(x+m)(x+n)(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.24.(9分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,AD⊥AB交BE延长线于点D,CF平分∠ACB交BD于点F,连接CD.求证:(1)AD=CF;(2)点F为BD的中点.25.(9分)如图,在平面直角坐标系中,点A的坐标是(a,0)(a>0),点C 是y轴上的一个动点,点C在y轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边△AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;(2)若点P在第三象限,BP交x轴于点E,且∠ACO=20°,求∠P AE的度数和E点的坐标;(3)若∠APB=30°,则点P的横坐标为.广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.(3分)下列图形中具有稳定性的是()A.正方形B.长方形C.等腰三角形D.平行四边形【解答】解:正方形,长方形,等腰三角形,平行四边形中只有等腰三角形具有稳定性.故选:C.3.(3分)下列长度的三根木棒能组成三角形的是()A.1,2,4B.2,2,4C.2,3,4D.2,3,6【解答】解:A、1+2<4,不能构成三角形;B、2+2=4,不能构成三角形;C、2+3>4,能够组成三角形;D、2+3<6,不能组成三角形.故选:C.4.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米【解答】解:0.0000152=1.52×10﹣5.故选:B.5.(3分)下列运算正确的是()A.(a+1)2=a2+1B.a8÷a2=a4C.3a•(﹣a)2=﹣3a3D.x3•x4=x7【解答】解:(a+1)2=a2+2a+1≠a2+1,故选项A错误;a8÷a2=a6≠a4,故选项B错误;3a•(﹣a)2=3a•a2=3a3≠﹣3a3,故选项C错误;x3•x4=x3+4=x7,故选项D正确.故选:D.6.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.AB=2BD B.AD⊥BC C.AD平分∠BAC D.∠B=∠C【解答】解:∵△ABC中,AB=AC,D是BC中点,∴AD⊥BC(故B正确)AD平分∠BAC(故C正确)∠B=∠C(故D正确)无法得到AB=2BD,(故A不正确).故选:A.7.(3分)如果(x+m)与(x﹣4)的乘积中不含x的一次项,则m的值为()A.4B.﹣4C.0D.1【解答】解:(x+m)(x﹣4)=x2+(m﹣4)x﹣4m,∵(x+m)与(x﹣4)的乘积中不含x的一次项,∴m﹣4=0,解得,m=4,故选:A.8.(3分)如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A.SAS B.ASA C.AAS D.HL【解答】解:∵AD=CF,∴AC=DF.在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故选:D.9.(3分)分式中的m、n的值同时扩大到原来的5倍,则此分式的值()A.不变B.是原来的C.是原来的5倍D.是原来的10倍【解答】解:分式中的m、n的值同时扩大到原来的5倍,则此分式的值扩大到原来的5倍.故选:C.10.(3分)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:B.二、填空题(每小题4分,共24分)11.(4分)使分式有意义的x的取值范围为x≠﹣2.【解答】解:当分母x+2≠0,即x≠﹣2时,分式有意义.故填:x≠﹣2.12.(4分)分解因式:m2﹣3m=m(m﹣3).【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).13.(4分)若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是﹣10.【解答】解:由题意,得n=﹣2,m=5.mn=﹣2×5=﹣10,故答案为:﹣10.14.(4分)若一个正多边形的一个内角等于135°,那么这个多边形是正八边形.【解答】解:∵内角与外角互为邻补角,∴正多边形的一个外角是180°﹣135°=45°,∵多边形外角和为360°,∴360°÷45°=8,则这个多边形是八边形.故答案为:八.15.(4分)如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为100°.【解答】解:∵BD垂直平分AE,∴BE=BA,∴∠E=∠A=50°,∴∠EBC=∠E+∠A=100°,故答案为:100°.16.(4分)如图,平面直角坐标系中,等腰三角形△OPQ的顶点P的坐标为(4,3),腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为(0,5)或(0,6).【解答】解:如图当OP=OQ′时,Q′(0,5),当OP=PQ时,∵P(4,3),∴OQ=6,∴Q(0,6)故答案为(0,5)或(0,6)三、解答题(每小题6分,共18分)17.(6分)解方程:=.【解答】解:去分母得3x=2(x﹣2),解得x=﹣4,检验:当x=﹣4时,x(x﹣2)≠0,则x=﹣4是原方程的解,所以原方程的解为x=﹣4.18.(6分)在△ABC中,AB=AC,∠ABC=70°(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法)(2)在(1)的条件下,∠BDC=75°.【解答】解:(1)如图所示,BD即为所求;(2)∵在△ABC中,AB=AC,∠ABC=70°,∴∠A=180°﹣2∠ABC=180°﹣140°=40°,∵BD是∠ABC的平分线,∴∠ABD=∠ABC=×70°=35°,∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=40°+35°=75°,故答案为:75°.19.(6分)长方形和正方形按如图的样式摆放,求图中阴影部分的面积.【解答】解:图中阴影部分的面积为2a•3a+a2﹣•2a•(3a+a)=6a2+a2﹣a•4a=7a2﹣4a2=3a2.四、解答题(每小题7分,共21分)20.(7分)先化简,再求值:(1﹣)÷,其中a=(2018﹣π)0.【解答】解:当a=(2018﹣π)0=1时,原式=÷=×==21.(7分)台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.【解答】解:设原计划的行驶速度为x千米/时,则:﹣=,解得x=100,经检验:x=100是原方程的解,且符合题意,所以x=100.答:原计划的行驶速度为100千米/时.22.(7分)如图,已知Rt△MBN的两条直角边与正方形ABCD的两邻边重合,∠M=30°,O为AB中点,NO平分∠BNM,EO平分∠AEN.(1)求证:△MON为等腰三角形;(2)求证:EN=AE+BN.【解答】(1)证明:∵∠B=90°,∠M=30°,∴∠BNM=60°,∵NO平分∠BNM,∴∠ONM=∠BNM=30°,∴∠ONM=∠M,∴OM=ON,∴MON为等腰三角形;(2)证明:如图,延长EO交CB延长线于点P.依题意得:∠BAE=∠ABP=90°.∵O为AB中点,∴OA=OB,在△AOE和△BOP中,,∴△AOE≌△BOP(ASA),∴AE=BP,OE=OP.又NO平分∠BNM,∴ON⊥EP,∴EN=PN,∴EN=PN=BP+BN=AE+BN,∴EN=AE+BN.五、解答题(每小题9分,共27分)23.(9分)阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p =m+n,则可以把x2+px+q因式分解成(x+m)(x+n)(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.【解答】解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A2+4A+3=(A+1)(A+3),所以(x﹣y)2+4(x﹣y)+3=(x﹣y+1)(x﹣y+3);②令B=m2+2m,则原式=B(B﹣2)﹣3=B2﹣2B﹣3=(B+1)(B﹣3),所以原式=(m2+2m+1)(m2+2m﹣3)=(m+1)2(m﹣1)(m+3).24.(9分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,AD⊥AB交BE延长线于点D,CF平分∠ACB交BD于点F,连接CD.求证:(1)AD=CF;(2)点F为BD的中点.【解答】解:(1)∵E为AC边的中点,∴AE=CE,∵△ABC中,∠ACB=90°,AC=BC,CF平分∠ACB,∴∠BAC=45°=∠ECF,∵AD⊥AB,∴∠DAC=45°=∠FCE,又∵∠AED=∠CEF,∴△ADE≌△CFE,∴AD=CF;(2)∵AC=CB,∠DAC=∠FCB,AD=CF,∴△ACD≌△CBF,∴CD=BF,∠ACD=∠CBF,∵∠DCF=∠ACD+∠ECF=∠ACD+45°,∠DFC=∠CBF+∠BCF=∠CBF+45°,∴∠DCF=∠DFC,∴DC=DF,∴BF=DF,即点F为BD的中点.25.(9分)如图,在平面直角坐标系中,点A的坐标是(a,0)(a>0),点C 是y轴上的一个动点,点C在y轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边△AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;(2)若点P在第三象限,BP交x轴于点E,且∠ACO=20°,求∠P AE的度数和E点的坐标;(3)若∠APB=30°,则点P的横坐标为﹣a或2a.【解答】(1)证明:∵△AOB和△ACP都是等边三角形,∴OA=AB,AP=AC,∠OAB=∠CAP=60°∴∠OAC=∠BAP,在△AOC和△ABP中,,∴△AOC≌△ABP(SAS),(2)解:∵∠ACO=20°,∴∠OAC=90°﹣20°=70°,∵∠CAP=60°,∴∠P AE=∠OAC﹣∠CAP=10°由(1)知,△AOC≌△ABP,∴∠ABP=∠AOC=90°,∠ACO=∠APB=20°,∴∠AEB=∠APB+∠P AE=20°+10°=30°,∵A(a,0),∴OA=a,∴AB=OA=a,在Rt△ABE中,AE=2AB=2a,∴OE=AE﹣OA=a,∴E(﹣a,0);(3)当点C在y轴负半轴上时,当∠APB=30°时,由(1)知,△AOC≌△ABP,∴∠ABP=∠AOC=90°,∵∠OAB=60°,∴∠AEB=30°=∠APB,∴点P和点E重合,即:点P在x轴上,在Rt△ABE中,AB=a,∴AP=2AB=2a,∴OP=AP﹣OA=a,∴P(﹣a,0);当点C在y轴正半轴时,如图(注:为了说明点P也在x轴上,作的图形,不标准)∵∠AOB=60°,∴∠APB=∠AOB,∴点P在以点O为圆心,OA为半径的圆上,∴OP=OA,在△AOC和△POC中,,∴△AOC≌△POC,∴∠ACO=∠PCO,∵∠ACP=60°,∴∠ACO=∠PCO,∴OC⊥AP,∵OC⊥OA,∴点P在x轴上,∴点P的横坐标为﹣a,当点C在y轴半轴上时,∠APB=30°,如图1,(注:为了说明点B和F重合,作的图形,不标准)由(1)知,△AOC≌△ABP(SAS),∴∠ABP=∠OAC=90°,∵在等边三角形ACP中,∠CAP=60°,∵∠APB=30°,∴∠AFP=90°,∴点B和F重合,∴AB=AC=AP,∵OA=AB,∴OA=AP,过点P作PH⊥OA于H,∴∠P AH=60°,∴AH=AP,∴AH=OA,∴AH=2OA,∵A(a,0),∴OA=a,∴AH=2a,∴点P的横坐标为2a,故答案为:﹣a或2a.。
2017-2018学年八年级数学上期末试卷(珠海市香洲区含答案)广东省珠海市香洲区2017-2018第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分) 1、下列四个手机APP图标中,是轴对称图形的是() A、 B、 C、 D、 2、下列图形中具有稳定性的是() A、正方形 B、长方形 C、等腰三角形 D、平行四边形 3、下列长度的三根木棒能组成三角形的是() A、1 ,2 ,4 B、2 ,2 ,4 C、2 ,3 ,4 D、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为() A、152×105米 B、1.52×10�5米 C、�1.52×105米 D、1.52×10�4米 5、下列运算正确的是() A、(a+1)2=a2+1 B、a8÷a2=a4 C、3a•(-a)2=�3a3 D、x3•x4=x7 6、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是() A、AB=2BD B、AD⊥BC C、AD平分∠BAC D、∠B=∠C 第6题第8题 7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为() A、4 B、�4 C、0 D、1 8、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E =90°,判定△ABC≌△DEF的依据是() A、SAS B、ASA C、AAS D、HL 9、分式2mn/(m+n) 中的m、n的值同时扩大到原来的5倍,则此分式的值() A、不变 B、是原来的1/5 C、是原来的5倍 D、是原来的10倍 10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC 的平分线与∠BCD的平分线交于点P,则∠P=() A、90°-1/2αB、1/2αC、90°+1/2αD、360°-α二、填空题(每小题4分,共24分) 11、若分式x/(x+2)有意义,则x的取值范围为。
2015-2016学年八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四个图案中,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.3,6,9 B.5,6,11 C.5,6,10 D.1,4,73.点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.若分式的值为零,则()A.x=﹣2 B.x=1 C.x=2 D.x=﹣15.下列计算中,正确的是()A.2a+3b=5ab B.a•a3=a3C.a6÷a2=a3D.(﹣ab)2=a2b26.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形7.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或158.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=10,则ED的长为()A.3 B.4 C.5 D.69.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为xkm/h,那么可列方程为()A.﹣=1 B.﹣=1C.D.10.在平面直角坐标系中,已知点A(1,2),B(4,5),C(5,2),如果存在点E,使△ACE和△ACB全等,则符合题意的点共有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)11.医学研究发现一种新病毒的直径约为0.000 043毫米,则这个数用科学记数法表示为.12.如图,在△ABC中,D是AB延长线上一点,∠A=40°,∠C=60°,则∠CBD= .13.计算:÷4x2y= .14.如图,E、C、F、C四点在一条直线上,EB=FC,∠A=∠D,再添一个条件就能证明△ABC≌△DEF,这个条件可以是(只写一个即可).15.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A= .16.如果(x+p)(x+q)=x2+mx+2(p,q为整数),则m= .三、解答题(共5小题,满分52分)17.(1)分解因式:a3b﹣ab3(2)解方程: +1=.18.先化简,再求值:(x﹣4)(x+4y)+(3x﹣4y)2,其中x=2,y=﹣1.19.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)20.如图,△ABC中,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,与AB、AC分别相交于E、F.若已知AB=9,AC=7,BC=8,求△AEF的周长.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=25cm,BE=8cm,求DE的长.四.综合测试22.如果x﹣y=4,xy=2,求下列多项式的值:(1)x2+y2(2)2x(x2+3y2)﹣6x2(x+y)+4x3.23.已知A=﹣,B=2x2+4x+2.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.24.如图,在平面直角坐标系中,点A的纵坐标为2,点B在x轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上.(1)求点B关于直线MN的对称点B1的横坐标;(2)求证:AB+BO=AB1.25.已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B.(1)求A点坐标.(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.2015-2016学年广东省广州市天河区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列四个图案中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列长度的三条线段,能组成三角形的是()A.3,6,9 B.5,6,11 C.5,6,10 D.1,4,7【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+6=9,不能组成三角形;B中,5+6=11,不能组成三角形;C中,5+6>10,能够组成三角形;D中,1+4=5<7,不能组成三角形.故选C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.3.点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.【解答】解:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知:点P(﹣1,2)关于y轴对称的点的坐标是(1,2).故选A.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若分式的值为零,则()A.x=﹣2 B.x=1 C.x=2 D.x=﹣1【考点】分式的值为零的条件.【分析】分式值为零的条件是分子等于零且分母不等于零,从而得到x+1=0,x﹣2≠0.【解答】解:∵分式的值为零,∴x+1=0且x﹣2≠0.解得:x=﹣1.故选:D.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.5.下列计算中,正确的是()A.2a+3b=5ab B.a•a3=a3C.a6÷a2=a3D.(﹣ab)2=a2b2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂乘法、同底数幂除法、积的乘方的运算法则,计算后利用排除法求解.【解答】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、应为a•a3=a4,故本选项错误;C、应为a6÷a2=a4,故本选项错误;D、(﹣ab)2=a2b2,正确.故选D.【点评】本题考查同底数幂的乘法,同底数幂的除法,积的乘方的性质,熟练掌握运算性质是解题的关键,本题还需注意不是同类项不能合并.6.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【专题】应用题.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据外角和等于内角和列方程求解.【解答】解:设所求n边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选B.【点评】本题主要考查了多边形的内角和与外角和、方程的思想,关键是记住内角和的公式与外角和的特征,比较简单.7.已知等腰三角形的两边的长分别为3和6,则它的周长为()A.9 B.12 C.15 D.12或15【考点】等腰三角形的性质;三角形三边关系.【专题】计算题.【分析】分两种情况:当3为底时和3为腰时,再根据三角形的三边关系定理:两边之和大于第三边去掉一种情况即可.【解答】解:当3为底时,三角形的三边长为3,6,6,则周长为15;当3为腰时,三角形的三边长为3,3,6,则不能组成三角形;故选C.【点评】本题考查了等腰三角形的性质以及三角形的三边关系定理,是基础知识要熟练掌握.注意分类讨论思想的应用.8.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=10,则ED的长为()A.3 B.4 C.5 D.6【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】根据线段的垂直平分线的性质得到EB=EC=10,根据直角三角形的性质解答即可.【解答】解:∵DE是BC的垂直平分线,∴EB=EC=10,∵∠B=30°,∠EDB=90°,∴DE=EB=5,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为xkm/h,那么可列方程为()A.﹣=1 B.﹣=1C.D.【考点】由实际问题抽象出分式方程.【专题】计算题.【分析】此题求速度,有路程,所以要根据时间来列等量关系.因为他们同时到达目的地,所以此题等量关系为:慢车所用时间﹣快车所用时间=1.【解答】解:设慢车的速度为xkm/h,慢车所用时间为,快车所用时间为,可列方程:﹣=1.故选A.【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,但是需要考虑怎样设未知数才能比较容易地列出方程进行解答.解题时还要注意有必要考虑是直接设未知数还是间接设未知数,然后再利用等量关系列出方程.10.在平面直角坐标系中,已知点A(1,2),B(4,5),C(5,2),如果存在点E,使△ACE和△ACB全等,则符合题意的点共有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定;坐标与图形性质.【分析】根据题意画出符合条件的所有情况,根据点A、B、C的坐标和全等三角形性质求出即可.【解答】解:如图所示:有3个点,当E在D、E、F处时,△ACE和△ACB全等,点E的坐标是:(2,5),(2,﹣1),(4,﹣1),共3个,故选C.【点评】本题考查了全等三角形性质和坐标与图形性质的应用,关键是能根据题意求出符合条件的所有情况.二、填空题(共6小题,每小题3分,满分18分)11.医学研究发现一种新病毒的直径约为0.000 043毫米,则这个数用科学记数法表示为 4.3×10﹣5.【考点】科学记数法—表示较小的数.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将0.000 043用科学记数法表示为4.3×10﹣5.故答案为:4.3×10﹣5.【点评】此题考查的是科学记数法﹣表示较小的数.关键要明确用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).12.如图,在△ABC中,D是AB延长线上一点,∠A=40°,∠C=60°,则∠CBD= 100°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.【解答】解:∵∠A=40°,∠C=60°,∴∠CBD=∠A+∠C=100°,故答案为:100°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.计算:÷4x2y= .【考点】整式的除法.【专题】计算题;推理填空题;整式.【分析】单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式,据此求出÷4x2y 的值是多少即可.【解答】解:÷4x2y=.故答案为:.【点评】此题主要考查了整式的除法,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.14.如图,E、C、F、C四点在一条直线上,EB=FC,∠A=∠D,再添一个条件就能证明△ABC≌△DEF,这个条件可以是∠ABC=∠E.(只写一个即可).【考点】全等三角形的判定.【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,所以根据全等三角形的判定定理添加一组对应角相等即可.【解答】解:添加∠ABC=∠E.理由如下:∵EB=FC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠ABC=∠E.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,在△ABC中,BI平分∠ABC,CI平分∠ACB,∠BIC=130°,则∠A= 80°.【考点】三角形内角和定理.【分析】首先根据BI平分∠ABC,CI平分∠ACB,推得∠IBC+∠ICB=(∠ABC+∠ACB);然后根据三角形的内角和定理,求出∠IBC、∠ICB的度数和,进而求出∠A的度数是多少即可.【解答】解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB),∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣130°=50°,∴∠ABC+∠ACB=50°×2=100°,∴∠A=180°﹣100°=80°.故答案为:80°.【点评】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.16.如果(x+p)(x+q)=x2+mx+2(p,q为整数),则m= ±3 .【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则展开,即可得出p+q=m,pq=2,根据p、q为整数得出两种情况,求出m即可.【解答】解:(x+p)(x+q)=x2+mx+2,x2+(p+q)x+pq=x2+mx+2,∴p+q=m,pq=2,∵p,q为整数,∴①p=1,q=2或p=2,q=1,此时m=3;②p=﹣1,q=﹣2或p=﹣2,q=﹣1,此时m=﹣3;故答案为:±3.【点评】本题考查了多项式乘以多项式法则的应用,能求出p、q的值是解此题的关键,注意:(a+b)(m+n)=am+an+bm+bn.三、解答题(共5小题,满分52分)17.(1)分解因式:a3b﹣ab3(2)解方程: +1=.【考点】提公因式法与公式法的综合运用;解分式方程.【专题】因式分解;分式方程及应用.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=ab(a2﹣b2)=ab(a+b)(a﹣b);(2)去分母得:3+x﹣2=3﹣x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了提公因式法与公式法的综合运用,以及解分式方程,熟练掌握运算法则是解本题的关键.18.(10分)(2015秋•天河区期末)先化简,再求值:(x﹣4)(x+4y)+(3x﹣4y)2,其中x=2,y=﹣1.【考点】整式的混合运算—化简求值.【分析】本题应对代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:(x﹣4)(x+4y)+(3x﹣4y)2,=x2+4xy﹣4x﹣16y+9x2﹣24xy+16y2=10x2﹣20xy﹣4x﹣16y+16y2,把x=2,y=﹣1代入10x2﹣20xy﹣4x﹣16y+16y2=40+40﹣8+16+16=104.【点评】本题考查了整式的化简,整式的混合运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.如图,已知M、N分别是∠AOB的边OA上任意两点.(1)尺规作图:作∠AOB的平分线OC;(2)在∠AOB的平分线OC上求作一点P,使PM+PN的值最小.(保留作图痕迹,不写画法)【考点】轴对称-最短路线问题;作图—基本作图.【分析】(1)以点O为圆心,以任意长为半径画弧,与边OA、OB分别相交于点M、N,再以点M、N为圆心,以大于MN长为半径,画弧,在∠AOB内部相交于点C,作射线OC即为∠AOB的平分线;(2)找到点M关于OC对称点M′,过点M′作M′N⊥OA于点N,交OC于点P,则此时PM+PN的值最小.【解答】解:(1)如图1所示,OC即为所求作的∠AOB的平分线.(2)如图2,作点M关于OC的对称点M′,连接M′N交OC于点P,则M′B的长度即为PM+PN的值最小.【点评】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P及点N的位置是关键.20.如图,△ABC中,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,与AB、AC分别相交于E、F.若已知AB=9,AC=7,BC=8,求△AEF的周长.【考点】等腰三角形的判定与性质;平行线的性质.【分析】要求周长,就要先求出三角形的边长,这就要借助平行线及角平分线的性质把通过未知的转化成已知的来计算.【解答】解:∵BD是角平分线,∴∠ABD=∠CBD,∵FE∥BC,∴∠DBC=∠DBE,∴∠DBE=∠EDB,∴BE=ED,同理DF=DC,∴△AED的周长=AE+AF+EF=AB+AC=9+7=16.【点评】本题考查等腰三角形的性质平行线的性质角平分线的性质;有效的进行线段的等量代换是正确解答本题的关键.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=25cm,BE=8cm,求DE的长.【考点】全等三角形的判定与性质.【分析】(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证明△BCE≌△CAD;(2)根据全等三角形的对应边相等得到AD=CE,BE=CD,利用DE=CE﹣CD,即可解答.【解答】解:(1)∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠BEC=∠ACB=∠ADC=90°,∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE,在△BCE和△CAD中,,∴△BCE≌△CAD;(2)∵△BCE≌△CAD,∴AD=CE,BE=CD,∴DE=CE﹣CD=AD﹣BE=25﹣8=17(cm).【点评】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明△ADC和△CEB全等的三个条件.四.综合测试22.如果x﹣y=4,xy=2,求下列多项式的值:(1)x2+y2(2)2x(x2+3y2)﹣6x2(x+y)+4x3.【考点】整式的混合运算—化简求值.【分析】(1)根据完全平方公式:(a±b)2=a2±2ab+b2,解答即可;(2)先化简后再根据完全平方公式:(a±b)2=a2±2ab+b2,解答即可.【解答】解:(1)x2+y2=(x﹣y)2+2xy=16+4=20;(2)2x(x2+3y2)﹣6x2(x+y)+4x3.=2x3+6xy2﹣6x3﹣6x2y+4x3=6xy(y﹣x)=6×2×(﹣4)=﹣48.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.23.已知A=﹣,B=2x2+4x+2.(1)化简A,并对B进行因式分解;(2)当B=0时,求A的值.【考点】分式的化简求值;解一元二次方程-配方法.【分析】(1)先根据分式混合运算的法则把A进行化简,对B进行因式分解即可;(2)根据B=0求出x的值,代入A式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣==;B=2x2+4x+2=2(x2+2x+1)=2(x+1)2;(2)∵B=0,∴2(x+1)2=0,∴x=﹣1.当x=﹣1时,A===﹣2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.(13分)(2015秋•天河区期末)如图,在平面直角坐标系中,点A的纵坐标为2,点B在x 轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上.(1)求点B关于直线MN的对称点B1的横坐标;(2)求证:AB+BO=AB1.【考点】全等三角形的判定与性质;坐标与图形变化-对称.【分析】(1)过A作AC⊥x轴于C,过B作BD⊥x轴于D,根据点A的纵坐标为1求出AO=2,OC=,BO=2=OB1,根据∠B1DO=90°和∠DOB1=30°求出OD即可;(2)根据轴对称得出线段AB1线段A1B关于直线MN对称,求出AB1=A1B,根据A1B=A1O+BO和A1O=AO 推出即可.【解答】解:(1)如图,过A作AC⊥x轴于C,过B1作BD⊥x轴于D,∵点A的纵坐标为2,∴AC=2,∵AB=AO,∠ABO=30°,∴AO=2,OC=,BO=2=OB1,∵∠B1DO=90°,∠DOB1=30°,∴B1D=,OD=B1D=3,∴点B关于直线MN的对称点B1的横坐标3;(2)∵A关于直线MN的对称点A1在x轴的正半轴上,点B关于直线MN的对称点为B1,∴线段AB1线段A1B关于直线MN对称,∴AB1=A1B,而A1B=A1O+BO,A1O=AO,∴AB1=AO+BO.【点评】本题考查了含30度角的直角三角形性质,轴对称性质,线段垂直平分线性质,勾股定理的应用,解决本题的关键是作出辅助线.25.已知A(m,n),且满足|m﹣2|+(n﹣2)2=0,过A作AB⊥y轴,垂足为B.(1)求A点坐标.(2)如图1,分别以AB,AO为边作等边△ABC和△AOD,试判定线段AC和DC的数量关系和位置关系,并说明理由.(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.【考点】全等三角形的判定与性质;坐标与图形性质;等边三角形的性质.【分析】(1)根据非负数的性子可得m、n的值;(2)连接OC,由AB=BO知∠BAO=∠BOA=45°,由△ABC,△OAD为等边三角形知∠BAC=∠OAD=∠AOD=60°、OA=OD,继而由∠BAC﹣∠OAC=∠OAD﹣∠OAC得∠DAC=∠BAO=45°,根据OB=CB=2、∠OBC=30°知∠BOC=75°,∠AOC=∠BAO﹣∠BOA=30°,∠DOC=∠AOC=30°,证△OAC≌△ODC得AC=CD,再根据∠CAD=∠CDA=45°知∠ACD=90°,从而得AC⊥CD;(3)在x轴负半轴取点M,使得OM=AG=b,连接BG,先证△BAG≌△BOM得∠OBM=∠ABG、BM=BG,结合∠FBG=45°知∠ABG+∠OBF=45°,从而得∠OBM+∠OBF=45°,∠MBF=∠GBF,再证△MBF≌△GBF 得MF=FG,即a+b=c,代入原式可得答案.【解答】解(1)由题得m=2,n=2,∴A(2,2);(2)如图1,连结OC,由(1)得AB=BO=2,∴△ABO为等腰直角三角形,∴∠BAO=∠BOA=45°,∵△ABC,△OAD为等边三角形,∴∠BAC=∠OAD=∠A OD=60°,OA=OD∴∠BAC﹣∠OAC=∠OAD﹣∠OAC即∠DAC=∠BAO=45°在△OBC中,OB=CB=2,∠OBC=30°,∴∠BOC=75°,∴∠AOC=∠BAO﹣∠BOA=30°,∴∠DOC=∠AOC=30°,在△OAC和△ODC中,∵,∴△OAC≌△ODC,∴AC=CD,∴∠CAD=∠CDA=45°,∴∠ACD=90°,∴AC⊥CD;(3)如图,在x轴负半轴取点M,使得OM=AG=b,连接BG,在△BAG 和△BOM 中,∵,∴△BAG ≌△BOM∴∠OBM=∠ABG ,BM=BG又∠FBG=45°∴∠ABG+∠OBF=45°∴∠OBM+∠OBF=45°∴∠MBF=∠GBF在△MBF 和△GBF 中,∵,∴△MBF ≌△GBF∴MF=FG∴a+b=c 代入原式=0.【点评】本题主要考查全等三角形的判定与性质、等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键。
八年级上学期数学期末试卷一、单选题(共10题;共20分)1.下列交通标志图案是轴对称图形的是()A. B. C. D.2.如果一个三角形的两边长分别为1和6,则第三边长可能是()A. 5B. 6C. 7D. 83.下列计算正确的是()A. B. C. D.4.如图,P是∠AOB的平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D.下列结论不一定成立的是()A. ∠AOP=∠BOPB. PC=PDC. ∠OPC=∠OPDD. OP=PC+PD5.如图,在△ABC中,DE是AC的垂直平分线,AB=6cm,且△ABD的周长为16cm,则BC的长为()A. 8cmB. 10cmC. 14cmD. 22cm6.如图,△ABC≌△ADE,∠B=20°,∠C=110°,则∠EAD的度数为()A. 50°B. 20°C. 110°D. 70°7.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034 m,用科学记数法表示0.0000034是()A. 0.34×10-5B. 3.4×106C. 3.4×10-5D. 3.4×10-68.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A. 2B. -2C. 4D. -49.一个正方形的边长增加3cm,它的面积就增加99 ,这个正方形的边长为()A. 13cmB. 14cmC. 15cmD. 16cm10.如图所示,正方形网格中,网格线的交点称为格点,已知点A,B是两个格点,如果点C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数为()A. 4B. 5C. 6D. 7二、填空题(共7题;共7分)11.因式分解:________.12.分式有意义的条件是________.13.正六边形的每个内角等于________°.14.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是________.15.已知a,b是一个等腰三角形的两边长,且满足a2+b2-6a-8b+25=0,则这个等腰三角形的周长为________.16.如图,在△ABC中,AB=AC,∠BAC=30°,D为BC上任意一点,过点D作DE⊥AB,DF⊥AC,垂足分别为E ,F,且DE+DF = ,连接AD,则AB=________.17.按一定规律排列的一列数依次为:…(a≠0),按此规律排列下去,这列数中的第n个数是________.(n为正整数)三、解答题(共8题;共65分)18.计算:19.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=50°,∠C=36°,求∠DAC的度数.20.先化简,再求值:,其中x=3.21.珠海到韶关的距离约为360千米,小刘驾驶小轿车,小张驾驶大货车,两人都从珠海去韶关,小刘比小张晚出发90分钟,最后两车同时到达韶关,已知小轿车的速度是大货车速度的1.5倍.(1)分别求小轿车和大货车的速度;(2)当小刘行驶了2小时,此时两车相距多少千米?22.如图,在平面直角坐标系中,点A的坐标为(﹣1,5),点B的坐标为(﹣3,1).(1)在平面直角坐标系中作线段AB关于y轴对称的线段A1B1(A与A1,B与B1对应);(2)求△AA1B1的面积;(3)在y轴上存在一点P,使PA+PB的值最小,则点P的坐标为________.23.如图,在等边三角形ABC中,点D在线段AB上,点E在CD的延长线上,连接AE,AE=AC,AF平分∠EAB ,交CE于点F,连接BF.(1)求证:EF=BF;(2)猜想∠AFC的度数,并说明理由.24.已知a,b,c,d都是互不相等的正数.(1)若,,则________ ,________ (用“>”,“<”或“=”填空);(2)若请判断和的大小关系,并证明;(3)令若分式的值为3,求t的值.25.如图,在平面直角坐标系中,OA=OB,AC=CD,已知两点A(4,0),C(0,7),点D在第一象限内,∠DCA=90°,点B在线段OC上,AB的延长线与DC的延长线交于点M,AC与BD交于点N.(1)点B的坐标为:________;(2)求点D的坐标;(3)求证:CM=CN.答案解析部分一、单选题1.【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.2.【解析】【解答】设第三边长为x,则6﹣1<x<6+1,即5<x<7,∴第三边长可能是6.故答案为:B.【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,求出第三边的取值范围,即可得出答案.3.【解析】【解答】解:A、,故此选项不符合题意;B、,故此选项不符合题意;C、,符合题意;D、,故此选项不符合题意;故答案为:C.【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.4.【解析】【解答】∵P是∠AOB的平分线上的一点,∴∠1=∠2.故A不符合题意;∵∠1=∠2,PC⊥OA,PD⊥OB,∴PC=PD,∠PCO=∠PDO=90°,故B不符合题意;∵∠PCO+∠1+∠OPC=180°,∠2+∠PDO+∠OPD=180°,∴∠OPC=∠OPD,故C不符合题意;根据已知不能推出OP=PC+PD.故D符合题意.故答案为:D.【分析】根据角平分线性质和垂直得出PC=PD,∠PCO=∠PDO=90°,求出∠CPO=∠DPO,即可得出答案.5.【解析】【解答】∵DE是AC的垂直平分线,∴DA=DC.∵△ABD的周长为16cm,∴AB+BD+AD=16cm,∴AB+BD+CD=16cm,即AB+BC=16cm.∵AB=6cm,∴BC=10cm.故答案为:B.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.6.【解析】【解答】∵△ABC≌△ADE,∠B=20°,∠C=110°,∴∠EAD=180°﹣20°﹣110°=50°.故答案为:A.【分析】直接利用全等三角形的性质得出对应角进而得出答案.7.【解析】【解答】0.0000034=3.4×10﹣6.故答案为:D.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.8.【解析】【解答】(x+m)(x+2)=x2+(2+m)x+2m∵x+m与x+2的乘积中不含x的一次项,∴2+m=0,故m=﹣2.故答案为:B.【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,进而得出答案.9.【解析】【解答】设边长为x,则(x+3)2=x2+99,解得:x=15.故答案为:C.【分析】可根据:边长增加后的正方形的面积=原正方形的面积+99.来列出方程,求出正方形的边长.10.【解析】【解答】如图,分两种情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故答案为:C.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.二、填空题11.【解析】【解答】原式=a(a2-9)=a(a+3)(a-3).故答案为a(a+3)(a-3).【分析】先提取公因式a,再用平方差公式分解即可.12.【解析】【解答】根据题意得:x﹣3≠0,解得:x≠3.故答案为:x≠3.【分析】根据分式有意义,分母不等于0列式计算即可得解.13.【解析】【解答】六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.【分析】由多边形的内角和=(n-2)可求解。
广东省珠海市香洲区八年级(上)期末模拟测试数学试题(一)一.选择题(满分30分,每小题3分)1.下列四个图案中,不是轴对称图案的是()A.B.C.D.2.下面设计的原理不是利用三角形稳定性的是()A.三角形的房架B.自行车的三角形车架C.斜钉一根木条的长方形窗框D.由四边形组成的伸缩门3.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2B.1,2,4C.2,3,4D.2,3,54.已知空气的单位体积质量是0.001 239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.123 9×10﹣2g/cm3D.12.39×10﹣4g/cm35.下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣66.如图,在△ABC中,∠ABC=110°,AM=AN,CN=CP,则∠MNP=()A.25°B.30°C.35°D.45°7.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0B.C.﹣D.﹣8.如图,点B、F、C、E在一条直线上,AC=DF,BF=CE,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是()A.∠A=∠D=90°B.∠BCA=∠EFD C.∠B=∠ED.AB=DE9.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大3倍B.缩小到原来的C.缩小到原来的D.不变10.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°二.填空题(共6小题,满分24分,每小题4分)11.若分式有意义,则x的取值范围为.12.因式分解:x2﹣3x=.13.已知点P(﹣2,1),则点P关于x轴对称的点的坐标是.14.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.15.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B =70°,∠F AE=19°,则∠C=度.16.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒4个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动.当△ABC的边与坐标轴平行时,t=.三.解答题(共3小题,满分18分,每小题6分)17.(6分)解方程:+﹣=1.18.(6分)已知:如图,在△ABC中,AB=AC,点E在△ABC外一点,CE⊥AE于点E,CE=BC.(1)作出△ABC的角平分线AD.(要求:尺规作图,不写作法,保留作图痕迹.)(2)求证:∠ACE=∠B.19.(6分)计算如图中阴影部分的面积.四.解答题(共3小题,满分21分,每小题7分)20.(7分)先化简,再求值:,其中x=.21.(7分)甲、乙两工程队承包一项工程,如果甲工程队单独施工,恰好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则恰好如期完成.(1)问原来规定修好这条公路需多少长时间?(2)现要求甲、乙两个工程队都参加这项工程,但由于受到施工场地条件限制,甲、乙两工程队不能同时施工.已知甲工程队每月的施工费用为4万元,乙工程队每月的施工费用为2万元.为了结算方便,要求:甲、乙的施工时间为整数个月,不超过15个月完成.当施工费用最低时,甲、乙各施工了多少个月?22.(7分)如图,已知正方形ABCD,把边DC绕D点顺时针旋转30°到DC′处,连接AC′,BC′,CC′,写出图中所有的等腰三角形,并写出推理过程.五.解答题(共3小题,满分27分,每小题9分)23.(9分)因式分解是学习分式的重要基础,面对一些看似复杂的二次三项式,我们可以综合平方差公式和完全平方公式进行分解,例如:①x2﹣2x﹣3=x2﹣2x+12﹣12﹣3=(x﹣1)2﹣4=[(x﹣1)+2][(x﹣1)﹣2]=(x+1)(x﹣3);②x2﹣4x+3=x2﹣4x+22﹣22+3=(x﹣2)2﹣1=[(x﹣2)+1][(x﹣2)﹣1]=(x﹣1)(x﹣3);③x2+6x+5=x2+6x+32﹣32+5=(x+3)2﹣4=[(x+3)+2][(x+3)﹣2]=(x+5)(x+1);④x2+8x﹣20=x2+8x+42﹣42﹣20=(x+4)2﹣36=[(x+4)+6][(x+4)﹣6]=(x+10)(x﹣2)…根据上述的提示,解答下列问题:(1)仿照提示中的步骤,证明x2﹣10x﹣56=(x﹣14)(x+4);(2)对二次三项式x2+10x﹣24进行因式分解.24.(9分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.(9分)如图,已知△ABC中,∠ACB=90°,AC=8,cos A=,D是AB 边的中点,E是AC边上一点,联结DE,过点D作DF⊥DE交BC边于点F,联结EF.(1)如图1,当DE⊥AC时,求EF的长;(2)如图2,当点E在AC边上移动时,∠DFE的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出∠DFE的正切值;(3)如图3,联结CD交EF于点Q,当△CQF是等腰三角形时,请直接写出BF的长.参考答案一.选择题1.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.3.解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.解:0.001 239=1.239×10﹣3,故选:A.5.解:(A)原式=10a5,故A错误;(B)原式=4a4b2,故B错误;(D)原式=a2+a﹣6,故D错误;故选:C.6.解:∵∠ABC=110°,∴∠A+∠C=180°﹣110°=70°.∵AM=AN,CN=CP,∴∠ANM=,∠CNP=,∴∠MNP=180°﹣﹣=180°﹣90°+∠A﹣90°+∠C=(∠A+∠C)=×70°=35°.故选:C.7.解:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=,故选:C.8.解:A.当∠A=∠D=90°,AC=DF,BF=CE时,依据HL可得△ABC≌△DEF;B.当∠BCA=∠EFD,AC=DF,BF=CE时,依据SAS可得△ABC≌△DEF;C.当∠B=∠E,AC=DF,BF=CE时,不能得出△ABC≌△DEF;D.当AB=DE,AC=DF,BF=CE时,依据SSS可得△ABC≌△DEF;故选:C.9.解:把分式中的x,y的值同时扩大为原来的3倍为==•,将分式中的x,y的值同时扩大为原来的3倍,则分式的值缩小到原来的,故选:B.10.解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:依题意得x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.12.解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)13.解:点P(﹣2,1),则点P关于x轴对称的点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).14.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.15.解:∵DE是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠F AC=∠EAC+19°,∵AF平分∠BAC,∴∠F AB=∠EAC+19°,∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°,解得,∠C=24°,故答案为:24.16.解:∵BC=AC,CD为AB边的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,当AC∥y轴时,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴=,即=,解得,t=,当BC∥x轴时,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴=,即=,解得,t =,则当t =或时,△ABC 的边与坐标轴平行.故答案为:或.三.解答题(共3小题,满分18分,每小题6分)17.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0, 解这个方程得x 1=1,x 2=2, 经检验,x 2=2是增根,舍去, 所以,原方程的根是x =1.18.解:(1)如图所示,AD 即为所求.(2)∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =CD =BC , ∵CE =BC , ∴BD =CE ,在Rt △ABD 和Rt △ACE 中∵,∴Rt △ABD ≌Rt △ACE (HL ) ∴∠B =∠ACE .19.解:阴影部分的面积为(a +b )(2a +b )﹣a (a ﹣b ) =2a 2+ab +2ab +b 2﹣a 2+ab=a2+4ab+b2.四.解答题(共3小题,满分21分,每小题7分)20.解:由于x==﹣2原式=×﹣=﹣===21.解:(1)设原来规定修好这条公路需x个月.根据题意,得4(+)+=1,解得:x=12.检验:当x=12时,x(x+6)≠0,经检验,x=12是原方程的解,且满足题意.答:规定修好路的时间为12个月;(2)设甲工作了a个月,乙工作了b个月完成任务,施工费用为w元.根据题意,得,由①可得:b=18﹣1.5a③,代入②中:0<18﹣1.5a+a≤15,∴6≤a<36,又∵a,b均为整数,∴a=6,b=9,W1=4×6+9×2=42(万元),a=8,b=6,W2=8×4+6×2=44(万元),a=10,b=3,W3=10×4+3×2=46(万元).∵W1<W2<W3,∴工费最低时,甲工作了6个月,乙工作9个月.22.解;图中的等腰三角形有:△DCC′,△DC′A,△C′AB,△C′BC,理由:∵四边形ABCD是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∴DC=DC′=DA,∴△DCC′,△DC′A为等腰三角形,∵∠C′DC=30°,∠ADC=90°,∴∠ADC′=60°,∴△AC′D为等边三角形,∴AC′=AD=AB,∴△C′AB为等腰三角形,∵∠C′AB=90°﹣60°=30°,∴∠CDC′=∠C′AB,在△DCC′和△ABC′中,∴△DCC′≌△ABC′(SAS),∴CC′=C′B,∴△BCC′为等腰三角形.五.解答题(共3小题,满分27分,每小题9分)23.解:(1)x2﹣10x﹣56=x2﹣10x+25﹣81=(x﹣5)2﹣92=(x﹣5+9)(x﹣5﹣9)=(x+4)(x﹣14);(2)x2+10x﹣24=x2+10x+25﹣49=(x +5)2﹣72=(x +5+7)(x +5﹣7)=(x +12)(x ﹣2).24.解:(1)∵∠BGE =∠ADE ,∠BGE =∠CGF ,∴∠ADE =∠CGF ,∵AC ⊥BD 、BF ⊥CD ,∴∠ADE +∠DAE =∠CGF +∠GCF ,∴∠DAE =∠GCF ,∴AD =CD ;(2)设DE =a ,则AE =2DE =2a ,EG =DE =a ,∴S △ADE =AE •DE =•2a •a =a 2,∵BH 是△ABE 的中线,∴AH =HE =a ,∵AD =CD 、AC ⊥BD ,∴CE =AE =2a ,则S △ADC =AC •DE =•(2a +2a )•a =2a 2=2S △ADE ;在△ADE 和△BGE 中,∵,∴△ADE ≌△BGE (ASA ),∴BE =AE =2a ,∴S △ABE =AE •BE =•(2a )•2a =2a 2,S △BCE =CE •BE =•(2a )•2a =2a 2,S △BHG =HG •BE =•(a +a )•2a =2a 2,综上,面积等于△ADE 面积的2倍的三角形有△A CD 、△ABE 、△BCE 、△BHG .25.解:(1)∵∠ACB=90°,∴,∵AC=8,∴AB=10,∵D是AB边的中点,∴,∵DE⊥AC,∴∠DEA=∠DEC=90°,∴,∴AE=4,∴CE=8﹣4=4,∵在Rt△AED中,AE2+DE2=AD2,∴DE=3,∵DF⊥DE,∴∠FDE=90°,又∵∠ACB=90°,∴四边形DECF是矩形,∴DF=EC=4,∵在Rt△EDF中,DF2+DE2=EF2,∴EF=5(2)不变如图2,过点D作DH⊥AC,DG⊥BC,垂足分别为点H、G,由(1)可得DH=3,DG=4,∵DH⊥AC,DG⊥BC,∴∠DHC=∠DGC=90°又∵∠ACB=90°,∴四边形DHCG是矩形,∴∠HDG=90°,∵∠FDE=90°,∴∠HDG﹣∠HDF=∠EDF﹣∠HDF,即∠EDH=∠FDG,又∵∠DHE=∠DGF=90°∴△EDH∽△FDG,∴,∵∠FDE=90°,∴,(3)①当QF=QC时,∴∠QFC=∠QCF,∵∠EDF+∠ECF=180°,∴点D,E,C,F四点共圆,∴∠ECQ=∠DFE,∠DFE+∠QFC=∠ECQ+∠QCF=∠ACB=90°,即∠DFC=90°,又∵∠ACB=90°,D是AB的中点,∴,∴,②当FQ=FC时,∴∠BCD=∠CQF,∵点D是AB的中点,∴BD=CD=AB=5,∴∠BDC=∠BCD,∴∠BCD=∠FCQ,∠BDC=∠CFQ,∴△FQC∽△DCB,由①知,点D,E,C,F四点共圆,∴∠DEF=∠DCF,∵∠DQE=∠FQC,∴△FQC∽△DEQ,即:△FQC∽△DEQ∽△DCB∵在Rt△EDF中,,∴设DE=3k,则DF=4k,EF=5k,∵∠DEF=∠DCF=∠CQF=∠DQE,∴DE=DQ=3k,∴CQ=5﹣3k,∵△DEQ∽△DCB,∴,∴,∴,∵△FQC∽△DCB,∴,∴,解得,∴,∴,③当CF=CQ时,如图3,∴∠BCD=∠CQF,由②知,CD=BD,∴∠BDC=∠BCD,∵△EDQ∽△BDK,在BC边上截取BK=BD=5,过点D作DH⊥BC于H,∴DH=AC=4,BH=BC=3,由勾股定理得,同②的方法得,△CFQ∽△EDQ,∴设DE=3m,则EQ=3m,EF=5m,∴FQ=2m,∵△EDQ∽△BDK,∴,∴DQ=m,∴CQ=FC=5﹣m,∵△CQF∽△BDK,∴,∴,解得m=,∴,∴.即:△CQF是等腰三角形时,BF的长为3或或.。
2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.2.(3分)如果一个三角形的两边长分别为1和6,则第三边长可能是()A.5B.6C.7D.83.(3分)下列计算正确的是()A.3x﹣x=3B.2x+3x=5x2C.(2x)2=4x2D.(x+y)2=x2+y24.(3分)如图,P是∠AOB的平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D.下列结论不一定成立的是()A.∠AOP=∠BOP B.PC=PD C.∠OPC=∠OPD D.OP=PC+PD 5.(3分)如图,在△ABC中,DE是AC的垂直平分线,AB=6cm,且△ABD的周长为16cm,则BC的长为()A.8cm B.10cm C.14cm D.22cm6.(3分)如图,△ABC≌△ADE,∠B=20°,∠C=110°,则∠EAD的度数为()A.50°B.20°C.110°D.70°7.(3分)随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示0.0000034是()A.0.34×10﹣5B.3.4×106C.3.4×10﹣5D.3.4×10﹣6 8.(3分)若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2B.﹣2C.4D.﹣49.(3分)一个正方形的边长增加3cm,它的面积就增加99cm2,这个正方形的边长为()A.13cm B.14cm C.15cm D.16cm10.(3分)如图所示,正方形网格中,网格线的交点称为格点,已知点A,B是两个格点,如果点C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数为()A.4B.5C.6D.7二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)因式分解:m3﹣9m=.12.(4分)若分式有意义,则x.13.(4分)正六边形的每个内角的度数是度.14.(4分)在平面直角坐标系中,点M(﹣3,2)关于x轴对称的点的坐标是.15.(4分)已知a,b是一个等腰三角形的两边长,且满足a2+b2﹣6a﹣8b+25=0,则这个等腰三角形的周长为.16.(4分)如图,在△ABC中,AB=AC,∠BAC=30°,D为BC上任意一点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F,且DE+DF=,连接AD,则AB=.17.(4分)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣12+(π﹣3.14)0﹣()﹣2+|﹣3|.19.(6分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=50°,∠C=36°,求∠DAC的度数.20.(6分)先化简再求值:(1﹣)÷,其中x=3.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)珠海到韶关的距离约为360千米,小刘驾驶小轿车,小张驾驶大货车,两人都从珠海去韶关,小刘比小张晚出发90分钟,最后两车同时到达韶关,已知小轿车的速度是大货车速度的1.5倍.(1)分别求小轿车和大货车的速度;(2)当小刘行驶了2小时,此时两车相距多少千米?22.(8分)如图,在平面直角坐标系中,点A的坐标为(﹣1,5),点B的坐标为(﹣3,1).(1)在平面直角坐标系中作线段AB关于y轴对称的线段A1B1(A与A1,B与B1对应);(2)求△AA1B1的面积;(3)在y轴上存在一点P,使PA+PB的值最小,则点P的坐标为.23.(8分)如图,在等边三角形ABC中,点D在线段AB上,点E在CD的延长线上,连接AE,AE=AC,AF平分∠EAB,交CE于点F,连接BF.(1)求证:EF=BF;(2)猜想∠AFC的度数,并说明理由.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知a,b,c,d都是互不相等的正数.(1)若=2,=2,则,(用“>”,“<”或“=”填空);(2)若=,请判断和的大小关系,并证明;(3)令==t,若分式﹣+2的值为3,求t的值.25.(10分)如图,在平面直角坐标系中,OA=OB,AC=CD,已知两点A(4,0),C(0,7),点D在第一象限内,∠DCA=90°,点B在线段OC上,AB的延长线与DC的延长线交于点M,AC与BD交于点N.(1)点B的坐标为:;(2)求点D的坐标;(3)求证:CM=CN.2019-2020学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,求出第三边的取值范围,即可得出答案.【解答】解:设第三边长为x,则6﹣1<x<6+1,即5<x<7,∴第三边长可能是6.故选:B.3.【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、3x﹣x=2x,故此选项错误;B、2x+3x=5x,故此选项错误;C、(2x)2=4x2,正确;D、(x+y)2=x2+2xy+y2,故此选项错误;故选:C.4.【分析】根据角平分线上的点到角的两边的距离相等可得PC=PD,然后利用“HL”证明Rt△OCP和Rt△ODP全等,根据全等三角形对应边相等,全等三角形对应角相等对各选项分析判断后利用排除法求解.【解答】解:∵P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,∴PC=PD,故A,B选项成立,在Rt△OCP和Rt△ODP中,,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD,∠OPC=∠OPD,故C选项成立,OP=PC+PD无法证明,不一定成立.故选:D.5.【分析】根据线段的垂直平分线的性质得到DA=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC.∵AB=6cm,△ABD的周长为16cm,∴BC=16﹣6=10cm,故选:B.6.【分析】直接利用全等三角形的性质得出对应角进而得出答案.【解答】解:∵△ABC≌△ADE,∠B=20°,∠C=110°,∴∠D=∠B=20°,∠E=110°,∴∠EAD=180°﹣20°﹣110°=50°.故选:A.7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000034是3.4×10﹣6.故选:D.8.【分析】利用多项式乘以多项式法则计算,由结果不含x的一次项确定出m的值即可.【解答】解:根据题意得:(x+m)(x+2)=x2+(m+2)x+2m,由结果中不含x的一次项,得到m+2=0,解得:m=﹣2,故选:B.9.【分析】可根据:边长增加后的正方形的面积=原正方形的面积+99,列出方程,求出正方形的边长.【解答】解:设这个正方形的边长为x,则(x+3)2=x2+99,解得:x=15cm.故选:C.10.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.【分析】原式提取m,再利用平方差公式分解即可.【解答】解:原式=m(m2﹣9)=m(m+3)(m﹣3),故答案为:m(m+3)(m﹣3).12.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣3≠0,解得:x≠3.故答案是:≠3.13.【分析】利用多边形的内角和为(n﹣2)•180°求出正六边形的内角和,再结合其边数即可求解.【解答】解:根据多边形的内角和定理可得:正六边形的每个内角的度数=(6﹣2)×180°÷6=120°.14.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点(﹣3,2)关于x轴对称的点的坐标.【解答】解:∵点(﹣3,2)关于x轴对称,∴对称的点的坐标是(﹣3,﹣2).故答案为(﹣3,﹣2).15.【分析】根据配方法把原式变形,根据非负数的性质分别求出a、b,分a是腰长、b是腰长两种情况计算,得到答案.【解答】解:a2+b2﹣6a﹣8b+25=0,a2﹣6a+9+b2﹣8b+16=0,(a﹣3)2+(b﹣4)2=0,解得,a=3,b=4,当a是腰长时,等腰三角形的周长=3+3+4=10,当b是腰长时,等腰三角形的周长=3+4+4=11,故答案为:10或11.16.【分析】如图,作BH⊥AC于H.根据S△ABC=S△ABD+S△ACD,DE⊥AB,DF⊥AC,列等式,由此即可解决问题.【解答】解:过B作BH⊥AC于H,∵∠BAC=30°,∴BH=AB,∵AB=AC,=S△ABD+S△ACD,∴S△ABC∵DE⊥AB,DF⊥AC,∴=,AB=AB(DE+DF),AB=DF+DF=,∴AB=,故答案为:17.【分析】先确定正负号与序号数的关系,再确定分母与序号数的关系,然后确定a的指数与序号数的关系.【解答】解:第1个数为(﹣1)1•,第2个数为(﹣1)2•,第3个数为(﹣1)3•,第4个数为(﹣1)4•,…,所以这列数中的第n个数是(﹣1)n•.故答案为(﹣1)n•.三、解答题(一)(本大题3小题,每小题6分,共18分)18.【分析】首先计算乘方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣12+(π﹣3.14)0﹣()﹣2+|﹣3|=﹣1+1﹣4+3=﹣119.【分析】根据题意和等腰三角形的性质,可以求得∠BAD和∠BDA的度数,再根据三角形外角和内角的关系,即可求得∠DAC的度数.【解答】解:由题意得:BA=BD,则∠BAD=∠BDA,∵∠B=50°,∴∠BAD=∠BDA=65°,∵∠BDA=∠DAC+∠C,∠C=36°,∴∠DAC=29°.20.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=3时,原式=•==4四、解答题(二)(本大题3小题,每小题8分,共24分)21.【分析】(1)设货车的速度为x千米/时,则小轿车的速度为1.5x千米/时,根据题意可得等量关系:小张行驶360千米所用时间﹣小刘行驶360千米所用时间=90分钟,根据等量关系列出方程,再解即可;(2)计算小张行驶3.5小时所行驶路程和小刘行驶2小时所行驶路程差即可.【解答】解:(1)设货车的速度为x千米/时,依题得:,解得x=80,经检验x=80为原方程的解,∴1.5x=120,答:货车的速度为80千米/时,小汽车的速度为120千米/时.(2)3.5×80﹣2×120=40(千米),答:两车的距离是40千米.22.【分析】(1)利用关于y轴对称点的性质得出对应点位置进而得出答案;(2)利用三角形面积计算公式进行计算即可;(3)利用两点之间,线段最短,即可得到点P的位置,依据直线AB1解析式即可得出点P的坐标.【解答】解:(1)如图所示,线段A1B1即为所求;(2)∵A(﹣1,5),A1(1,5),∴AA1=2,∴△AA1B1的面积=;(3)如图所示,AB1与y轴的交点即为点P(0,4).故答案为:(0,4).23.【分析】(1)证明△AEF≌△ABF(SAS),即可得出结论;(2)在EC上截取CG=EF,连接AG,证明△AFG是等边三角形,即可得出结论.【解答】(1)证明:∵△ABC是等边三角形∴AB=AC,∠BAC=60°,∵AE=AC,∴AE=AB,∵AF平分∠EAB,∴∠EAF=∠DAF,在△AEF和△ABF中,∴△AEF≌△ABF(SAS),∴EF=BF;(2)解:∠AFC=60°,理由如下:在EC上截取CG=EF,连接AG,∵AE=AC,∴∠EAF=∠ACG,∵EF=CG,∴△AEF≌△ACG(SAS),∴AF=AG,∠CAG=∠EAF=∠DAF,∵∠BAG+∠CAG=60°,∴∠BAF+∠BAG=60°,∴∠FAG=60°,∴△AFG是等边三角形,∴∠AFC=60°.五、解答题(三)(本大题2小题,每小题10分,共20分)24.【分析】(1)根据=2,=2,可以求得所求式子之间的大小关系;(2)先判断和的大小关系,然后根据=,即可说明大小关系成立的理由;(3)根据==t,分式﹣+2的值为3,可以求得t的值.【解答】解:(1)∵=2,=2,∴=,=,a=2b,c=2d,∴=,==,故答案为:=,=;(2)=,理由如下:∵,∴ad=bc,∴﹣===0,∴=;(3)∵,∴a=ct,b=dt,∵2=3,∴,解得t=.25.【分析】(1)由A(4,0)和OA=OB即可得到结论;(2)过点D作DE⊥y轴,垂足为E,证明△DEC≌△COA,得出DE=OC=7,EC=OA=4,即可得到结论;(3)证明△DBE是等腰直角三角形,得到∠DBE=45°,从而得到∠DBA=90°.在△DNC和△ABN中,根据三角形内角和定理可得出∠CDN=∠BAN,从而证明△DCN≌△ACM,根据全等三角形对应边相等即可得出结论.【解答】解:(1)∵A(4,0),∴OA=OB=4,∴B(0,4),故答案为:(0,4).(2)∵C(0,7),∴OC=7,过点D作DE⊥y轴,垂足为E,∴∠DEC=∠AOC=90°,∵∠DCA=90°,∴∠ECD+∠BCA=∠ECD+∠EDC=90°∴∠BCA=∠EDC,∴△DEC≌△COA(AAS),∴DE=OC=7,EC=OA=4,∴OE=OC+EC=11,∴D(7,11);(3)证明:∵BE=OE﹣OB=11﹣4=7∴BE=DE,∴△DBE是等腰直角三角形,∴∠DBE=45°,∵OA=OB,∴∠OBA=45°,∴∠DBA=90°,∴∠BAN+∠ANB=90°,∵∠DCA=90°,∴∠CDN+∠DNC=90°,∵∠DNC=∠ANB,∴∠CDN=∠BAN,∵∠DCA=90°,∴∠ACM=∠DCN=90°,∴△DCN≌△ACM(ASA),∴CM=CN.。
香洲区2016—2017学年第一学期期末考试试卷八年级数学说明:1.全卷共4页。
满分120分,考试用时100分钟。
2.答案写在答题卷上,在试卷上作答无效。
3.用黑色字迹钢笔或签字笔按各题要求写在答题卷上,不能用铅笔和红色字迹的笔。
一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D . 2.若分式13-x x 有意义,则x 应满足( ) A .x =0 B .x ≠0 C .x =1 D .x ≠13.一个三角形的两边长分别是3和7,则第三边长可能是( )A .3B .4C .9D .104.在平面直角坐标系中,点P (﹣2,3)关于x 轴的对称点坐标是( )A .(2,3)B .(2,﹣3)C .(﹣2,﹣3)D .(﹣3,﹣2)5.下列运算正确的是( )A .33)(ab ab =B .532a a a =⋅C . 532)(a a =D .632=a a a ÷6.如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A .∠B =∠D =90° B .∠BCA =∠DCAC .∠BAC =∠DACD .CB =CD6题图7.如图, 在“钻石型”五边形中x 的值是( )A .60°B .120°C .135°D .150°8.在△ABC 中,∠C =90°,AD 平分∠BAC ,AB =10,CD = 3,则S △ABD 的面积是( )A .3B .10C .15D .30 9.多项式()3(2)x x mx +-+中不含x 的一次项,则m 的值是( )A. 1-B. 1C. 6-D. 610.如图,△AOB ≌△ADC ,点B 和点C 是对应顶点,∠O =∠D =90°,记∠OAD =α,∠ABO =β,当BC ∥OA 时,α与β之间的数量关系为( )A. α=β B .α=2β C .α+β=90° D .α+2β=180°二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.在生活中,我们经常会看见在电线杆上拉两条钢线, 来加固电线杆,依据是三角形具有 .12.2012年2月,国务院发布了新修订的环境空气质量标准, 首次增加了PM2.5的监测.PM2.5 是指大气中直径小于或等于0.000 0025m 的颗粒物,将数字0.000 0025用科学记数法表示为 .13.若正n 边形的每个外角为60度,则n 的值是 .14.计算:20332-⨯+= .15.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别为D ,E ,AD =2.5,DE =1.7,则BE = .16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC ,请你找出格纸中所有与△ABC 成轴对称且以格点为顶点的三角形,这样的三角形共有______个.A 8题图11题图7题图 60° x x x x 10题图 15题图 16题图三、解答题(一)(本大题3小题,每小题6分,共18分)17.分解因式:121232+-x x .18.解方程: x x x -=+--23123. 19.如图,点B 、E 、C 、F 在同一直线上,∠A =∠D ,∠B =∠DEF ,AB =DE ,求证:BE =CF .19题图四、解答题(二)(本大题3小题,每小题7分,共21分)20. 先化简,后求值:22141+) +1x x x x -÷+(,其中21-=x .21.如图,△ABC ,AB =7,BC =5,AC =3.(1)尺规作图:作BC 边上的高(不写做法,保留作图痕迹);(2)将BC 边上的高记为h ,则S △ABC = .(用含h 的式子表示)21题图22.前山河是珠海的母亲河,政府欲清淤疏通治理.甲公司单独清淤30天完成总工程的31,这时增加乙公司,两公司又共同清淤15天,总工程全部完成. 问若由乙公司独立清淤这项总工程需多少天?五、解答题(三)(本大题3小题,每小题9分,共27分)23.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是__________;(请选择正确的一个) A .2222)(b a b ab a -=+-B .))((b a b a b a -+=-22C .)(b a a ab a +=+2(2)应用你从(1)中选出的等式,完成下列各题:①已知12922=-y x ,43=+y x ,求y x 3-的值.②计算:))(())()((2222220111911411311211----- . 24.在△ABC 中,AB =AC ,∠A =20°,BD 平分∠ABC ,交AC 于点D ,AC 的垂直平分线EF 分别交AC ,AB 于点E ,F ,交BD 的延长线于点P ,连接CF 交BD 于点Q .(1)求∠BQF 的度数;(2)求证:DP =2DE .24题图25.现有一块直角三角板,AB =1,∠ABC =90°,∠ACB =60°,沿AC 翻折得到△ACD .(1)如图①,连接BD ,求证:△ABD 为等边三角形.(2)如图②,∠MCP =120°,∠MCP 的边CM 交AB 于点M ,边CP 交AD 延长线于点P , ∠MCP 的角平分线交AD 于点N ,连接MN .① 求证:BM =DP ;② 求△AMN 的周长.a b 图 C DQ图①。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是( )A. B. C. D.试题2:下列计算正确的是( )A.x6÷x3=x8 B.x3+x2=x6 C.(x2)3=x5 D.x2•x3=x5试题3:下列各组长度线段能组成三角形的是( )A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cm D.1cm,2cm,2cm试题4:已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于( )A.100° B.40° C.50° D.100°或40°试题5:以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( )A. B. C. D.试题6:一个多边形的内角和是720°,这个多边形的边数是( )A.4 B.5 C.6 D.7试题7:如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是( )A.20° B.30° C.35° D.40°试题8:若分式中的x、y的值都变为原来的3倍,则此分式的值( )A.不变 B.是原来的3倍 C.是原来的 D.是原来的一半试题9:.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式( )A.(a+b)2=a2+2ab+b2 B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.(a+b)(a﹣2b)=a2﹣ab﹣2b2试题10:如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于( )A.50° B.30° C.20° D.15°试题11:在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为__________.试题12:当x__________时,分式有意义.试题13:分解因式:x3﹣xy2=__________.试题14:计算:2﹣2×46=__________.试题15:正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为__________.试题16:如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为__________.试题17:计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.试题18:解方程:+=1.试题19:已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.试题20:先化简,再求值:(1﹣)÷,其中x=3.试题21:如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.试题22:某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?试题23:如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F 点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.试题24:先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=__________.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.试题25:如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM的形状,并说明理由.试题1答案:C【考点】轴对称图形.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答题目.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.试题2答案:D【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x6÷x3=x6﹣3=x3,选项错误;B、不是同类项,不能合并,选项错误;C、(x2)3=x6,故选项错误;D、x2•x3=x5,故选项正确.故选D.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.试题3答案:D【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+3<5,不能组成三角形,故此选项错误;B、1+1=2,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、1+2>2,能够组成三角形,故此选项正确.故选:D.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.试题4答案:B【考点】等腰三角形的性质.【分析】先确定100°的内角是顶角,再根据等腰三角形两底角相等列式计算即可得解.【解答】解:根据三角形的内角和定理,100°的内角是顶角,所以,两个底角为:(180°﹣100°)=40°,故选B.【点评】本题考查了等腰三角形的性质,判断出100°的内角是顶角是解题的关键.试题5答案:B【考点】三角形的角平分线、中线和高.【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.【解答】解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.故选B.【点评】过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高.试题6答案:C【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.【点评】本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.试题7答案:D【考点】全等三角形的性质.【分析】根据全等三角形的对应角相等求出∠ACB的度数,结合图形计算即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′=70°,∴∠ACA′=∠ACB﹣∠A′CB=40°故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键》试题8答案:C【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变,可得答案.【解答】解:分式中的x、y的值都变为原来的3倍,则此分式的值原来的,故选:C.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变.试题9答案:C【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.试题10答案:A【考点】平行线的性质.【分析】如图,由平行可知∠2=∠3,又可求得∠A=30°,结合外角的性质可求得∠2.【解答】解:如图所示,∵a∥b,∴∠3=∠2,∵∠B=60°,∴∠A=30°,∴∠3=∠1+∠A=20°+30°=50°,∴∠2=50°,故选A.【点评】本题主要考查平行线的性质及外角的性质,掌握两直线平行同位角相等是解题的关键.试题11答案:(﹣1,2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2),故答案为:(﹣1,2).【点评】本题考查了关于y轴的对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.试题12答案:≠﹣2 .【考点】分式有意义的条件.【分析】根据分式的意义的条件:分母不等于0,就可以求解.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2,故答案是:≠﹣2.【点评】本题主要考查了分式有意义的条件是分母不等于0.试题13答案:x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.试题14答案:1024.【考点】负整数指数幂.【专题】计算题;推理填空题.【分析】首先根据负整数指数幂的运算方法,求出2﹣2的值是多少;然后根据有理数的乘方的运算方法,求出算式2﹣2×46的值是多少即可.【解答】解:2﹣2×46=×46=1024.故答案为:1024.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.试题15答案:8.【考点】多边形内角与外角.【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数的3倍,即可得方程:x+3x=180,解此方程即可求得答案.【解答】解:设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数的3倍,∴这个正多边形的一个内角为:3x°,∴x+3x=180,解得:x=45,∴这个多边形的边数是:360°÷45°=8.故答案为:8.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.试题16答案:.【考点】角平分线的性质.【分析】根据等腰三角形三线合一的性质可得AP=PD,然后根据等底等高的三角形面积相等求出△BPC的面积等于△ABC 面积的一半,代入数据计算即可得解.【解答】解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,∴S△BPD=S△ABD,S△CPD=S△ACD,∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,∵△ABC的面积为3,∴S△BPC=×3=.故答案为:.【点评】本题考查了等腰三角形三线合一的性质,三角形的面积,利用等底等高的三角形的面积相等求出△BPC的面积与△ABC的面积的关系是解题的关键.试题17答案:【考点】整式的混合运算.【专题】计算题;整式.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:原式=x2﹣1+2x2+2x﹣3x2=2x﹣1.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.试题18答案:【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.试题19答案:【考点】全等三角形的判定与性质.【专题】证明题.【分析】由中点的定义得出BD=CD,由HL证明Rt△BDF≌Rt△CDE,得出对应角相等即可.【解答】证明:∵点D是△ABC的边BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE中,,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.【点评】本题考查了全等三角形的判定与性质、线段中点的定义;由HL证明Rt△BDF≌Rt△CDE是解决问题的关键.试题20答案:【考点】分式的化简求值.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•(x﹣1)2+3x﹣4=(x﹣2)(x﹣1)+3x﹣4=x2﹣3x+2+3x﹣4=x2﹣2,当x=3时,原式=9﹣2=7.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.试题21答案:【考点】作图—复杂作图.【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AC、AB与于M、N,再分别以M、N长为半径画弧,两弧交于点E,再作射线AE,交BC于D;(2)利用三角形内角和定理可得∠C=90°,然后再根据直角三角形的性质:30°角所对的直角边等于斜边的一半可得AD=2CD,再根据等角对等边可得BD长.【解答】解:(1)如图所示:(2)∵∠CAB=60°,∠B=30°,∴∠C=90°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°,∴AD=2CD=2,∠B=∠DAB,∴DB=2.【点评】此题主要考查了复杂作图,以及直角三角形的性质,关键是掌握角平分线的作法,以及30°角所对的直角边等于斜边的一半.试题22答案:【考点】分式方程的应用.【分析】设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x元,根据第二次购买数量比第一次多了30公斤,可得出方程,解出即可.【解答】解:设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x,由题意得+30=,解得:x=200经检验x=200是原分式方程的解.0.5x=100答:第一次购进的蓝莓的单价是200元,第二次购进蓝莓的单价为100元.【点评】本题考查了分式方程的应用,解答本题的关键是找到等量关系,注意分式方程要检验.试题23答案:【考点】翻折变换(折叠问题).【分析】(1)利用平行线的性质得出∠ADE=60°,再利用翻折变换的性质得出∠ADE=∠EDF=60°,进而得出∠BDF=60°即可得出答案;(2)利用平行线的性质结合(1)中所求得出∠2,∠5+∠6的度数即可得出答案.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠EDF=60°,∴∠BDF=60°,∴△BDF是等边三角形;(2)解:如图2,由(1)得:∠1=60°,∵CF∥AB,∴∠2+∠3=60°,∠B=∠6=60°,∵∠B=60°,∠C=78°,∴∠A=∠3=42°,∴∠2=60°﹣42°=18°,∴∠5+∠6=60°+78°=138°,∴∠4=∠180°﹣18°﹣138°=24°.【点评】此题主要考查了翻折变换的性质以及平行线的性质和等边三角形的判定以及三角形内角和定理等知识,正确利用翻折变换的性质得出∠ADE=∠EDF是解题关键.试题24答案:【考点】因式分解的应用.【分析】(1)把(x﹣y)看作一个整体,直接利用完全平方公式因式分解即可;(2)令A=a+b,代入后因式分解后代入即可将原式因式分解;(3)将原式转化为(n2+3n)[(n+1)(n+2)]+1,进一步整理为(n2+3n+1)2,根据n为正整数得到n2+3n+1也为正整数,从而说明原式是整数的平方.【解答】解:(1)1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【点评】本题考查了因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.试题25答案:【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等即可得出结论;(2)过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,得出∠DEM=90°即可;【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)解:△DEM是直角三角形;理由如下:过点E作EH⊥AB于H,如图所示:则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴∠DEM=90°,∴△DEM是直角三角形.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质;熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键.。
2015-2016学年广东省珠海市香洲区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x5 3.(3分)下列各组长度线段能组成三角形的是()A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cmD.1cm,2cm,2cm4.(3分)已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于()A.100°B.40°C.50°D.100°或40°5.(3分)以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.6.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.77.(3分)如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠A CA′的度数是()A.20°B.30°C.35°D.40°8.(3分)若分式中的x、y的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的D.是原来的一半9.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2 10.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于()A.50°B.30°C.20°D.15°二、填空题(共6小题,每小题4分,满分24分)11.(4分)在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为.12.(4分)当x时,分式有意义.13.(4分)分解因式:x3﹣xy2=.14.(4分)计算:2﹣2×46=.15.(4分)正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为.16.(4分)如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.三、解答题(共9小题,满分66分)17.(6分)计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.18.(6分)解方程:+=1.19.(6分)已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.20.(7分)先化简,再求值:(1﹣)÷,其中x=3.21.(7分)如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.22.(7分)某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?23.(9分)如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.24.(9分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.25.(9分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM的形状,并说明理由.2015-2016学年广东省珠海市香洲区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)剪纸艺术是我国文化宝库中的优秀遗产,在民间广泛流传.下面四幅剪纸作品中,属于轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意.D、不是轴对称图形,不符合题意;故选:C.2.(3分)下列计算正确的是()A.x6÷x3=x8B.x3+x2=x6C.(x2)3=x5D.x2•x3=x5【解答】解:A、x6÷x3=x6﹣3=x3,选项错误;B、不是同类项,不能合并,选项错误;C、(x2)3=x6,故选项错误;D、x2•x3=x5,故选项正确.故选:D.3.(3分)下列各组长度线段能组成三角形的是()A.1cm,3cm,5cm B.1cm,1cm,2cm C.1cm,2cm,3cmD.1cm,2cm,2cm【解答】解:根据三角形的三边关系,得A、1+3<5,不能组成三角形,故此选项错误;B、1+1=2,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、1+2>2,能够组成三角形,故此选项正确.故选:D.4.(3分)已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于()A.100°B.40°C.50°D.100°或40°【解答】解:根据三角形的内角和定理,100°的内角是顶角,所以,两个底角为:(180°﹣100°)=40°,故选:B.5.(3分)以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()A.B.C.D.【解答】解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.故选:B.6.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.7.(3分)如图,△ACB≌△A′CB′,∠A′CB=30°,∠A′CB′=70°,则∠ACA′的度数是()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′=70°,∴∠ACA′=∠ACB﹣∠A′CB=40°故选:D.8.(3分)若分式中的x、y的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的D.是原来的一半【解答】解:分式中的x、y的值都变为原来的3倍,则此分式的值原来的,故选:C.9.(3分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.10.(3分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于()A.50°B.30°C.20°D.15°【解答】解:如图所示,∵a∥b,∴∠3=∠2,∵∠B=60°,∴∠A=30°,∴∠3=∠1+∠A=20°+30°=50°,∴∠2=50°,故选:A.二、填空题(共6小题,每小题4分,满分24分)11.(4分)在平面直角坐标系中,点M(1,2)关于y轴对称点的坐标为(﹣1,2).【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2),故答案为:(﹣1,2).12.(4分)当x≠﹣2时,分式有意义.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2,故答案是:≠﹣2.13.(4分)分解因式:x3﹣xy2=x(x+y)(x﹣y).【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).14.(4分)计算:2﹣2×46=1024.【解答】解:2﹣2×46=×46=1024.故答案为:1024.15.(4分)正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.【解答】解:设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数的3倍,∴这个正多边形的一个内角为:3x°,∴x+3x=180,解得:x=45,∴这个多边形的边数是:360°÷45°=8.故答案为:8.16.(4分)如图,在△ABC中(AB<BC),在BC上截取BD=BA,作∠ABC的平分线与AD相交于点P,连接PC,若△ABC的面积为3,则△BPC的面积为.【解答】解:∵BD=BA,BP是∠ABC的平分线,∴AP=PD,=S△ABD,S△CPD=S△ACD,∴S△BPD∴S=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC,△BPC∵△ABC的面积为3,=×3=.∴S△BPC故答案为:.三、解答题(共9小题,满分66分)17.(6分)计算:(x+1)(x﹣1)+2x(x+1)﹣3x2.【解答】解:原式=x2﹣1+2x2+2x﹣3x2=2x﹣1.18.(6分)解方程:+=1.【解答】解:去分母得:2+x(x+2)=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.19.(6分)已知:如图,点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且BF=CE.求证:∠B=∠C.【解答】证明:∵点D是△ABC的边BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE中,,∴Rt△BDF≌Rt△CDE(HL),∴∠B=∠C.20.(7分)先化简,再求值:(1﹣)÷,其中x=3.【解答】解:原式=•(x﹣1)2+3x﹣4=(x﹣2)(x﹣1)+3x﹣4=x2﹣3x+2+3x ﹣4=x2﹣2,当x=3时,原式=9﹣2=7.21.(7分)如图,△ABC中,∠CAB=60°,∠B=30°.(1)作∠CAB的平分线与CB交于点D(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若CD=1,求DB的长.【解答】解:(1)如图所示:(2)∵∠CAB=60°,∠B=30°,∴∠C=90°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°,∴AD=2CD=2,∠B=∠DAB,∴DB=2.22.(7分)某超市购进草莓,第一次购进了1000元的草莓,很快售完,第二次又购进了800元的草莓,因为第二次购进的草莓个头小,所以单价只有第一次购进草莓的一半,但是质量比第一次多了30公斤,问这两次购进草莓的单价分别是多少?【解答】解:设第一次购进的蓝莓的单价是x元,则第二次购进蓝莓的单价为0.5x,由题意得+30=,解得:x=20经检验x=20是原分式方程的解.0.5x=10答:第一次购进的蓝莓的单价是20元,第二次购进蓝莓的单价为10元.23.(9分)如图△ABC中,∠B=60°,∠C=78°,点D在AB边上,点E在AC边上,且DE∥BC,将△ADE沿DE折叠,点A对应点为F点.(1)若点A落在BC边上(如图1),求证:△BDF是等边三角形;(2)若点A落在三角形外(如图2),且CF∥AB,求△CEF各内角的度数.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠EDF=60°,∴∠BDF=60°,∴△BDF是等边三角形;(2)解:如图2,由(1)得:∠1=60°,∵CF∥AB,∴∠2+∠3=60°,∠B=∠6=60°,∵∠B=60°,∠C=78°,∴∠A=∠3=42°,∴∠2=60°﹣42°=18°,∴∠5+∠6=60°+78°=138°,∴∠4=∠180°﹣18°﹣138°=24°.24.(9分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题候总用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2.(2)因式分解:(a+b)(a+b﹣4)+4(3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.【解答】解:(1)1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)令A=a+b,则原式变为A(A﹣4)+4=A2﹣4A+4=(A﹣2)2,故(a+b)(a+b﹣4)+4=(a+b﹣2)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.25.(9分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:AE=AF.(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME,判断△DEM的形状,并说明理由.【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)解:△DEM是直角三角形;理由如下:过点E作EH⊥AB于H,如图所示:则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴∠DEM=90°,∴△DEM是直角三角形.附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。