一章习题解答
- 格式:doc
- 大小:396.00 KB
- 文档页数:14
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
第一章 流体流动1-1某敞口容器内盛有水与油。
如图所示。
已知水及油的密度分别为1000和860kg/m 3,解:h 1=600mm ,h 2=800mm ,问H 为多少mm ?习题1-1附图mH H H m kg m kg mm h mm h 32.181.91080.081.91060.081.9860?,/860/10,800,6003333321=∴⨯=⨯⨯+⨯⨯===== 油水,解:ρρ1-2有一幢102层的高楼,每层高度为4m 。
若在高楼范围内气温维持20℃不变。
设大气静止,气体压强为变量。
地平面处大气压强为760mmHg 。
试计算楼顶的大气压强,以mmHg 为单位。
⎰⎰=∴-=⨯⨯⨯-=⨯⨯-=⎩⎨⎧---⨯=⨯⨯=----=---127.724,04763.040810190.181.9)760/(10190.181.910190.1)2.2938314/(29151408055P P p mmHgp p Ln dz p dp p p gdz d ②代入①,得②①解:ρρ1-3某水池,水深4米,水面通大气,水池侧壁是铅垂向的。
问:水池侧壁平面每3米宽度承受水的压力是多少N ?外界大气压为1atm 。
解:N dz gz P F 64023501045.12/481.9103410013.13)(3⨯=⨯⨯⨯+⨯⨯⨯=+=⎰水ρ 1-4外界大气压为1atm ,试按理想气体定律计算0.20at (表压)、20℃干空气的密度。
空气分子量按29计。
543(1.013100.209.8110)291.439/8314293.2PM kg m RT ρ⨯+⨯⨯⨯===⨯解:1-5有个外径为R 2、内径为R 1为的空心球,由密度为ρ’的材料制成。
若将该球完全淹没在某密度为ρ的液体中,若球能在任意位置停留,试求该球的外径与内径之比。
设球内空气重量可略。
3/1'1232'3132)/1(/)3/4())3/4(--=∴=-ρρρπρπR R gR g R R (解:1-6为放大以U 形压差计测气体压强的读数,采用倾斜式U 形压差计。
习题解答 第一章1.举例说明符合光传播基本定律的生活现象及各定律的应用。
答:(1)光的直线传播定律影子的形成;日蚀;月蚀;均可证明此定律。
应用:许多精密的测量,如大地测量(地形地貌测量),光学测量,天文测量。
(2)光的独立传播定律定律:不同光源发出的光在空间某点相遇时,彼此互不影响,各光束独立传播。
说明:各光束在一点交会,光的强度是各光束强度的简单叠加,离开交会点后,各光束仍按各自原来的方向传播。
2.已知真空中的光速c 3×108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:v=c/n(1) 光在水中的速度:v=3×108/1.333=2.25×108 m/s (2) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s (3) 光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s (4) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s (5) 光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s*背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。
那时候的玻璃极不均匀,多泡沫。
除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。
3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。
解:706050=+l l l =300mm4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:本题是关于全反射条件的问题。
第⼀章习题答案第⼀章思考题答案1.基于总线结构的计算机系统通常由哪5个部分构成?并简述各部分的主要作⽤。
解答:1.中央处理器CPU(central processor unit)或称微处理器(microprocessor unit)中央处理器具有算术运算、逻辑运算和控制操作的功能,是计算机的核⼼。
2.总线总线是把计算机各个部分有机地连接起来的导线,是各个部分之间进⾏信息交换的公共通道。
3.存储器(memory)存储器的功能是存储程序、数据和各种信号、命令等信息,并在需要时提供这些信息。
4.输⼊输出(I/O)接⼝外部设备与CPU之间通过输⼊输出接⼝连接。
5.输⼊输出(I/O)设备输⼊设备是变换输⼊信息形式的部件。
它将⼈们熟悉的信息形式变换成计算机能接收并识别的信息形式。
输出设备是变换计算机的输出信息形式的部件。
它将计算机处理结果的⼆进制信息转换成⼈们或其他设备能接收和识别的形式,如字符、⽂字、图形等。
2.试举例说明计算机进⾏加法运算的⼯作过程。
解答:⽰例如下:inta,b,c;c=a+b;⼯作过程简述:a,b,c都为内存中的数据,CPU⾸先需要从内存中分别将a,b的值读⼊寄存器中,然后再执⾏加法运算指令,加法运算的结果暂存在寄存器中,因此还需要执⾏数据存储指令,将运算结果保存到内存中,因此像上例中的C语⾔语句,实际上需要经过两条数据读取指令,⼀条加法运算指令,⼀条数据存储指令才能完成。
3.“冯·诺依曼型结构”计算机与哈佛结构计算机的差别是什么?各有什么优缺点?解答:冯·诺依曼结构计算机具有以下⼏个特点:①有⼀个存储器;②有⼀个控制器;③有⼀个运算器,⽤于完成算术运算和逻辑运算;④有输⼊和输出设备,⽤于进⾏⼈机通信;⑤处理器使⽤同⼀个存储器存储指令和数据,经由同⼀个总线传输。
哈佛结构计算机:①使⽤两个独⽴的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存;②具有⼀条独⽴的地址总线和⼀条独⽴的数据总线,利⽤公⽤地址总线访问两个存储模块(程序存储模块和数据存储模块),公⽤数据总线则被⽤来完成程序存储模块或数据存储模块与CPU 之间的数据传输;③两条总线由程序存储器和数据存储器分时共⽤。
流体流动习题解答1-1 已知甲城市的大气压为760mmHg ,乙城市的大气压为750mmHg 。
某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。
[590mmHg, 7.86×104Pa]解:P (甲绝对)=760-600=160mmHg 750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0.2m 处,测压点与U 形管内水银界面的垂直距离为0.3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N ⋅m -2 (表压); (2)0.554m] 解:1. 根据静压强分布规律 P A =P 0+g ρHP B =ρ,gR因等高面就是等压面,故P A = P BP 0=ρ,gR -ρgH =13600×9.81×0.3-1000×9.81(0.2+0.3)=3.51×104N/㎡ (表压)2. 设P 0加倍后,压差计的读数增为R ,=R +△R ,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆。
同理, ''''''02R p gR gH gR g R gH gρρρρρρ∆=-=+∆--000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---220.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。
机械制造技术基础第一章课后习题答案《机械制造技术基础》部分习题参考解答第一章绪论1-1 什么是生产过程、工艺过程和工艺规程?答:生产过程——从原材料(或半成品)进厂,一直到把成品制造出来的各有关劳动过程的总称为该工厂的过程。
工艺过程——在生产过程中,凡属直接改变生产对象的尺寸、形状、物理化学性能以及相对位置关系的过程。
工艺规程——记录在给定条件下最合理的工艺过程的相关内容、并用来指导生产的文件。
1-2 什么是工序、工位、工步和走刀?试举例说明。
答:工序——一个工人或一组工人,在一个工作地对同一工件或同时对几个工件所连续完成的那一部分工艺过程。
工位——在工件的一次安装中,工件相对于机床(或刀具)每占据一个确切位置中所完成的那一部分工艺过程。
工步——在加工表面、切削刀具和切削用量(仅指机床主轴转速和进给量)都不变的情况下所完成的那一部分工艺过程。
走刀——在一个工步中,如果要切掉的金属层很厚,可分几次切,每切削一次,就称为一次走刀。
比如车削一阶梯轴,在车床上完成的车外圆、端面等为一个工序,其中,n, f, a p 不变的为一工步,切削小直径外圆表面因余量较大要分为几次走刀。
1-3 什么是安装?什么是装夹?它们有什么区别?答:安装——工件经一次装夹后所完成的那一部分工艺过程。
装夹——特指工件在机床夹具上的定位和夹紧的过程。
安装包括一次装夹和装夹之后所完成的切削加工的工艺过程;装夹仅指定位和夹紧。
1-4 单件生产、成批生产、大量生产各有哪些工艺特征?答:单件生产零件互换性较差、毛坯制造精度低、加工余量大;采用通用机床、通用夹具和刀具,找正装夹,对工人技术水平要求较高;生产效率低。
大量生产零件互换性好、毛坯精度高、加工余量小;采用高效专用机床、专用夹具和刀具,夹具定位装夹,操作工人技术水平要求不高,生产效率高。
成批生产的毛坯精度、互换性、所以夹具和刀具等介于上述两者之间,机床采用通用机床或者数控机床,生产效率介于两者之间。
物理初二第一章练习题答案1. 速度和加速度的关系根据物理学的基本概念,速度是物体运动的一个重要参量,而加速度则表示物体速度变化的快慢。
在初二的物理学习中,我们常常需要研究速度和加速度之间的关系。
以下是第一章练习题的答案:题目1:一个从静止开始的物体以恒定的加速度3 m/s²沿着一条直线运动,求它在5秒后的速度是多少?答案:根据物理学中的加速度公式v = u + at,其中v是末速度,u是初速度,a是加速度,t是时间。
给定初速度u=0,加速度a=3 m/s²,时间t=5秒。
代入公式计算可得v = 0 + 3 × 5 = 15 m/s。
题目2:一辆汽车在道路上以25 m/s的速度匀速行驶,经过10秒后它的位置是多少?答案:根据物理学中的位移公式s = ut,其中s是位移,u是速度,t 是时间。
给定速度u=25 m/s,时间t=10秒。
代入公式计算可得s = 25 ×10 = 250 m。
题目3:一个物体的速度从10 m/s增加到20 m/s,经过2秒的时间,求它的加速度是多少?答案:根据物理学中的加速度公式a = (v - u) / t,其中a是加速度,v是末速度,u是初速度,t是时间。
给定初速度u=10 m/s,末速度v=20 m/s,时间t=2秒。
代入公式计算可得a = (20 - 10) / 2 = 5 m/s²。
2. 动量守恒定律在物理学中,动量守恒定律是一个重要的原理,它指出在一个系统内,所有物体的总动量在没有外力作用的情况下保持不变。
以下是第一章练习题中涉及到动量守恒定律的答案:题目1:一辆质量为1000 kg的小轿车以20 m/s的速度向东行驶,和一辆质量为1500 kg的卡车以15 m/s的速度向东行驶发生碰撞,碰撞后两车结合在一起,求结合后的速度是多少?答案:根据动量守恒定律,碰撞前的总动量等于碰撞后的总动量。
小轿车的动量为mv1,卡车的动量为mv2,碰撞后的总动量为(m1 +m2)v。
《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。
2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。
故 max 47n =,min 3M k =,(),61k =。
故 当M 最小值是3的倍数,但不是2的倍数。
3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。
由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。
若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。
所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。
综上所述,所求正整数对()()(),4,111,1x n =、。
4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。
第一章 函数、极限、连续习题1-11.求下列函数的自然定义域:(1)321x y x=+-(2) 1arctany x=+(3) 1arccosx y -=;(4) 313 , 1x y x ⎧≠⎪=⎨⎪=⎩. 解:(1)解不等式组23010x x +≥⎧⎨-≠⎩得函数定义域为[3,1)(1,1)(1,)---+∞U U ; (2)解不等式组230x x ⎧-≥⎨≠⎩得函数定义域为[U ;(3)解不等式组2111560x x x -⎧-≤≤⎪⎨⎪-->⎩得函数定义域为[4,2)(3,6]--U ; (4)函数定义域为(,1]-∞.2.已知函数()f x 定义域为[0,1],求(cos ),()() (0)f f x f x c f x c c ++->的定义域.解:函数f要有意义,必须01≤≤,因此f 的定义域为[0,1];同理得函数(cos )f x 定义域为[2π-,2π]22k k ππ+;函数()()f x c f x c ++-要有意义,必须0101x c x c ≤+≤⎧⎨≤-≤⎩,因此,(1)若12c <,定义域为:[],1c c -;(2)若12c =,定义域为:1{}2;(3)若12c >,定义域为:∅. 3.设21()1,||x a f x x x a ⎛⎫-=- ⎪-⎝⎭0,a >求函数值(2),(1)f a f .解:因为21()1||x a f x x x a ⎛⎫-=- ⎪-⎝⎭,所以 21(2)104a f a a a ⎛⎫=-= ⎪⎝⎭,22 ,>1,11(1)10 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭. 4. 证明下列不等式:(1) 对任何x R ∈有 |1||2|1x x -+-≥; (2) 对任何n Z +∈有 111(1)(1)1n n n n++>++;(3) 对任何n Z +∈及实数1a >有 111na a n--≤.证明:(1)由三角不等式得|1||2||1(2)|1x x x x -+-≥---= (2)要证111(1)(1)1n n n n++>++,即要证111n +>+= 111(1)(1)(1)11111n n n n n +++++++<=+++L 得证。
p44第一章习题(一)[ 13, 16, 17 , 20]13. 试证arg z ( -π < arg z ≤π )在负实轴(包括原点)上不连续,除此而外在z平面上处处连续.【解】记f(z) = arg z,D = \{ z∈ | Im(z) = 0,Re(z) ≤ 0},D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0}.(1) 首先,f(z)在原点无定义,故f(z)在原点处不连续.(2) 设a∈ ,且a < 0.则f(a) = π.考察点列z n = | a | (cos(1/n-π)+ i sin(1/n-π)),n∈ +.显然,-π < 1/n-π≤π,故f(z n) = 1/n-π.而lim n→∞z n = lim n→∞( | a | (cos(1/n-π)+ i sin(1/n-π)) ) = a,但lim n→∞f(z n) = lim n→∞(1/n-π) = -π≠f(a).故f(z)在a处不连续.(3) 下面证明f(z)在D1, D2, D3这三个区域上都连续.设z = x + i y,x, y∈ .(3.1) 在D1上,f(z) = arctan(y/x),因arctan(y/x)是{(x, y)∈ 2 | x > 0 }上的二元连续函数,故f(z)是D1上的连续函数.(3.2) 在D2上,f(z) = arccot(x/y),因arccot(x/y)是{(x, y)∈ 2 | y > 0 }上的二元连续函数,故f(z)是D2上的连续函数.(3.3) 在D3上,f(z) = arccot(x/y) -π,因arccot(x/y) -π是{(x, y)∈ 2 | y < 0 }上的二元连续函数,故f(z)是D3上的连续函数.(4) 最后证明f(z)是D = \{ z∈ | Im(z) = 0,Re(z) ≤ 0}上的连续函数.∀a∈D,因为D = D1⋂D2⋂D3,故存在k (k = 1, 2, 3),使得a∈D k.因D k是开集故存在r > 0,使得U r(a) = { z∈ | | z –a | < r } ⊆D k.根据(3),f(z)在D k上是连续的,故∀ε > 0,∃η> 0,使得∀z∈D k,当| z–a | < η时,| f(z) -f(a) | < ε.设δ= min { r, η},则∀z∈D,当| z–a | < δ时,z∈U r(a) ⊆D k,又因| z–a | < δ< η,故必有| f(z) -f(a) | < ε.所以,f在a处连续.由a的任意性,f(z)是上的连续函数.[连续性部分的证明可以用几何的方法,而且写起来会简单些.但我们之所以选择这个看起来很复杂的方法,是可以从这里看出θ(z) = arg(z)作为(x, y)的二元函数,在D1, D2, D3上都有很明显的可导的表达式,因此它在区域D上不仅是连续的,而且是连续可导二元函数:θx = y/(x2 + y2),θy = -x/(x2 + y2).证明中的第四部分并不是多余的,这是因为若f在两个集合A, B上都连续(即使它们有公共的部分),一般说来,并不能保证f在两个集合A⋂B上也连续.问题:若f在区域A, B上都连续,且A ⋃B ≠∅,问f在A⋂B上是否必连续?] 16. 试问函数f(z) = 1/(1 –z )在单位圆| z | < 1内是否连续?是否一致连续?【解】(1) f(z)在单位圆| z | < 1内连续.因为z在 内连续,故f(z) = 1/(1 –z )在 \{1}内连续(连续函数的四则运算),因此f(z)在单位圆| z | < 1内连续.(2) f(z)在单位圆| z | < 1内不一致连续.令z n= 1 – 1/n,w n= 1 – 1/(n + 1),n∈ +.则z n, w n都在单位圆| z | < 1内,| z n-w n | → 0,但| f(z n)-f(w n)| = | n - (n + 1) | = 1 > 0,故f(z)在单位圆| z | < 1内不一致连续.[也可以直接用实函数f(x) = 1/(1 –x )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z)在E = { z∈ | Im(z) = 0, 0 < Re(z) < 1 }上的限制即可.]17. 试证:复数列z n = x n + i y n以z0 = x0 + i y0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0为极限.【解】(⇒) 若复数列z n = x n + i y n以z0 = x0 + i y0为极限,则∀ε > 0,∃N∈ +,使得∀n > N,有| z n -z0| < ε.此时有| x n -x0| ≤ | z n -z0| < ε;| y n -y0| ≤ | z n -z0| < ε.故实数列{x n}及{y n}分别以x0及y0为极限.(⇐) 若实数列{x n}及{y n}分别以x0及y0为极限,则∀ε > 0,∃N1∈ +,使得∀n > N1,有| x n -x0| < ε/2;∃N2∈ +,使得∀n > N2,有| y n -y0| < ε/2.令N = max{N1, N2},则∀n > N,有n > N1且n > N2,故有| z n -z0| = | (x n -x0) + i (y n -y0)| ≤ | x n -x0| + | y n -y0| < ε/2 + ε/2 = ε.所以,复数列z n = x n + i y n以z0 = x0 + i y0为极限.20. 如果复数列{z n}合于lim n→∞z n = z0≠∞,证明lim n→∞ (z1 + z2 + ... + z n)/n = z0.当z0≠∞时,结论是否正确?【解】(1) ∀ε > 0,∃K∈ +,使得∀n > K,有| z n -z0| < ε/2.记M = | z1-z0 | + ... + | z K-z0 |,则当n > K时,有| (z1 + z2 + ... + z n)/n-z0 | = | (z1-z0) + (z2-z0) + ... + (z n-z0) |/n≤ ( | z1-z0 | + | z2-z0 | + ... + | z n-z0 |)/n= ( | z1-z0 | + ... + | z K-z0 |)/n + ( | z K +1-z0 | + ... + | z n-z0 |)/n≤M/n + (n-K)/n · (ε/2) ≤M/n + ε/2.因lim n→∞ (M/n) = 0,故∃L∈ +,使得∀n > L,有M/n < ε/2.令N = max{K, L},则当n > K时,有| (z 1 + z 2 + ... + z n )/n - z 0 | ≤ M /n + ε /2 < ε /2 + ε /2 = ε.所以,lim n →∞ (z 1 + z 2 + ... + z n )/n = z 0.(2) 当z 0 ≠ ∞时,结论不成立.这可由下面的反例看出.例:z n = (-1)n · n ,n ∈ +.显然lim n →∞ z n = ∞.但∀k ∈ +,有(z 1 + z 2 + ... + z 2k )/(2k ) = 1/2,因此数列{(z 1 + z 2 + ... + z n )/n }不趋向于∞.[这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.]p45第一章习题(二)[ 6, 8, 9, 11, 12 ]6. 设| z | = 1,试证:| (a z + b )/(b * z + a * ) | = 1.(z *表示复数z 的共轭)【解】此题应该要求b * z + a * ≠ 0.| a z + b | = | (a z + b )* | = | a * z * + b * | = | a * z * + b * | · | z | = | (a * z * + b *) · z | = | a * z * · z + b * · z | = | a * | z |2 + b * · z | = | b * z + a * |.故| (a z + b )/(b * z + a * ) | = 1.8. 试证:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件为111332211w z w z w z = 0. 【解】两个三角形同向相似是指其中一个三角形经过(一系列的)旋转、平移、位似这三种初等几何变换后可以变成另一个三角形(注意没有反射变换).例如z'z 312我们将采用下述的观点来证明:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件是:将它们的一对对应顶点都平移到原点后,它们只相差一个位似旋转. 记f 1(z ) = z - z 1 (将z 1变到0的平移);f 3(z ) = z - w 1 (将0变到w 1的平移); 那么,三角形z 1z 2z 3与三角形w 1w 2w 3同向相似⇔ 存在某个绕原点的旋转位似变换f 2(z ) = z 0 z ,使得f 2 ( f 1(z k )) = f 3(w k ),(k = 2, 3),其中z 0∈ \{0}⇔ 存在z 0∈ \{0},使得z 0(z k - z 1) = w k - w 1,(k = 2, 3)⇔ (w 2 - w 1)/(z 2 - z 1) = (w 3 - w 1)/(z 3 - z 1)⇔ 13131212w w z z w w z z ----= 0 ⇔ 1110013131212w w z z w w z z ----= 0⇔ 111332211w z w z w z = 0.[证完]9. 试证:四个相异点z 1, z 2, z 3, z 4共圆周或共直线的充要条件是(z 1 – z 4)/(z 1 – z 2) : (z 3 – z 4)/(z 3 – z 2)为实数.【解】在平面几何中,共线的四个点A , B , C , D 的交比定义为(A , B ; C , D ) = (AC /CB ) : (AD /DB ).这是射影几何中的重要的不变量.类似地,在复平面上,(不一定共线的)四个点z 1, z 2, z 3, z 4的交比定义为[z 1z 2, z 3z 4] = (z 1 – z 3)/(z 2 – z 3) : (z 1 – z 4)/(z 2 – z 4).本题的结论是说:复平面上四个点共圆或共线的充要条件是其交比为实数. (⇒) 分两种情况讨论(1) 若(z 1 – z 4)/(z 1 – z 2)为实数,则(z 3 – z 4)/(z 3 – z 2)也是实数.设(z 1 – z 4)/(z 1 – z 2) = t ,t ∈ .则z 4 = (1 – t )z 1 + t z 2,故z 4在z 1, z 2所确定的直线上,即z 1, z 2, z 4共线.因此,同理,z 1, z 2, z 3也共线.所以,z 1, z 2, z 3, z 4是共线的.(2) 若(z 1 – z 4)/(z 1 – z 2)为虚数,则(z 3 – z 4)/(z 3 – z 2)也是虚数.故Arg ((z 1 – z 4)/(z 1 – z 2)) ≠ k π,Arg ((z 3 – z 4)/(z 3 – z 2)) ≠ k π.而Arg ((z 1 – z 4)/(z 1 – z 2)) – Arg ((z 3 – z 4)/(z 3 – z 2))= Arg ((z 1 – z 4)/(z 1 – z 2) : (z 3 – z 4)/(z 3 – z 2)) = k π.注意到Arg ((z – z 4)/(z – z 2)) = Arg ((z 4 – z )/(z 2 – z ))是z 2 – z 到z 4 – z 的正向夹角, 若Arg ((z 1 – z 4)/(z 1 – z 2)) = Arg ((z 3 – z 4)/(z 3 – z 2)),则z 1, z 3在z 2, z 4所确定的直线的同侧,且它们对z 2, z 4所张的角的大小相同, 故z 1, z 2, z 3, z 4是共圆的.若Arg ((z 1 – z 4)/(z 1 – z 2)) = Arg ((z 3 – z 4)/(z 3 – z 2)) + π,则z 1, z 3在z 2, z 4所确定的直线的异侧,且它们对z 2, z 4所张的角的大小互补, 故z 1, z 2, z 3, z 4也是共圆的.(⇐) 也分两种情况讨论(1) 若z1, z2, z3, z4是共线的,则存在s, t∈ \{0, 1},使得z4 = (1 –s)z3 + s z2,z4 = (1 –t)z1 + t z2,那么,z3–z4 = s (z3 –z2),即(z3–z4)/(z3–z2) = s;而z1–z4 = t (z1 –z2),即(z1–z4)/(z1–z2) = t,所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2) = t/s∈ .(2) 若z1, z2, z3, z4是共圆的,若z1, z3在z2, z4所确定的直线的同侧,那么,Arg ((z4–z1)/(z2–z1)) = Arg ((z4–z3)/(z2–z3))因此(z4–z1)/(z2–z1) : (z4–z3)/(z2–z3)是实数.也就是说(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)是实数.若z1, z3在z2, z4所确定的直线的异侧,则Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,故Arg ((z1–z4)/(z1–z2) : (z3–z4)/(z3–z2))= Arg ((z1–z4)/(z1–z2)) – Arg ((z3–z4)/(z3–z2))= Arg ((z1–z4)/(z1–z2)) + Arg ((z3–z2)/(z3–z4))= Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)仍为实数.[证完]这个题目写的很长,欢迎同学们给出更简单的解法.11. 试证:方程| z -z1 |/| z -z2 | = k ( 0 < k ≠ 1,z1≠z2 )表示z平面的一个圆周,其圆心为z0,半径为ρ,且z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.【解】到两定点距离成定比的点的轨迹是圆或直线.当比值不等于1时,轨迹是一个圆,这个圆就是平面几何中著名的Apollonius圆.设0 < k ≠ 1,z1≠z2,z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.∀z∈ ,| z -z0 | = ρ⇔| z - (z1 -k2 z2)/(1-k2)| = k | z1 -z2|/| 1-k2 |⇔| z(1-k2)- (z1 -k2 z2) | = k | z1 -z2 |⇔| (z -z1) -k2 (z-z2)| = k | z1 -z2|⇔| (z -z1)/k-k (z-z2) | = | z1 -z2|⇔| (z -z1)/k-k (z-z2) | = | (z -z1)- (z-z2) |⇔| (z -z1)/k-k (z-z2) |2 = | (z -z1) - (z-z2) |2⇔| z -z1 |2/k2 + k2 | z-z2 |2 = | z -z1 |2 + | z-z2 |2⇔(1/k2 - 1)| z -z1 |2 = (1-k2 ) | z-z2 |2⇔| z -z1 |2/k2 = | z-z2 |2⇔| z -z1 |/| z-z2 | = k.[证完]直接地双向验证,可能需要下面的结论,其几何意义非常明显的.命题:若复数z, w≠ 0,则| | z | ·w /| w| - | w| ·z /| z| | = | w -z |.证明:我们用z*表示复数z的共轭.| | z | ·w /| w| - | w| ·z /| z| |2= | | z | ·w /| w| |2 + | | w| ·z /| z| |2- 2Re[( | z | ·w /| w|) · (| w| ·z /| z|)* ]= | z |2 + | w|2- 2Re( w ·z* ) = | w -z |2.或更直接地,| | z | ·w /| w| - | w| ·z /| z| |= | | z | ·w /| w| - | w| ·z /| z| | · | z*/| z| | · | w*/| w| |= | (| z | ·w /| w| - | w| ·z /| z|) ·(z*/| z|) · (w*/| w|) |= | (| z | · (z*/| z|) - | w| ·(w*/| w|)) | = | w -z |.12. 试证:Re(z) > 0 ⇔ | (1 -z)/(1 + z) | < 1,并能从几何意义上来读本题.【解】Re(z) > 0 ⇔点z在y轴右侧⇔点z在点-1和点1为端点的线段的垂直平分线的右侧⇔点z在点-1和点1为端点的线段的垂直平分线的与1同侧的那一侧⇔点z到点-1的距离大于点z到点1的距离⇔|1 + z | > | 1 -z | ⇔| (1 -z)/(1 + z) | < 1.不用几何意义可以用下面的方法证明:设z = x + i y,x, y∈ .| (1 -z)/(1 + z) | < 1 ⇔|1 + z | > | 1 -z | ⇔|1 + z |2 > | 1 -z |2⇔ 1 + z2 + 2Re(z) > 1 + z2- 2Re(z) ⇔Re(z) > 0.[由本题结论,可知映射f(z) = (1 -z)/(1 + z)必然把右半平面中的点映射到单位圆内的点.并且容易看出,映射f(z)把虚轴上的点映射到单位圆周上的点.问题:f(z)在右半平面上的限制是不是到单位圆的双射?f(z)在虚轴上的限制是不是到单位圆周的双射?]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
第一章习题解答1.1 物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600⨯300/8.314⨯300.13 (mol)=14618.6molm=14618.6⨯62.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w甲烷在标准状况下的密度为=m/V= PM w/RT=101.325⨯16/8.314⨯273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。
充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度按1 g.cm-3计算。
(答案来源:)解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)⨯8.314⨯300.15/(13330⨯100⨯10-6) M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。
一章习题解答1.1 给定三个矢量A 、B 和C 如下:23x y z =+-A e e e4y z=-+B e e52x z =-C e e求:(1)A a ;(2)-AB ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由c o s ABθ=8==A B A B ,得 1c o s AB θ-=(135.5=(5)A 在B 上的分量B A =A c o s ABθ==A B B (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502xyz -=-e e e 8520x y z ++e e e⨯=A B 123041x yz -=-e e e 1014x y z ---e e e所以 ()⨯=A B C(23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C(1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xy z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P的位置矢量分别为12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e则12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e ,311367x y z =-=---R r r e e e由此可见1223(4)(28)0x z x y z =-++=R R e e e e e故123PP P ∆为一直角三角形。
(2)三角形的面积12231221117.1322S =⨯=⨯=R R R R1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。
解34P x y z '=-++r e e e ,223P x y z =-+r e e e ,则 53P P P P x y z''=-=--R r r e e e且P P 'R 与x 、y 、z 轴的夹角分别为11cos ()cos 32.31x P P x P P φ--''===e R R11cos ()cos 120.47y P P y P Pφ'--'===e R R11cos ()cos (99.73z P P z P P φ--''===e R R1.4 给定两矢量234x y z =+-A e e e 和456x y z =-+B e e e ,求它们之间的夹角和A 在B 上的分量。
解 A 与B 之间的夹角为11cos ()cos 131θ--===AB A B A BA 在B 上的分量为3.532B A ===-B A B1.5 给定两矢量234x y z =+-A e e e 和64x y z=--+B e e e ,求⨯A B 在x y z=-+C e e e 上的分量。
解 ⨯=A B 234641x y z-=--e e e 132210x y z -++e e e所以⨯A B 在C 上的分量为 ()⨯=C AB ()14.43⨯==-A BC C1.6 证明:如果A B =A C和⨯=A B ⨯A C ,则=B C ; 解 由⨯=A B ⨯A C ,则有()()⨯⨯=⨯⨯A A B A A C ,即()()()()-=-A B A A A B A C A A A C由于A B =A C,于是得到 ()()=A A B A A C 故 =B C1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。
设A 为一已知矢量,p =A X 而=⨯P A X ,p 和P 已知,试求X 。
解 由=⨯P A X ,有()()()()p ⨯=⨯⨯=-=-A P A A X A X A A A X A A A X故得p -⨯=A A P X A A1.8 在圆柱坐标中,一点的位置由2(4,,3)3π定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。
解 (1)在直角坐标系中 4c o s (23)2x π==-、4sin(23)y π==3z =故该点的直角坐标为(-。
(2)在球坐标系中5r =、1tan (43)53.1θ-== 、2120φπ==故该点的球坐标为(5,53.1,120)1.9 用球坐标表示的场225rr =E e ,(1)求在直角坐标中点(3,4,5)--处的E和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z=-+B e e e 构成的夹角。
解 (1)在直角坐标中点(3,4,5)--处,2222(3)4(5)50r =-++-=,故 22512rr ==E e1cos 220x x rx E θ====-e E E(2)在直角坐标中点(3,4,5)--处,345x y z =-+-r e e e ,所以233452525r r -+-===e e e r E 故E 与B 构成的夹角为11cos ()cos (153.6θ--===EB E B E B1.10 球坐标中两个点111(,,)r θφ和222(,,)r θφ定出两个位置矢量1R 和2R 。
证明1R 和2R 间夹角的余弦为121212cos cos cos sin sin cos()γθθθθφφ=+-解 由11111111s i nc o s s i n s i n c o sx y z r rrθφθφθ=++R e e e222222222sin cos sin sin cos x y z r r r θφθφθ=++R e e e得到 1212cos γ==R R R R1122112212sin cos sin cos sin sin sin sin cos cos θφθφθφθφθθ++=121211212sin sin (cos cos sin sin )cos cos θθφφφφθθ++= 121212sin sin cos()cos cos θθφφθθ-+1.11 一球面S 的半径为5,球心在原点上,计算:(3sin )d r Sθ⎰e S的值。
解(3s i n )d (3s i n )d rr r SSS θθ==⎰⎰eS e e 222d 3sin 5sin d 75ππφθθθπ⨯=⎰⎰1.12 在由5r =、0z =和4z =围成的圆柱形区域,对矢量22r z r z =+A e e 验证散度定理。
解 在圆柱坐标系中21()(2)32r r z rr r z∂∂∇=+=+∂∂A所以425d d d (32)d 1200z r r r πττφπ∇=+=⎰⎰⎰⎰A又2d (2)(d d d )rz r r z z SSrz S S S φφ=+++=⎰⎰A S e e e e e42522000055d d 24d d 1200z r r ππφφπ⨯+⨯=⎰⎰⎰⎰故有d 1200ττπ∇=⎰A d S=⎰A S1.13 求(1)矢量22222324x y z x x y x y z =++A e e e 的散度;(2)求∇A 对中心在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。
解 (1)2222232222()()(24)2272x x y x y z x x y x y z x y z ∂∂∂∇=++=++∂∂∂A(2)∇A 对中心在原点的一个单位立方体的积分为12121222221212121d (2272)d d d 24x x y x y z x y z ττ---∇=++=⎰⎰⎰⎰A(3)A 对此立方体表面的积分1211212221212121211d ()d d ()d d 22S y z y z ----=--+⎰⎰⎰⎰⎰A S121212122221121212112()d d 2()d d 22x x z x x z ------+⎰⎰⎰⎰12121122232231212121211124()d d 24()d d 2224x y x y x y x y ------=⎰⎰⎰⎰故有 1d 24ττ∇=⎰A d S=⎰A S1.14 计算矢量r 对一个球心在原点、半径为a 的球表面的积分,并求∇r 对球体积的积分。
解223d d d sin d 4rSSS aaa ππφθθπ===⎰⎰⎰⎰r S r e又在球坐标系中,221()3r r r r ∂∇==∂r ,所以223000d 3sin d d d 4ar r a ππττθθφπ∇==⎰⎰⎰⎰r1.15 求矢量22x y z x x y z=++A e e e 沿xy 平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x 轴和y 轴相重合。
再求∇⨯A 对此回路所包围的曲面积分,验证斯托克斯定理。
解22222d d d 2d 0d 8Cx x x x y y =-+-=⎰⎰⎰⎰⎰A l又2222xyz x z yz x x y z x x y z ∂∂∂∇⨯==+∂∂∂e e e A e e所以2200d (22)d d 8xzzSyz x x y ∇⨯=+=⎰⎰⎰A S e e e故有 d 8C=⎰A l d S=∇⨯⎰A S1.16 求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算∇⨯A 对此圆面积的积分。
解2d d d CCx x xyy =+=⎰⎰A l 242422(c o s s i n c o s s i n )d4a aaππφφφφφ-+=⎰d ()d yxz z S SA A S x y ∂∂∇⨯=-=∂∂⎰⎰A S e e 2422200d sin d d 4a Sa yS r r r ππφφ==⎰⎰⎰1.17 证明:(1)3∇=R ;(2)∇⨯=R 0;(3)()∇=A R A 。