中考零距离北京市中考数学第五单元二次根式(课标解读典例诠释)复习【含解析】
- 格式:doc
- 大小:38.51 KB
- 文档页数:4
专题05 二次根式☞2年中考【2015年题组】1.(2015贵港)计算35⨯的结果是() A .8 B .15 C .35 D .53 【答案】B .考点:二次根式的乘除法.2.(2015徐州)使1-x 有意义的x 的取值范围是( ) A .x≠1 B .x≥1 C .x >1 D .x≥0 【答案】B . 【解析】试题分析:∵1-x 有意义,∴x ﹣1≥0,即x≥1.故选B . 考点:二次根式有意义的条件. 3.(2015扬州)下列二次根式中的最简二次根式是( )A .30B .12C .8D .21【答案】A . 【解析】试题分析:A .符合最简二次根式的定义,故本选项正确;B 1223=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C 822=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D 122=故选A .考点:最简二次根式.4.(20153 )A 13B 3C 23 D 12【答案】C .考点:同类二次根式. 5.(2015宜昌)下列式子没有意义的是( )A .3-B .0C .2D .2(1)-【答案】A .【解析】试题分析:A .3-没有意义,故A 符合题意; B .0有意义,故B 不符合题意; C .2有意义,故C 不符合题意;D .2(1)-有意义,故D 不符合题意;故选A .考点:二次根式有意义的条件. 6.(2015潜江)下列各式计算正确的是( )A .235+=B .43331-=C . 363332=⨯D .2733÷= 【答案】D .考点:1.二次根式的乘除法;2.二次根式的加减法.7.(201526x +有意义,那么x 的取值范围在数轴上表示出来,正确的是( )A .B .C .D .【答案】C . 【解析】试题分析:由题意得,2x+6≥0,解得,x≥﹣3,故选C .考点:1.在数轴上表示不等式的解集;2.二次根式有意义的条件.8.(2015钦州)对于任意的正数m 、n 定义运算※为:m ※n=))m n m n m n m n ⎧-≥⎪⎨+<⎪⎩,计算(3※2)×(8※12)的结果为( )A .246-B .2C .25D .20 【答案】B .【解析】试题分析:∵3>2,∴3※32,∵8<12,∴8※81223),∴(3※2)×(8※12)=32)×23)=2.故选B . 考点:1.二次根式的混合运算;2.新定义.9.(2015孝感)已知23x =-,则代数式2(743)(23)3x x ++的值是( )A .0B 3C .23+D .23- 【答案】C .【解析】试题分析:把23x =代入代数式2(73)(23)3x x +++得:2(743)(23)(23)(23)3+-+-+=(743)(743)433+-+-+=494813-++23+.故选C .考点:二次根式的化简求值.10.(2015荆门)当12a <<2(2)10a a -+-=的值是( )A .1-B .1C .23a -D .32a - 【答案】B .考点:二次根式的性质与化简.11.(2015随州)若代数式11xx -有意义,则实数x 的取值范围是( )A .1x ≠B .0x ≥C .0x ≠D .0x ≥且1x ≠ 【答案】D . 【解析】试题分析:∵代数式11xx +-有意义,∴100x x -≠⎧⎨≥⎩,解得0x ≥且1x ≠.故选D .考点:1.二次根式有意义的条件;2.分式有意义的条件.12.(2015淄博)已知51-51+,则22x xy y ++的值为( )A .2B .4C .5D .7【答案】B . 【解析】 试题分析:原式=2()x y xy +-=251515151(-+-+=25)1-=51-=4.故选B .考点:二次根式的化简求值.13.(2015朝阳)估计18182的运算结果应在哪两个连续自然数之间( )A .5和6B .6和7C .7和8D .8和9【答案】B . 【解析】试题分析:原式18322⨯=232+,∵6<232+<7,∴18182的运算结果在6和7两个连续自然数之间,故选B .考点:1.估算无理数的大小;2.二次根式的乘除法.14.(20155153⨯ . 【答案】5.考点:二次根式的乘除法.15.(2015泰州)计算:21218-等于 .【答案】22.【解析】试题分析:原式=23222-⨯=32222-=.故答案为:22.考点:二次根式的加减法.16.(2015日照)若2(3)3x x -=-,则x 的取值范围是 .【答案】x≤3. 【解析】试题分析:∵2(3)3x x -=-,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.考点:二次根式的性质与化简. 17.(2015攀枝花)若332y x x =-+-+,则y x = .【答案】9. 【解析】 试题分析:332y x x =-+-+有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=9.故答案为:9.考点:二次根式有意义的条件.18.(2015毕节)实数a ,b 在数轴上的位置如图所示,则2a a b--= .【答案】b -.考点:1.实数与数轴;2.二次根式的性质与化简.19.(20151xx -有意义,则实数x 的取值范围是.【答案】x≥0且x≠1. 【解析】1xx -x≥0,x ﹣1≠0,∴实数x 的取值范围是:x≥0且x≠1.故答案为:x≥0且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件.20.(2015陕西省)计算:()3212263-⎪⎭⎫⎝⎛+-+-⨯. 【答案】82-.【解析】试题分析:根据二次根式的乘法法则、绝对值的意义、负整数整数幂的意义化简后合并即可. 试题解析:原式=36228-⨯++=32228-++=82-. 考点:1.二次根式的混合运算;2.负整数指数幂.21.(2015大连)计算:1(31)(31)24()2+-+-. 【答案】126+.考点:1.二次根式的混合运算;2.零指数幂.22.(2015山西省)阅读与计算:请阅读以下材料,并完成相应的任务.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数. 【答案】1,1. 【解析】试题分析:分别把1、2代入式子化简即可.试题解析:第1个数,当n=1时,原式=11515()225+--=155⨯=1.第2个数,当n=2时,原式=2211515[()()]225+--=1625625[]445+--=155⨯=1.考点:1.二次根式的应用;2.阅读型;3.规律型;4.综合题.【2014年题组】1.(2014年四川甘孜中考)使代数式有意义的x的取值范围是()A.x≥0 B.﹣5≤x<5 C. x≥5 D. x≥﹣5【答案】D.【解析】试题分析:由题意得,x+5≥0,解得x≥﹣5.故选D.考点:二次根式有意义的条件.2.(2014年潍坊中考)若代数式2x1(x3)+-有意义,则实数x的取值范围是()A.x≥一1 B.x≥一1且x≠3 C.x>-l D.x>-1且x≠3【答案】D.考点:1.二次根式有意义的条件;2.分式有意义的条件.3.(2014年镇江中考)若x、y满足()22x12y10-+-=,则x y+的值等于()A.1B.32 C.2 D.52【答案】B.【解析】试题分析:∵()22x12y10-+-=,∴()212x10x22y10y1⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩∴13x y122+=+=.故选B.考点:1.二次根式被开方数和偶次幂的非负性质;2.求代数式的值.4.(2014年甘肃白银中考)下列计算错误的是()A. •=B. +=C. ÷=2D. =2【答案】B . 【解析】试题分析:A 、236=g ,计算正确;B 、23+,不能合并,原题计算错误;C 、12342÷==,计算正确;D 、822=,计算正确.故选B .考点:二次根式的混合运算.5.(2014年山东省聊城市中考)下列计算正确的是( ) A .2×3=6 B.+=C. 5﹣2=3D .÷=【答案】D . 【解析】试题分析:A 、233323318⨯=⨯⨯=,故A 错误;B 、不是同类二次根式,不能相加,故B 错误;C 、不是同类二次根式,不能相减,故C 错误;D 、262333÷==,故D 正确;故选D .考点:二次根式的加减法、乘除法.6.(2014年湖南常德中考)下列各式与3是同类二次根式的是( ) A .8 B .24 C .125D .12【答案】D .考点:同类二次根式.7.(2014年凉山中考)已知12x 32x 32==+,-,则x12+x22= . 【答案】10.【解析】试题分析:∵12x 32x 32==+,-,∴x12+x22=(x1+x2)2﹣2x1x2=()()()232322323212210+-=-=+-++.考点:二次根式的混合运算.8.(2014年哈尔滨中考)计算:=.【答案】3.【解析】试题分析:312-=23﹣3=3.考点:二次根式的加减法.9.(2014年湖南衡阳中考)化简:()282-=.【答案】2.考点:二次根式的乘除法.10.(2014年辽宁大连中考)3312(13)-1.【答案】3【解析】试题分析:分别进行二次根式的乘法运算,二次根式的化简,负整数指数幂的运算,然后合并即可求出答案.试题解析:原式333考点:1.二次根式的混合运算;2.负整数指数幂.☞考点归纳归纳1:二次根式的意义及性质基础知识归纳:二次根式有意义的条件是被开方数大于或等于0.注意问题归纳:1.首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2、利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.【例1】函数()0xy x2=-中,自变量x的取值范围是.【答案】x≥0且x≠2且x≠3.考点:二次根式有意义的条件.归纳 2:最简二次根式与同类二次根式 基础知识归纳: 1.最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. 2. 同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 注意问题归纳:最简二次根式的判断方法:1.最简二次根式必须同时满足如下条件:(1)被开方数的因数是整数,因式是整式(分母中不应含有根号);(2)被开方数中不含开方开得尽的因数或因式,即被开方数的因数或因式的指数都为1. 2.判断同类二次根式:先把所有的二次根式化成最简二次根式;再根据被开方数是否相同来加以判断.要注意同类二次根式与根号外的因式无关. 【例2】下列二次根式中,能与3合并的是( )A .18;B .31; C .-8; D .24【答案】B .考点:同类二次根式. 归纳 3:二次根式的运算 基础知识归纳: (1).二次根式的加减法:实质就是合并同类二次根式.合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2).二次根式的乘除法 二次根式的乘法:ab b a =⋅(a ≥0,b ≥0). 二次根式的除法:b ab a =(a ≥0,b >0).注意问题归纳:正确把握运算法则是解题的关键【例3】如果ab>0,a+b<0,那么下面各式:①a ab b=,②1a bb a=g,③aab bb÷=-其中正确的是()①②B.②③C.①③D.①②③【答案】B.【解析】∵ab>0,a+b<0,∴a<0,b<0①a ab b=,被开方数应≥0a,b不能做被开方数,(故①错误),②1a bb a=g(故②正确),③aab bb÷=-(故③正确).故选B.考点:二次根式的运算.归纳4:二次根式混合运算基础知识归纳:先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).注意问题归纳:注意运算顺序.【例4】计算:11244(12)38⨯-⨯⨯-【答案】2.考点:二次根式的运算.归纳5:二次根式运算中的技巧基础知识归纳:1.二次根式的被开方数是非负数;2.非负数的性质.注意问题归纳:【例5】若44x x-+--2,则(x+y)y=【答案】14.【解析】由题意得,x-4≥0且4-x≥0,解得x≥4且x≤4,∴x=4,y=-2,∴x+y)y=(4-2)-2=14.考点:二次根式的运算.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)要使1321 xx-+-有意义,则x 应满足()A.12≤x≤3 B.x≤3且x≠12C.12<x<3 D.12<x≤3【答案】D.考点:1.二次根式有意义的条件;2.分式有意义的条件.2.(2015届四川省成都市外国语学校中考直升模拟)已知0<a<b,a b b+,b b a-x,y的大小关系是()A.x>y B.x=y C.x<y D.与a、b的取值有关【答案】C.【解析】试题分析:x-y=a b b b b a a b b a+---=+-,∵0<a<b,∴22222a b b a b b a+-=+-<4b2a b b a b+--<0,∴x-y<0.故选C.考点:二次根式的化简.3.(2015届山东省潍坊市昌乐县中考一模)2()2x-2−x,那么x取值范)围是()A.x≤2 B.x<2 C.x≥2 D.x>2【答案】A.【解析】2()2x-=2−x,∴x-2≤0,解得:x≤2.故选A.考点:二次根式的性质与化简.4.(2015届山东省聊城市中考模拟)下列运算正确的是()A.2a2+3a2=6a2 B253=C 2632÷=D.1111b ba a---=--【答案】D.【解析】试题分析:A.2a2+3a2=5a2,故本选项错误;B.23+无法计算,故本选项错误;C2633÷=,故本选项错误;D.1111b ba a---=--,正确.故选D.考点:1.二次根式的加减法;2.合并同类项;3.分式的基本性质;4.二次根式的乘除法.5.(2015届山东省潍坊市昌乐县中考一模)如果2()2x-=2−x,那么x取值范)围是(A.x≤2 B.x<2 C.x≥2 D.x>2【答案】A.【解析】试题分析:∵2()2x-=2−x,∴x-2≤0,解得:x≤2.故选A.考点:二次根式的性质与化简.6.(2015届北京市门头沟区中考二模)在函数1y x=-中,自变量x的取值范围是.【答案】x≥1.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.7.(20152(x3)-,则x的取值范围是.【答案】x≤3.【解析】2(x3)-,∴3-x≥0,解得:x≤3.故答案为:x≤3.考点:二次根式的性质与化简.8.(20151x+x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010 xxx+⎧≥-≠+≠⎪⎨⎪⎩解得:x>-1且x≠1.故答案为:x>-1且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂.9.(2015届河北省沙河市二十冶第三中学九年级上学期第二次模拟数学)若∣b-1∣+4a-=0,且一元二次方程20kx ax b++=有实数根,则k的取值范围是.【答案】k≤4且k≠0.考点:1.根的判别式;2.绝对值;3.二次根式的性质.10.(2015届云南省剑川县九年级上学期第三次统一模拟考试数学试卷)已知x、y是实数,并且96132=+-++yyx,则2014)(xy的值是_______【答案】1.【解析】试题分析:先将式子变形,然后根据二次根式和偶次幂的性质求出x和y的值,再代入到所求式子中即可因为96132=+-++yyx,即0)3(132=-++yx,所以0313=-=+yx且,解得3,31=-=yx,所以1)1()331()(201420142014=-=⨯-=xy考点:1.二次根式的性质;2.偶次幂的性质;3.完全平方公式.11.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)若3,m, 5为三角形三边,则22)8()2(---mm=.【答案】2m-10.【解析】试题分析:因为3,m, 5为三角形三边,所以5-3<m<5+3,即2<m<8,所以22)8()2(---mm=m-2-(8-m)=m-2-8+m=2m-10.考点:1.三角形的三边关系;2.二次根式的性质.12.(2015届四川省雅安中学九年级一诊数学试卷)观察下列各式:111233+=,112344+=,11355+=请你将发现的规律用含自然数(1)n n≥的等式表示出来 .【答案】11(1)22n n n n +=+++(1n ≥).【解析】试题分析:∵111(11)1212+=+++;112(21)2222+=+++;∴11(1)22n n n n +=+++(1n ≥).故答案为:11(1)22n n n n +=+++(1n ≥).考点:规律型.13.(2015届湖北省咸宁市嘉鱼县城北中学中考模拟考试数学试卷)(1)计算:312760tan 2)21(1--+--ο【答案】3.考点:1.负整数次方;2.特殊教的三角函数值;3.二次根式;4.绝对值. 14.(2015届云南省剑川县九年级上学期第三次统一模拟考试数学试卷)计算:24)32()21(801-+-+-【答案】1.【解析】试题分析:根据二次根式的性质及运算法则进行计算 试题解析:原式=1221222=--+. 考点:二次根式的混合运算.15.(2015届北京市门头沟区中考二模)计算:()1163tan 60()273--π-︒+.【答案】4.【解析】 试题分析:本题涉及零指数幂、特殊角的三角函数值、负指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:解:原式=133333-+=4.考点:1.实数的运算;2.零指数幂和负整数指数幂;3.特殊角的三角函数值和二次根式的化简.16.(2015届江苏省南京市建邺区中考一模)计算:(212-13)×6【答案】112.考点:二次根式的混合运算.。
中考数学二次根式(讲义及答案)附解析一、选择题1.下列运算错误的是( )A=B.= C.)216= D.)223= 2.下列各式中,无意义的是( )ABC D .310-3.下列运算正确的是()A=B= C.3=D2= 4.下列各式中,正确的是()A 2=± B=C 3=- D 2=5.下列运算正确的是 ( )A.3=B=C.=D=6.下列计算正确的是( )A=B3= C= D .21= 7.下列式子中,为最简二次根式的是( )ABCD8.若2019202120192020a =⨯-⨯,b =,c a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<9.已知226a b ab +=,且a>b>0,则a b a b +-的值为( ) AB C .2 D .±2 10.当4x =-的值为( ) A.1 B C .2 D .3 11.下列二次根式是最简二次根式的是()ABCD 12.下列运算错误的是( )A .23=6⨯B .2=22C .22+32=52D .()21-212=-二、填空题13.若0a >,把4a b-化成最简二次根式为________. 14.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.15.x y 53xy 153,则x+y=_______.16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.17.使式子32x x -+有意义的x 的取值范围是______. 18.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 19.若实数23a =-,则代数式244a a -+的值为___. 20.1+x有意义,则x 的取值范围是____. 三、解答题21.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b 26a ++2b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值 【答案】(1)22223a a a ----;(2)a =-3,b 2;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++ =11a ab ab a ++++ =1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.计算: 21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.计算②)21-【答案】①【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.24.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.25.观察下列各式:11111122=+-=11111236=+-=111113412=+-= 请你根据上面三个等式提供的信息,猜想:(1=_____________ (2)请你按照上面每个等式反映的规律,写出用n (n 为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】 (1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.26.先化简,再求值:24224x x x x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】 先把分式化简,然后将x 、y 的值代入化简后的式子求值即可.【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==. 【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.27.已知a ,b(1)求a 2﹣b 2的值;(2)求b a +a b的值.【答案】(1);(2)10【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab 的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵a b ,∴a +ba ﹣b =,∴a 2﹣b 2=(a +b )(a ﹣b )==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4 =+4 =-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.29.计算:(1;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.30.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(233⨯⨯-⨯=-⨯=3⎫⨯⎪⎪⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确; 故选:C .【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.2.A解析:A【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案.【详解】AB ,有意义,不合题意;C D 、33110=10-,有意义,不合题意; 故选A.【点睛】 此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.3.D解析:D【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的性质对B 进行判断;利用二次根式的除法法则对D 进行判断.【详解】解:A A 选项错误;B =B 选项错误;C 、=C 选项错误;D 2=,所以D 选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A、3=,故选项A正确;B B错误;C、18=,故选项C错误;D=D错误;故选:A.【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.7.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】=,故A不是最简二次根式;2是最简二次根式,故B正确;,故C不是最简二次根式;=D不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.8.A解析:A【分析】利用平方差公式计算a,利用完全平方公式和二次根式的化简求出b,利用二次根式大小的比较办法,比较b、c得结论.【详解】解:a=2019×2021-2019×2020=(2020-1)(2020+1)-(2020-1)×2020=20202-1-20202+2020=2019;∵20222-4×2021=(2021+1)2-4×2021=20212+2×2021+1-4×2021=20212-2×2021+1=(2021-1)2=20202,∴b=2020;>∴c >b >a .故选:A .【点睛】本题考查了完全平方公式、平方差公式、二次根式的化简、二次根式大小的比较等知识点.变形2019×2021-2019×2020解决本题的关键.9.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab ,∴(a+b )2=8ab ,(a-b )2=4ab ,∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.10.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式1142342322111313 3113 133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.11.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B 正确;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数含分母,故D 错误;故选B .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12.D解析:D【分析】根据二次根式的乘法法则对A 进行判断;根据分母有理化对B 进行判断;根据二次根式的加减法对C 进行判断;根据二次根式的性质对D 进行判断.【详解】AB计算正确,不符合题意;C 、计算正确,不符合题意;D 11=≠符合题意;故选:D.【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.二、填空题13.【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析:【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵40,0 aab-≥>∴0b<2a bb b b=--所以答案是:【点睛】a=.14.-2a【分析】根据数轴判断出a、b、c的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号. 15.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
第5讲二次根式年份考查频次考查方向二次根式有意义的条件选择1个近三年考查得很少,只有少部分地市对此进行了考查,考查的形式有选择题、填空题,单独考查且考查得较为基础,预计年对此考查的频次仍比较低.2014 选择1个2013选择1个填空2个二次根式的运算2015选择3个填空1个解答2个常考点考查得不多,考查的形式有选择题、填空题和解答题,考查时单独考查或者结合实数的运算、特殊角的三角函数值考查.预计2016年对此考查的频次仍不会很高.2014选择3个解答5个2013选择4个解答3个二次根式的有关概念二次根式一般地,形如a(①____)的式子叫做二次根式.最简二次根式必须同时满足:(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数的因数是整数,因式是整式(分母中不应含有根号).二次根式的性质两个重要的性质(a)2=a(a②____)a2=|a|={③(a≥0)④(a<0)积的算术平方根ab=a·b(a≥0,b≥0)商的算术平方根ab=ab(a≥0,b>0)二次根式的运算二次根式的加减先将各根式化为⑤____________,然后合并被开方数⑥____的二次根式.二次根式的乘法a·b=⑦____(a≥0,b≥0)二次根式的除法 a b=⑧______(a ≥0,b >0)二次根式的 混合运算与实数的运算顺序相同,先算乘方,再算⑨____,最后算加减,有括号的先算括号里面的(或先去括号).绝对值:|a|,偶次幂:a 2n,非负数的算术平方根:a(a ≥0)是常见的三种非负数形式.非负数具有以下两条重要性质:(1)非负数形式有最小值为零;(2)几个非负数的和等于零,那么每个非负数都等于零.(2015·贵港)若x +2在实数范围内有意义,则x 的取值范围是________.要使二次根式有意义,只需根号内的式子大于或等于零,即可求得结果.1.要使二次根式x -3在实数范围内有意义,则实数x 的取值范围是( )A .x>3B .x ≥3C .x>-3D .x ≥-3 2.(2013·贵港)下列四个式子中,x 的取值范围为x≥2的是( )A.x -2x -2 B.1x -2C.x -2D.2-x3.使式子x +1+2-x 有意义的x 的取值范围是( ) A .x ≥-1 B .-1≤x≤2 C .x ≤2 D .-1<x <2计算:(1212-13+48)÷23=________.把二次根式被开方数中能开得尽方的因数或因式开方出来,或把被开方数的分母开方出来,化成最简二次根式后再按照运算顺序进行运算,运算结果一定要化为最简二次根式.1.(2015·贵港)计算3×5的结果是( )A.8B.15 C .3 5 D .5 32.(2014·柳州模拟)下列运算中,结果正确的是( )A .43-33=1 B.2+3= 6 C .212= 2 D.(-4)×(-9)=-4×-9 3.(2015·河池)计算:13×27=________. 4.计算:(92-52)÷22=________. 5.计算:2(2-3)+ 6.1.下列二次根式是最简二次根式的是( )A.12B. 4C. 3D.82.(2014·达州)二次根式-2x+4有意义,则实数x的取值范围是( )A.x≥-2 B.x>-2C.x<2 D.x≤23.(2013·崇左)下列根式中,与32是同类二次根式的是( )A.12B.8C. 6D. 34.(2014·连云港)计算(-3)2的结果是( )A.-3 B.3 C.-9 D.95.(2014·滨州)估计5在( )A.0~1之间B.1~2之间C.2~3之间D.3~4之间6.(2015·重庆A卷)化简12的结果是( )A.4 3 B.2 3C.3 2 D.2 67.(2014·泸州)已知实数x、y满足x-1+|y+3|=0,则x+y的值为( )A.-2 B.2 C.4 D.-48.(2014·梧州)下列计算正确的是( )A.2+3= 5B.8=4 2C.32-2=3 D.2·3= 69.(原创)小马虎做了下列四道题:①3+2=5;②2+3=23;③52-32=52-32=5-3=2;④3-12=- 3.他拿给好朋友聪聪看,聪聪告诉他只做对了( )A.4道B.3道C.2道D.1道10.若x-1在实数范围内有意义,则x的取值范围是________.11.(2015·衡阳)计算:8-2=________.12.(2014·威海)计算:45-25×50=________.13.(2015·自贡)化简:||3-2=________.14.(2015·龙岩)已知m、n为两个连续的整数,且m<11<n,则m+n=________. 15.(2015·来宾)计算:-(-2)+(1+π)0-|-2|+8.16.(2015·钦州)对于任意的正数m 、n ,定义运算律为:m※n=⎩⎨⎧m -n (m>n ),m +n (m<n ),计算(3※2)×(8※12)的结果为( )A .2-4 6B .2C .2 5D .20参考答案考点解读①a ≥0 ②≥0 ③a ④-a ⑤最简二次根式 ⑥相同 ⑦ab ⑧ab⑨乘除 各个击破 例1 x≥-2题组训练 1.B 2.C 3.B 例2 73题组训练 1.B 2.C 3.3 4.2 5.原式=2×2-2×3+ 6 =2-6+ 6 =2. 整合集训1.C 2.D 3.B 4.B 5.C 6.B 7.A 8.D 9.D 10.x≥1 11. 2 12. 5 13.2- 3 14.7 15.原式=2+1-2+2 2 =3+ 2. 16.B。
第4讲 二次根式二次根式的有关概念 二次根式 一般地,形如a(①________)的式子叫做二次根式.最简二次根式必须同时满足:(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数的因数是整数,因式是整式(分母中不应含有根号).二次根式的性质两个重要的性质 (a)2=a(a ②________).a 2=|a|={③ (a ≥0),④ (a <0).积的算术平方根 ab =a ·b(a ≥0,b ≥0). 商的算术平方根a b =ab(a ≥0,b>0). 二次根式的运算二次根式的加减 先将各根式化为⑤____________,然后合并被开方数⑥________的二次根式.二次根式的乘法 a ·b =⑦________(a ≥0,b ≥0) 二次根式的除法 a b=⑧________(a ≥0,b >0)二次根式的混合运算与实数的运算顺序相同,先算乘方,再算⑨________,最后算加减,有括号的先算括号里面的(或先去括号).绝对值:|a|;偶次幂:a 2n;非负数的算术平方根:a (a≥0)是常见的三种非负数形式.非负数具有以下两条重要性质:(1)非负数形式有最小值为零;(2)几个非负数的和等于零,那么每个非负数都等于零.(·绵阳)要使代数式2-3x 有意义,则x 的() A .最大值是23 B .最小值是23C .最大值是32D .最小值是321.(·宜昌)下列式子没有意义的是()A.-3B.0C. 2D.(-1)22.(·株洲)x取下列各数中的哪个数时,二次根式x-3有意义() A.-2 B.0 C.2 D.43.(·内江)函数y=2-x+1x-1中自变量x的取值范围是() A.x≤2 B.x≤2且x≠1C.x<2且x≠1 D.x≠14.(·乐山)函数y=x-2的自变量x的取值范围是________.(·广元)计算:27-12-3-12.【解答】对于二次根式的混合运算,其运算顺序同实数的运算顺序,即是先乘方,再乘除,最后加减.在二次根式的乘法运算中,若能使用整式乘法公式则尽量使用公式可使计算简便.运算结果一定要是最简二次根式.1.(·安徽)计算8×2的结果是()A.10 B.4 C. 6 D.22.(·凉山)下列根式中,不能与3合并的是()A.13B.13C.23D.123.(·眉山)计算:22-18=________.4.(·滨州)计算(2+3)(2-3)的结果为________.(·资阳)已知:(a+6)2+b2-2b-3=0,则2b2-4b-a的值为________.【思路点拨】首先根据非负数的性质可求出a的值和b2-2b=3,进而可求出2b2-4b-a的值.本题主要考查非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.1.(·攀枝花)已知实数x,y,m满足x+2+|3x+y+m|=0,且y为负数,则m的取值范围是() A.m>6 B.m<6 C.m>-6 D.m<-62.(·巴中)若a、b、c为三角形的三边,且a、b满足a2-9+(b-2)2=0,则第三边c的取值范围是________.3.(·巴中)若直角三角形的两直角边长为a、b,且满足a2-6a+9+|b-4|=0,则该直角三角形的斜边长为________.1.(·重庆A 卷)化简12的结果是()A .4 3B .2 3C .3 2D .2 6 2.(·重庆B 卷)计算32-2的值是()A .2B .3 C. 2 D .2 23.(·金华)在式子1x -2、1x -3、x -2、x -3中,x 可以取2和3的是()A.1x -2B.1x -3C.x -2D.x -34.(·宁夏)下列计算正确的是()A.3+2= 5B.12÷3=2C .(5)-1= 5D .(3-1)2=25.(·济宁)如果ab >0,a +b <0,那么下面各式:①a b =a b,②ab·ba=1,③ab ÷ab=-b ,其中正确的是()A .①②B .②③C .①③D .①②③6.(·南京)计算5×153的结果是________. 7.(原创)若最简二次根式2a -b +4与3a +24a +3b 是同类二次根式,则a =________,b =________.8.(·临沂)计算:(3+2-1)(3-2+1).9.已知a 、b 、c 满足||a -18+b -7+(c -32)2=0.(1)求a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?如果能构成三角形,请求出三角形的周长;如果不能,请说明理由.10.(·随州)若代数式1x-1+x有意义,则实数x的取值范围是() A.x≠1 B.x≥0C.x≠0 D.x≥0且x≠111.(·孝感)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 312.(原创)对于任意不相等的两个实数a、b,定义运算※如下:a※b=a+ba-b,如3※2=3+23-2= 5.那么8※4=________.13.观察下面的变形规律:12+1=2-1,13+2=3-2,14+3=4-3,15+4=5-4,…解答下面的问题:(1)若n为正整数,请你猜想1n+1+n=________;(2)计算(12+1+13+2+14+3+…12 015+ 2 014)×( 2 016+1).参考答案考点解读考点1①a≥0②≥0③a④-a考点2⑤最简二次根式⑥相同⑦ab ⑧ab⑨乘除各个击破例1 A题组训练 1.A 2.D 3.B 4.x≥2例2原式=33-2+3(2-3)(2+3)-23=33-(2+3)-23=33-2-3-23=-2.题组训练 1.B 2.C 3.- 2 4.-1例312题组训练 1.A 2.1<c<5 3.5整合集训基础过关1.B 2.D 3.C 4.B 5.B 6.5 7.0 18.原式=[3+(2-1)][3-(2-1)]=(3)2-(2-1)2=3-(2-22+1)=2 2.9.(1)由非负数的性质求得:a=32,b=7,c=4 2.(2)因为a+c=32+42=72,所以a+c>b,因为c-a=42-32= 2.所以c-a<b.所以以a、b、c为边能构成三角形.三角形的周长为72+7.能力提升10.D 11.C 12. 313.(1)n+1-n(2)原式=[(2-1)+(3-2)+(4-3)+…+( 2 016- 2 015)]( 2 016+1) =( 2 016-1)( 2 016+1)=( 2 016)2-12=2 016-1=2 015.。
第五单元二次根式课标解读知识要点1.二次根式:形如的式子叫做二次根式.2.二次根式的性质:= ;= == (a≥0,b≥0); =(a≥0,b>0).3.被开方数所含因数是,因式是,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.4.化成最简二次根式后,相同的二次根式,叫做同类二次根式.5.二次根式相加减,先把各个二次根式化成,再把分别合并.6.二次根式相乘,,即 (a≥0,b≥0).7.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分). ,叫做分母有理化.典例诠释考点一二次根式的有关概念例1 (2016·怀柔二模)若二次根式有意义,则x的取值范围是 .【答案】x≥3【名师点评】由于二次根式的被开方数只能取非负值,因此要使二次根式有意义就必须使被开方数大于等于0.例2 (2016·石景山二模)若在实数范围内有意义,则x的取值范围是( )A.x≠3B.x>且x≠3C.x≥2D.x≥且x≠3【答案】 D【名师点评】此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零等,列不等式(组),将其转化为求不等式(组)的解集.考点二二次根式的性质例3 .【答案】 6【名师点评】解本题时最易出现的错误是没有准确理解的意义,表示的是的算术平方根,这里的表示的是的算术平方根,即9的算术平方根,所以=3,表示的是的平方是3.考点三二次根式的运算例4 (2016·门头沟一模)化简:= .【答案】 2例5 (1)在二次根式,,,,中,最简二次根式的个数是( )A.1B.2C.3D.4(2)下列各组二次根式中,是同类二次根式的是( )A.,3B.3,C.,D.,【答案】 (1)B (2)C【名师点评】以上两例题考查对最简二次根式、同类二次根式概念的理解,概念的理解要求对于重点词语的理解要到位.例6 9÷3×.【答案】 45【名师点评】本题主要考查二次根式的乘、除法,解题时要注意运算顺序,运算结果要最简.例7 (1)24+3,(2) – .【答案】 (1)17 (2)+【名师点评】二次根式的加减运算主要考查的是二次根式的化简.解题时要注意两点:(1)把每个根式化为最简二次根式;(2)把其中的最简二次根式合并.例8 (2016·朝阳二模)计算:+|-5|--2tan 60°.【答案】 3【名师点评】二次根式化简经常与零指数、负整数指数、绝对值、锐角三角函数等综合在一起考查,是中考的常见题型.基础精练1.(2014·东城一模)使二次根式有意义的x的取值范围是 . 【答案】x≥2.(2015·石景山一模)二次根式有意义的条件是 .【答案】x≤3.(2015·东城一模)计算++的结果为 .【答案】 +44.(2016·朝阳一模)计算:.【答案】5.(2016·大兴一模)计算:.【答案】 36.(2106·丰台一模)计算:+|-|-3tan 30°.【答案】 47.(2016·平谷一模)计算:-2cos 45°-|-2|+.【答案】 38.(2016·通州一模)计算:.【答案】 99.(2016·延庆一模)计算:-tan 60°-|-|.【答案】10.(2016·燕山一模)计算:+|-2|-2cos 60°.【答案】 411.(2016·通州二模)计算:|1-|++-2.【答案】 912.(2016·顺义二模)计算:+ +-2cos 45°.【答案】 2+213.(2016·丰台二模)计算:-2sin 30°+ .【答案】 4+214.(2016·东城二模)计算:2sin 60°-+.【答案】 3-15.(2016·石景山二模)计算: +-3tan 30°.【答案】 5-2真题演练1.(2014·上海)计算·的结果是( )A. B. C.2 D.3 【答案】 B2.(2016·天津)计算(+)()的结果是 . 【答案】 23.(2016·上海)计算:.【解】原式=-1-2-2+9=6-.4.(2016·北京)计算:+4sin 45°-+|1-|. 【解】原式=1+4×+-1=1+2-2+-1=.5.(2015·北京)计算:.【答案】 5+6.(2014·北京)计算:+-3tan 30°+|-|. 【答案】-4。
中考数学复习知识讲解+例题解析+强化训练(二次根式)二次根式◆知识讲解1.二次根式a≥0)叫做二次根式.2.最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.3.同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.4.二次根式的性质)2=a(a≥0);│a│=(0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩;(a≥0,b≥0);=(b≥0,a>0).5.分母有理化及有理化因式把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,•若它们的积不含二次根式,则称这两个代数式互为有理化因式.6.二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.◆例题解析例1填空题:(1其中是二次根式的是_________(填序号).(2有意义,则x 的取值范围是_______.(3)实数a ,b ,c a -b │.o【解答】(1)1) 3) 4) 5) 7).(2)由x -3≥0-2≠0,得x ≥3且x ≠7. (3)由图可知,a<0,b>0,c<0,且│b │>│c │-a ,-│a -b │=a -ba -b │.例2 选择题:(1)在下列各组根式中,是同类二次根式的是( )A BC(2)在根式,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)(3)已知a>b>0,的值为( )A .2 B .2 C D .12【解答】(1A 错.3,B 正确.||b =│a , ∴C 错,而显然,D 错,∴选B . (2)选C .(3)∵a>b>0)2)2=a+b-=421,22===,故选A.例3(2006,辽宁十一市)先化简,再求值:11()ba b b a a b++++,其中,【解答】原式=22()()()()ab a a b b a b a bab a b ab a b ab+++++==++当,.◆强化训练一、填空题1.(2007,福州)当x______在实数范围内有意义.2.已知0<x<1=______.3.已知最简二次根式b a=______,b=_______.4.(2008,长沙)已知a,b为两个连续整数,且<b,则a+b=______.5.已知实数x,y满足x2+y2-4x-2y+5=0________.6.(2006,内蒙古)已知a-1,a+1)(b-1)=_______.7===,从计算结果中找出规律,并利用这一规律计算:(200620062005++++1)=________.二、选择题8.(2006,四川南充)已知a<02a│可化简为()A.-a B.a C.-3a D.3aob a 9.已知xy>0,化简二次根式) A..C D 10,甲,乙两位同学的解法如下=====甲乙对于甲,乙两位同学的解法,正确的判断( ) A .甲,乙的解法都正确 B .甲正确,乙不正确 C .甲,乙都不正确 D .甲不正确,乙正确11.若的小数部分是a ,3的小数部分为b ,则a+b 等于( )A .0B .1C .-1D .±112.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a-b │ 的结果等于( ) A .-2b B .2b C .-2a D .2a13.若a=3a 2-6a -2的值为( )A .0B .-1C .1D .3 14.若ab ≠0=成立的条件是( ) A .a>0,b>0 B .a>0,b<0 C .a<0,b>0 D .a<0,b<015.(2007,连云港)已知m ,n 是两个连续自然数(m<n ),且q=mn ,设p ( ) A .总是奇数 B .总是偶数C .有时是奇数,有时是偶数D .有时是有理数,有时是无理数 三、解答题16.计算:(1)(2008)。
2020北京中考一轮复习数学专题10—二次根式考点总结【思维导图】【知识要点】知识点一二次根式的有关概念和性质二次根式概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a≥0)就表示a的算术平方根。
二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。
2.结果的取值范围相同,两者的结果都是非负数。
3.当a≧0时,考查题型一利用二次根式非负性解题++=,且y为负数,则m的取值范围是()1.已知实数x,y,m|3x y m|0A.m>6 B.m<6 C.m>﹣6 D.m<﹣622﹣4b+4=0,则ab的值等于()A .﹣2B .0C .1D .23|x ﹣y ﹣3|互为相反数,则x+y 的值为( )A .3B .9C .12D .27考查题型二 判断二次根式有意义的取值范围1.若代数式有意义,则实数x 的取值范围是( )A .B .C .D .且211x -中x 的取值范围在数轴上表示为( ) A . B .C .D .3m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠考查题型三 根据二次根式性质进行化简1.实数a 、b 在数轴上的位置如图所示,且|a|>|b|a b +的结果为( )A .2a+bB .-2a+bC .bD .2a-b2.实数a ,b 在数轴上对应点的位置如图所示,化简( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 3.如果,则a 的取值范围是( )A .B .C .D .4.当1<a <2|1-a|的值是( )A .-1B .1C .2a -3D .3-2a5.已知3y =,则2xy 的值为( )A .15-B .15C .152-D .152知识点二 二次根式的运算二次根式的乘法法则:【注意】1、要注意这个条件,只有a ,b 都是非负数时法则成立。
2024年中考数学复习专题讲义:二次根式知识点讲解1、二次根式的定义 一般地,形如a (a ≥0)的式子叫做二次根式。
2、二次根式的基本性质①2a =(a ≥0); a = (a ≥0); a = (a 取全体实数)。
3、二次根式的乘除(1)二次根式的乘法:①ab b a =⋅; ②b a ab ⋅= (a ≥0, b ≥0)。
(2)二次根式的除法:= = (a ≥0, b >0)。
4、最简二次根式 最简二次根式满足的条件:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。
5、二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
专题练习一、选择题1.下列二次根式中,是最简二次根式的是( )A .√12B .√8C .√13D .√0.22.若二次根式√x +2有意义,则x 的取值范围是( ).A .x >−2B .x ≥−2C .x <−2D .x ≥23.化简√(−3)2的结果是( )A .−3B .±3C .3D .94.估计(√27−√6)÷√3的值应在( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间5.下列计算错误的是( )A .3√2−√2=3B .√60÷√5=2√3C .√25a +√9a =8√aD .√14×√7=7√26.若 x =√m −√n,y =√m +√n ,则 xy 的值是( ).A .2√mB .m −nC .m +nD .2√n 7.计算:√12×√13−√8÷√2的结果是( ) A .2 B .0 C .-2 D .−√28.用四张大小一样的长方形纸片拼成一个正方形 ABCD (如图),它的面积是 48, 已知长方形的一边长 AE =3√3, 图中空白部分是一个正方形,则这个小正方形的周长为( )A .2√3B .4√3C .8√3D .16√3二、填空题9.化简√3= 10.若√a +√3=3√3,则a = . 11.计算(2√2+1)(2√2−1)的结果等于 .12.若二次根式√x+3x 有意义,则x 的取值范围为 .13.当m = 时,二次根式√m −2取到最小值.三、解答题14.计算 (1)√16÷√2−√13×√6; (2)32√4x +2√x 9−x √1x +4√x4.15.已知2x =+2y =(1)试求22x y +的值; (2)试求x y y x-的值. 16.某居民小区有一块形状为长方形ABCD 的绿地,长方形绿地的长BC 为√162m ,宽AB 为√128m (即图中阴影部分),长方形花坛的长为(√13+1)m ,宽为(√13−1)m ,(1)长方形ABCD 的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?17.已知x=2−√3,y=2+√3.(1)求x2+y2−xy的值;(2)若x的小数部分是a,y的整数部分是b,求ax−by的值.参考答案1.C2.B3.C4.B5.A6.B7.B8.C9.√33 10.1211.712.x ≥−3且x ≠013.214.解:(1)原式=√16÷2−√13×6=2√2−√2=√2;(2)原式=3√x +23√x −√x +2√x=143√x .15.(1)解:∵2x =, 2y =∴x+y=22+,xy=(22+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵2x =+,2y =-∴x+y=22+,x-y=((2222--=+=xy=(22=1∴()()22x y x yx y x yy x xy xy+---====16.(1)解:长方形ABCD的周长=2(√162+√128)=2(9√2+8√2)=34√2(m),答:长方形ABCD的周长是34√2m;(2)解:购买地砖需要花费=50[9√2×8√2−(√13+1)(√13−1)]=50(144−13+1)=50×132=6600(元)答:购买地砖需要花费6600元.17.(1)解:∵x=2−√3,y=2+√3,∴xy=(2−√3)(2+√3)=4−3=1,(x−y)2=(2−√3−2−√3)2=(−2√3)2=12,∴x2+y2−xy=(x−y)2+xy=12+1=13;(2)解:∵1<3<4,∴1<√3<2,∴3<2+√3<4,∴2+√3的整数部分是3,∴b=3,∵1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∴2−√3的整数部分是0,小数部分=2−√3−0=2−√3,∴a=2−√3,∴ax−by=(2−√3)(2−√3)−3(2+√3)=7−4√3+6−3√3=13−7√3,∴ax−by的值为13−7√3.)解:①(30x -2)x -②0020x x -22))(2)x -,又232x -+30x -+代数式当2x =时,代数式。
第五单元二次根式
课标解读
知识要点
1.二次根式:形如的式子叫做二次根式.
2.二次根式的性质:
= ;= == (a≥0,b≥0); =(a≥0,b>0).
3.被开方数所含因数是,因式是,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
4.化成最简二次根式后,相同的二次根式,叫做同类二次根式.
5.二次根式相加减,先把各个二次根式化成,再把分别合并.
6.二次根式相乘,,即 (a≥0,b≥0).
7.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分). ,叫做分母有理化.
典例诠释
考点一二次根式的有关概念
例1 (2016·怀柔二模)若二次根式有意义,则x的取值范围是 .
【答案】x≥3
【名师点评】由于二次根式的被开方数只能取非负值,因此要使二次根式有意义就必须使被开方数大于等于0.
例2 (2016·石景山二模)若在实数范围内有意义,则x的取值范围是( )
A.x≠3
B.x>且x≠3
C.x≥2
D.x≥且x≠3
【答案】 D
【名师点评】此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;
②分式的分母不为零等,列不等式(组),将其转化为求不等式(组)的解集.
考点二二次根式的性质
例3 .
【答案】 6
【名师点评】解本题时最易出现的错误是没有准确理解的意义,表示的是的算术平方根,这里的表示的是的算术平方根,即9的算术平方根,所以=3,表示的是的平方是3.
考点三二次根式的运算
例4 (2016·门头沟一模)化简:= .
【答案】 2
例5 (1)在二次根式,,,,中,最简二次根式的个数是( )
A.1
B.2
C.3
D.4
(2)下列各组二次根式中,是同类二次根式的是( )
A.,3
B.3,
C.,
D.,
【答案】 (1)B (2)C
【名师点评】以上两例题考查对最简二次根式、同类二次根式概念的理解,概念的理解要求对于重点词语的理解要到位.
例6 9÷3×.
【答案】 45
【名师点评】本题主要考查二次根式的乘、除法,解题时要注意运算顺序,运算结果要最简.
例7 (1)24+3,(2) – .
【答案】 (1)17 (2)+
【名师点评】二次根式的加减运算主要考查的是二次根式的化简.解题时要注意两点:(1)把每个根式化为最简二次根式;(2)把其中的最简二次根式合并.
例8 (2016·朝阳二模)计算:+|-5|--2tan 60°.
【答案】 3
【名师点评】二次根式化简经常与零指数、负整数指数、绝对值、锐角三角函数等综合在
一起考查,是中考的常见题型.
基础精练
1.(2014·东城一模)使二次根式有意义的x的取值范围是 . 【答案】x≥
2.(2015·石景山一模)二次根式有意义的条件是 .
【答案】x≤
3.(2015·东城一模)计算++的结果为 .
【答案】 +4
4.(2016·朝阳一模)计算:.
【答案】
5.(2016·大兴一模)计算:.
【答案】 3
6.(2106·丰台一模)计算:+|-|-3tan 30°.
【答案】 4
7.(2016·平谷一模)计算:-2cos 45°-|-2|+.
【答案】 3
8.(2016·通州一模)计算:.
【答案】 9
9.(2016·延庆一模)计算:-tan 60°-|-|.
【答案】
10.(2016·燕山一模)计算:+|-2|-2cos 60°.
【答案】 4
11.(2016·通州二模)计算:|1-|++-2.
【答案】 9
12.(2016·顺义二模)计算:+ +-2cos 45°.
【答案】 2+2
13.(2016·丰台二模)计算:-2sin 30°+ .
【答案】 4+2
14.(2016·东城二模)计算:2sin 60°-+.
【答案】 3-
15.(2016·石景山二模)计算: +-3tan 30°.【答案】 5-2
真题演练
1.(2014·上海)计算·的结果是( )
A. B. C.2 D.3 【答案】 B
2.(2016·天津)计算(+)()的结果是 . 【答案】 2
3.(2016·上海)计算:.
【解】原式=-1-2-2+9=6-.
4.(2016·北京)计算:+4sin 45°-+|1-|. 【解】原式=1+4×+-1=1+2-2+-1=.
5.(2015·北京)计算:.
【答案】 5+
6.(2014·北京)计算:+-3tan 30°+|-|. 【答案】-4。