苏科版八年级数学期中考试试卷
- 格式:pdf
- 大小:291.02 KB
- 文档页数:8
苏科版八年级上册数学期中考试试题一、单选题1.下列四个汉字中是轴对称图形的是( )A .B .C .D .2.三角形具有稳定性,就是当三角形的三边长确定时,三角形的形状和大小就确定了,其理论依据是( )A .SASB .ASAC .AASD .SSS 3.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .13,14,154.如图所示,在下列条件中,不能判断ABD △≌BAC 的条件是( )A .D C ∠=∠,BAD ABC ∠=∠B .BD AC =,BAD ABC ∠=∠ C .BAD ABC ∠=∠,ABD BAC ∠=∠ D .AD BC =,BD AC =5.如图,P 为AB 上任意一点,分别以AP 、PB 为边在AB 同侧作正方形APCD 、正方形PBEF,设CBE α∠=,则AFP ∠ 为( )A .2αB .90°﹣αC .45°+αD .90°﹣12α 6.如图,在ABC 中,AB AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M 和点N ,作直线MN 分别交BC 、AB 于点D 和点E ,若50B ∠=︒,则CAD ∠的度数是( )A .30B .40︒C .50︒D .60︒7.如图,将矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在点1D 、1C 的位置,1ED 的延长线交BC 于点G ,若64EFG ∠=︒,则EGB ∠等于( )A .128︒B .130︒C .132︒D .136︒8.如图,已知ABC 和ADE 都是等腰三角形,90BAC DAE ∠=∠=︒,,BD CE 交于点F ,连接AF ,下列结论:≌BD CE =;≌BF CF ⊥;≌AF 平分CAD ∠;≌45AFE ∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题9.等腰三角形是轴对称图形,最多有_____条对称轴.10.一个等腰三角形的两边长分别为3和7,这个三角形的周长是______.11.如图是从镜中看到的一串数字,这串数字应为_________12.等腰三角形的一个角是70°,则它的另外两个角的度数是______.13.已知一个直角三角的斜边上的高为6,则其斜边上的中线长为5,则它的面积为_____.14.如图,在等腰三角形ABC中,BD为≌ABC的平分线,≌A=36°,AB=AC=a,BC=b,则CD的长为________.15.如图,在≌ABC中,按以下步骤作图:≌以B为圆心,任意长为半径作弧,交AB于D,交BC于E;DE的同样长为半径作弧,两弧交于点F;≌分别以D,E为圆心,以大于12≌作射线BF交AC于G.如果AB=9,BC=12,≌ABG的面积为18,则≌CBG的面积为_____.16.如图,≌ABC≌≌ADE,且E在BC上.若≌DEA=80°,则≌BED的度数为______.17.直角三角形两条直角边长的和为7,面积为6,则它的斜边长为_________18.如图,在矩形ABCD中,3⊥,AB=,4=AD,E、F分别是边BC、CD上一点,EF AE将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC '是以AE 为腰的等腰三角形.三、解答题19.已知:如图,≌ABC 中,≌A =90°,现要在 AC 边上确定一点 D ,使点 D 到 BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点 D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若 BC =10,AB =8,则 AC= ,AD= (直接写出结果).20.如图,在≌ABC 中,AB =AC ,D 为BC 边上一点,连接AD ,若≌B =30°,≌DAB =45°,求≌DAC 的度数.21.如图,在66⨯的网格中,ABC 的三个顶点都在格点上.(1)在图1中画出ACD △,使ACD △与ACB △全等,顶点D 在格点上.(2)在图2中过点B 画出平分ABC 面积的直线l .22.在≌AD AE =,≌ABE ACD ∠=∠,≌FB FC =这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,在ABC 中,A ABC CB =∠∠,点D 在AB 边上(不与点A ,点B 重合),点E 在AC 边上(不与点A ,点C 重合),连接BE ,CD ,BE 与CD 相交于点F .若______,求证:BE CD =.注:如果选择多个条件分别作答,按第一个解答计分.23.已知:如图,AD≌BC ,垂足为D .若BD =a ,AD =2a ,CD =4a ,则≌BAC 是直角吗?证明你的结论.24.如图,D 是≌ABC 的边AB 上一点,CF≌AB ,DF 交AC 于E 点,DE =EF . (1)求证:≌ADE≌≌CFE ;(2)若D是AB的四等分点,BD=2,求CF的长.25.在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,≌求线段CE的长;≌当EP平分≌AEC时,求a的值;(2)若a=1,且≌CEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.26.我们知道,到线段两端距离相等的点在线段的垂直平分线上.由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.(1)如图1,点P在线段BC上,≌ABP=≌APD=≌PCD=90°,BP=CD.求证:点P是≌APD的准外心;(2)如图2,在Rt≌ABC中,≌BAC=90°,BC=5,AB=3,≌ABC的准外心P在≌ABC的直角边上,试求AP的长.参考答案1.B【分析】根据轴对称图形的概念逐项判断即可.【详解】解:A选项中的汉字不是轴对称图形,不符合题意;B选项中的汉字是轴对称图形,符合题意;C选项中的汉字不是轴对称图形,不符合题意;D选项中的汉字不是轴对称图形,不符合题意,故选:B.2.D【分析】由题意三角形的三边长被确定,故利用SSS可得三角形全等,即可说明问题.【详解】解:如图,在≌ABC和≌A′B′C′中,AB=A′B′,AC=A′C′,BC=B′C′,在≌ABC和≌A′B′C′中,≌AB=A′B′,AC=A′C′,BC=B′C′,≌≌ABC≌≌A′B′C′(SSS)故三角形的三边被确定后,三角形的大小形状就被确定,即三角形具有稳定性.【点睛】本题考查了三角形的全等,由题意得出三边相等得到三角形全等是解题关键. 3.B【解析】【详解】A、222456+≠,不符合勾股定理的逆定理,不能构成直角三角形,故错误;B、2221.522.5+=,符合勾股定理的逆定理,能构成直角三角形,故正确;C、222234+≠,不符合勾股定理的逆定理,不能构成直角三角形,故错误;D、222111453⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不符合勾股定理的逆定理,不能构成直角三角形,故错误.故选:B.4.B【解析】【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A、符合AAS,能判断两个三角形全等,故该选项不符合题意;B、符合SSA,≌BAD和≌ABC不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C、符合AAS,能判断两个三角形全等,故该选项不符合题意;D、符合SSS,能判断两个三角形全等,故该选项不符合题意;故选择:B.【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.5.B【分析】根据题意可得∆≅∆()AFP CBP SAS ,从而90AFP CBP α∠=∠=︒-即可. 【详解】≌四边形APCD 和四边形PBEF 是正方形,≌AP=CP ,PF=PB ,90APF BPF PBE ∠=∠=∠=︒,≌∆≅∆()AFP CBP SAS ,≌≌AFP=≌CBP ,又≌CBE α∠= ,≌90AFP CBP PBE CBE α∠=∠=∠-∠=︒-,故选:B .【点睛】本题主要考查了正方形的性质,全等三角形的判定,熟练掌握正方形的性质,全等三角形的判定方法是解题的关键.6.A【解析】【分析】由尺规作图痕迹可知,MN 是线段AB 的垂直平分线,进而得到DB=DA ,≌B=≌BAD ,再由AB=AC 得到≌B=≌C=50°,进而得到≌BAC=80°,≌CAD=≌BAC -≌BAD=30°即可求解.【详解】解:由题意可知:MN 是线段AB 的垂直平分线,≌DB=DA ,≌≌B=≌BAD=50°,又AB=AC ,≌≌B=≌C=50°,≌≌BAC=80°,≌≌CAD=≌BAC -≌BAD=30°,故选:A .7.A由矩形得到AD//BC,≌DEF=≌EFG,再由与折叠的性质得到≌DEF=≌GEF=≌EFG,用三角形的外角性质求出答案即可.【详解】解:≌四边形ABCD是矩形,≌AD//BC,≌矩形纸片ABCD沿EF折叠,≌≌DEF=≌GEF,又≌AD//BC,≌≌DEF=≌EFG,≌≌DEF=≌GEF=≌EFG=64≌,∠是≌EFG的外角,≌EGB∠=≌GEF+≌EFG=128≌≌EGB故选:A.8.C【分析】≌证明≌BAD≌≌CAE,再利用全等三角形的性质即可判断;≌由≌BAD≌≌CAE可得≌ABF=≌ACF,再由≌ABF+≌BGA=90°、≌BGA=≌CGF证得≌BFC=90°即可判定;≌分别过A作AM≌BD、AN≌CE,根据全等三角形面积相等和BD=CE,证得AM=AN,即AF平分≌BFE,⊥即可判定.即可判定;≌由AF平分≌BFE结合BF CF【详解】解:≌≌BAC=≌EAD≌≌BAC+≌CAD=≌EAD+≌CAD,即≌BAD=≌CAE在≌BAD和≌CAE中AB=AC, ≌BAD=≌CAE,AD=AE≌≌BAD≌≌CAE≌BD=CE故≌正确;≌≌BAD≌≌CAE≌≌ABF=≌ACF≌≌ABF+≌BGA=90°、≌BGA=≌CGF≌≌ACF+≌BGA=90°,≌≌BFC=90°故≌正确;分别过A作AM≌BD、AN≌CE垂足分别为M、N ≌≌BAD≌≌CAE≌S≌BAD=S≌CAE,≌1122BD AM CE AN ⋅=⋅≌BD=CE≌AM=AN≌AF平分≌BFE,无法证明AF平分≌CAD.故≌错误;≌AF平分≌BFE,BF CF⊥≌45AFE∠=︒故≌正确.故答案为C.9.3【详解】解:等腰三角形是轴对称图形,而等边三角形是等腰三角形,它有3条对称轴.故答案为:3.10.17【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.11.810076【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:≌是从镜子中看,≌对称轴为竖直方向的直线,≌镜子中数字的顺序与实际数字顺序相反,≌这串数字应为810076.故答案为:810076.【点睛】此题主要考查了镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.12.55°,55°或70°,40°.【解析】【分析】分70°为等腰三角形的顶角和底角两种情况,利用等腰三角形的性质和三角形的内角和定理即可求出.【详解】解:(1)当顶角为70°时,则它的另外两个角的度数是55°,55°;(2)当底角70°时,则它的另外两个角的度数是70°,40°;所以另外两个角是55°,55°或70°,40°.故答案为55°,55°或70°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和定理,难度不大,属于基础题型.13.30【解析】【分析】由直角三角形斜边上的中线等于斜边的一半求出斜边长,再根据三角形的面积公式求解即可.【详解】解:≌直角三角的斜边上的中线长为5,≌斜边长为2×5=10,≌直角三角的斜边上的高为6,≌该三角形的面积为12×10×6=30, 故答案为:30.【点睛】本题考查直角三角形斜边上的中线性质、三角形的面积公式,求出斜边长是解答的关键. 14.a -b【解析】【分析】根据等腰三角形的性质可得72ABC C ∠=∠=︒,根据角平分线的定义可得1362CBD ABD ABC ∠=∠=∠=︒,进而根据三角形的内角和定理可得72BDC ∠=︒,根据等角对等边可得BC BD =,DA DB =,由AC AD AC BC -=-即可求得CD【详解】≌A=36°,AB=AC()1180722ABC ACB A ∴∠=∠=︒-∠=︒ BD 为≌ABC 的平分线,∴1362CBD ABD ABC ∠=∠=∠=︒ ABD A ∴∠=∠∴DA DB =18072BDC DBC C ∠=︒-∠-∠=︒72BDC C ∴∠=∠=︒∴BC BD =AD BC ∴=∴AC AD AC BC -=-a b =-故答案为:-a b15.24【分析】如图,过点G 作GM AB ⊥于M ,GN BC ⊥于N .证明GM GN =,求出GM ,即可解决问题.【详解】解:如图,过点G 作GM AB ⊥于M ,GN BC ⊥于N .由作图可知,GB 平分ABC ∠,GM AB ⊥,GN BC ⊥,GM GN ∴=,1182ABG S AB GM ∆=⨯⨯=, 4GM ∴=,4GN GM ∴==,111242422CBG S BC GN ∆∴==⨯⨯=, 故答案为24.【点睛】本题考查作图-基本作图,角平分线的性质定理,三角形的面积等知识,学会添加常用辅助线,利用角平分线的性质定理解决问题是解题的关键.16.20°【解析】【详解】≌≌ABC≌≌ADE ,≌≌C=≌DEA=80°,AE=AC ,≌≌AEC=≌C=80°,≌≌BED=180°-≌DEA -≌AEC=180°-80°-80°=20°.故答案为20°. 17.5【解析】【详解】设其中一条直角边为x ,则另一直角边为(7)x -,由题意可得:1(7)62x x -=,解得:1234,x x ==,≌该直角三角形的两直角边一边为3,另一边为4,≌.故答案为:5 18.78或43【解析】【分析】对AEC '是以AE 为腰的等腰三角形分类讨论,当=AE EC '时,设BE x =,可得到4EC x =-,再根据折叠可得到=4EC EC x '=-,然后在Rt≌ABE 中利用勾股定理列方程计算即可;当=AE AC '时,过A 作AH 垂直于EC '于点H ,然后根据折叠可得到=C EF FEC '∠∠,在结合EF AE ⊥,利用互余性质可得到BEA AEH =∠∠,然后证得≌ABE≌≌AHE ,进而得到BE HE =,然后再利用等腰三角形三线合一性质得到EH C H '=,然后在根据数量关系得到14=33BE BC =.【详解】解:当=AE EC '时,设BE x =,则4EC x =-,≌ECF △沿EF 翻折得EC F '△,≌=4EC EC x '=-,在Rt≌ABE 中由勾股定理可得:222AE BE AB =+即222(4)3-=+x x , 解得:7=8x ;当=AE AC '时,如图所示,过A 作AH 垂直于EC '于点H ,≌AH≌EC ',=AE AC ',≌EH C H '=,≌EF AE ⊥,≌=90C EF AEC ''+︒∠∠,90BEA FEC +=︒∠∠≌ECF △沿EF 翻折得EC F '△,≌=C EF FEC '∠∠,≌BEA AEH =∠∠,在≌ABE 和≌AHE 中B AHEAEB AEH AE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌ABE≌≌AHE (AAS ),≌BE HE=,≌=BE HE HC'=,≌12BE EC'=≌EC EC'=,≌12BE EC=,≌14=33 BE BC=,综上所述,7483 BE=或,故答案为:74 83或【点睛】本题主要考查等腰三角形性质,勾股定理和折叠性质,解题的关键是分类讨论等腰三角形的腰,然后结合勾股定理计算即可.19.(1)见解析;(2)6;8 3 .【解析】【分析】(1)直接利用角平分线的作法得出D点位置;(2)作DE≌BC于E,根据勾股定理可求出AC,设AD的长为x,然后用x表示出CD、DE、求出CE,利用勾股定理得到有关x的方程,解之即可.【详解】解:(1)作≌ABC的平分线,交AC于点D,则点D即为所求的点;(2)作DE≌BC于E,设AD=x,≌BC=10,AB=8,6==;≌BD 平分≌ABC ,DE≌BC ,≌A =90°,≌DE=AD=x ,CD=6-x ,在Rt≌ABD 和Rt≌EBD 中,AD=ED BD=BD ⎧⎨⎩≌Rt≌ABD≌Rt≌EBD ,≌BE=AB=8,≌EC=BC -BE=2,在Rt≌CDE 中,222CD =CE +DE 即()2226=2+x x - ,解得:x=83,即AD=83.【点睛】本题考查作图-复杂作图,角平分线的性质,勾股定理,掌握角平分线的作法及勾股定理的运用是解题的关键.20.75°.【解析】【分析】根据等边对等角可得≌C =≌B =30°,然后根据三角形的内角和定理,即可求出≌BAC ,从而求出≌DAC 的度数.【详解】解:≌AB =AC ,≌B =30°,≌≌C =≌B =30°,≌≌BAC =180°﹣30°﹣30°=120°,≌≌DAB =45°,≌≌DAC =≌BAC ﹣≌DAB =120°﹣45°=75°.21.(1)画图见解析;(2)画图见解析【分析】(1)结合题意,根据全等三角形的性质作图,即可得到答案;(2)取格点D ,则四边形ABCD 为平行四边形,过点D 和点B 作直线l ,即可得到答案.【详解】(1)如图,画ACD △≌AD CB AC CA CD AB =⎧⎪=⎨⎪=⎩≌ACD ACB ≌△△≌ACD △就是所求作的三角形;(2)如图,取格点D ,连接AD,CD ,由(2)可知≌ACD 与 ≌ACB 全等,可以证明四边形ABCD 是平行四边形, 过点D 和点B 作直线l 交AC 于点E ,≌AE=AC ,≌≌ABE 的面积等于≌BEC 的面积,则直线l 即为所求.【点睛】本题考查了全等三角形、平行四边形的性质等知识;解题的关键是熟练掌握相关性质,从而完成求解.22.见解析【解析】【分析】根据全等三角形的判定方法解答即可.【详解】解:选择条件≌的证明:因为A ABC CB =∠∠,所以AB AC =,又因为AD AE =,A A ∠=∠,所以ABE △≌ACD △,所以BE CD =.选择条件≌的证明:因为A ABC CB =∠∠,所以AB AC =,又因为A A ∠=∠,ABE ACD ∠=∠,所以ABE △≌ACD △,所以BE CD =.选择条件≌的证明:因为FB FC =,所以FBC FCB ∠=∠,又因为A ABC CB =∠∠,BC CB =,所以CBE △≌BCD △,所以BE CD =【点睛】此题主要考查了全等三角形的判定方法,证明两个三角形全等的方法有:SSS ,AAS ,SAS ,ASA ,HL23.≌BAC 是直角,理由见解析【解析】【分析】由勾股定理分别求出≌ABC 的三边,再利用勾股定理的逆定理来判断即可.【详解】解:≌BAC是直角.≌AD≌BC,≌≌ADB=≌ADC=90°,在Rt≌ADB中,≌ADB=90°,由勾股定理得:AB2=AD2+BD2=5a2,在Rt≌ADC中,≌ADC=90°,由勾股定理得:AC2=AD2+CD2=20a2,在≌ABC中,≌AB2+AC2=25a2=BC2,≌≌BAC=90°,即≌BAC是直角.【点睛】本题考查了勾股定理和勾股定理逆定理的运用,熟练掌握定理是解决问题的关键.24.(1)见解析;(2)6或23【解析】【分析】(1)根据CF≌AB,可得≌ADE=≌F,≌A=≌ECF,即可求证;(2)由(1)知:CF=AD,然后分两种情况讨论:若14BD AB=时和若34BD AB=时,即可求解.【详解】解:(1)≌CF≌AB,≌≌ADE=≌F,≌A=≌ECF,≌DE=EF,≌≌ADE≌≌CFE(AAS);(2)由(1)知:≌ADE≌≌CFE,≌CF=AD,若14BD AB=时,≌BD=2,≌48 AB BD==,≌AD=AB-BD=6,≌CF=6;若34BD AB=时,≌BD=2,≌4833 AB BD==,≌82233 AD AB BD=-=-=,≌23CF=,综上所述,CF的长为6或23.【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理,并会利用分类讨论思想是解题的关键.25.(1)≌5cm;≌43;(2)3或6518;(3)54a=,t=4【解析】【分析】(1)≌当t=3时,根据路程=速度×时间,可求出DE=3,然后由勾股定理可计算出CE,≌当EP平分≌AEC时,根据角平分线的性质可得≌点P到EC的距离等于点P到AD的距离,即EC边上的高等于4,利用等积法可求PC,再利用线段和差关系求BP,根据速度=路程÷时间,可计算出a;(2)根据线和差关系,勾股定理把PC,PE,CE用含t的代数式表示出来,然后根据等腰三角形的性质分情况讨论,列出关于t的方程,解方程即可求解;(3)根据点C与点E关于DP对称,可得DP垂直平分CE,所以DE=CD,PE=PC,然后根据DE=CD,可先计算出t,然后根据PE=PC可求出a.【详解】(1)≌当t=3时,则DE=3,在Rt≌CDE中,由勾股定理可得5==;≌当EP平分≌AEC时,根据角平分线的性质可得≌点P到EC的距离等于点P到AD的距离,即EC边上的高等于4,所以11422PCES EC PC CD =⨯⨯=⨯⨯,所以11454 22PC⨯⨯=⨯⨯,所以PC=5,则PB=BC-PC=9-5=4,又因为PB=at=3t,所以3t=4,解得a=34;(2)在Rt≌CDE中,由勾股定理可得=,所以PC=BC-BP=9-t,由勾股定理可得当EC=PE时,t=3或t=9(不符合题意,舍去),当EC=PC时,-t,解得t=65 18,所以t=3或t=65 18,(3)因为点C与点E关于DP对称,所以DP垂直平分CE,所以DE=CD=4,PE=PC,所以DE=t=4,因为BP=at,所以BP=4a,所以PC=9-4a,由勾股定理可得-4a,解得a=54,所以a=54,t=4.【点睛】此题是四边形综合题,主要考查了长方形的性质,勾股定理,等腰三角形的性质,解(1)的关键是判断出CE=CP ,解(2)的关键是分两种讨论,解(3)得关键是构造直角三角形,解本题的关键是用方程的思想解决问题.26.(1)见解析;(2)AP 的长为32或2或78 【解析】【分析】(1)利用AAS 证明≌ABP≌≌PCD ,得到AP =PD ,由定义可知点P 是≌APD 的准外心; (2)先利用勾股定理计算AC=4,再进行讨论:当P 点在AB 上,PA =PB ,当P 点在AC 上,PA =PC ,易得对应AP 的值;当 P 点在AC 上,PB =PC ,设AP =t ,则PC =PB =4﹣x ,利用勾股定理得到32+t 2=(4﹣t)2,然后解方程得到此时AP 的长.【详解】(1)证明:≌≌ABP =≌APD =≌PCD =90°,≌≌APB+≌PAB =90°,≌APB+≌DPC =90°,≌≌PAB =≌DPC ,在≌ABP 和≌PCD 中,PAB DPC ABP PCD BP CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌ABP≌≌PCD (AAS ),≌AP =PD ,≌点P 是≌APD 的准外心;(2)解:≌≌BAC =90°,BC =5,AB =3,≌AC =4,当P 点在AB 上,PA =PB ,则AP 12=AB 32=; 当P 点在AC 上,PA =PC ,则AP 12=AC =2, 当P 点在AC 上,PB =PC ,如图2,设AP =t ,则PC =PB =4﹣x ,在Rt≌ABP 中,32+t 2=(4﹣t)2,解得t 78=, 即此时AP 78=,综上所述,AP的长为32或2或78.。
2024-2025学年苏科版数学八年级上册期中测试一、单选题1.下列图形中,轴对称图形的个数是( )A .1B .2C .3D .42.下列各组线段,能组成直角三角形的是( )A .1a =,2b =,3c =B .2a =,3b =,4c =C .2a =,4b =,5c =D .3a =,4b =,5c =3.已知等腰三角形的一个外角等于100°,则它的顶角是( )A .80°B .20°C .80°或20°D .不能确定 4.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对5.有四个三角形,分别满足下列条件,其中直角三角形有( )(1)一个内角等于另外两个内角之差:(2)三个内角度数之比为3:4:5;(3)三边长度之比为5:12:13;(4)三边长分别为7、24、25.A .1个B .2个C .3个D .4个6.如图,90BAC DAF ==︒∠∠,AB AC =,AD AF =,点D ,E 为BC 边上的两点,且45DAE =︒∠,连接EF ,BF ,则下列结论不正确的是( )A .AED AEF ≌△△B .BE DC DE += C .>BE DC DE +D .222BE DC DE +=7.如图,在等边三角形ABC 中,2AB =,D 为ABC V 内一点,且DA DB =,E 为ABC V 外一点,BE AB =且EBD CBD ∠=∠,连接DE ,CE ,有下列结论:①DAC DBC ∠=∠②BE AC ⊥;③30DEB ∠=︒;④若EC AD ∥,则1EBC S =△.其中正确结论的个数为( )A .1B .2C .3D .48.如图,点P 、Q 分别是边长为4cm 的等边△ABC 边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且速度都为1cm/s ,连接AQ 、CP 交于点M ,下面四个结论:①△ABQ ≌△CAP ;;②∠CMQ 的度数不变,始终等于60°③BP =CM ;正确的有几个( )A .0B .1C .2D .3二、填空题9.如图,A ,D ,F ,B 在同一直线上,AE=BC ,且AE ∥BC .添加一个条件,使△AEF ≌△BCD .10.一个等腰三角形的两边长分别是2cm 和4cm ,则它的周长是cm .11.如图,点A ,E ,F ,D 在同一直线上,若AB CD ∥,AB CD =,AE FD =,则图中的全等三角形共有对.12.如图,在Rt △ABC 中,∠A=90°,BD 平分∠ABC 交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离为.13.如图,在Rt ABC V 中,90108C AC BC AB ∠=︒==,,,的垂直平分线分别交AC AB ,于点D ,E .则AD 的长度为.14.如图所示,已知△ABC 的面积是36,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,则△ABC 的周长是.15.如图,在ABC V 中,AB AC BF CD BD CE ===,,,若30A ∠=︒,则FDE ∠=.16.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是.17.如图,ABC V 中,13AB AC ==,10BC =,AD 是BC 边上的中线,F 是AD 上的动点,E 是AC 边上的动点,则CF EF +的最小值为 .18.如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,P 、Q 是边AC 、BC 上的两个动点, PD ⊥AB 于点D , QE ⊥AB 于点E .设点P 、Q 运动的时间是t 秒(t >0).若点P 从C 点出发沿CA 以每秒3个单位的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回到点C 停止运动;点Q 从点B 出发沿BC 以每秒1个单位的速度向点C 匀速运动,到达点C 后停止运动 ,当t =时,△APD 和△QBE 全等.三、解答题19.将16个相同的小正方形拼成正方形网格,请你用两种不同的方法分别在图1、图2中将四个空白的小正方形涂黑,使它成为轴对称图形.20.如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.21.如图,在直角△ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数.22.如图,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF .23.如图所示,ACB △与ECD V 都是等腰直角三角形,90ACB ECD ∠=∠=︒,点D 为AB 边上的一点,若1712AB BD ==,,(1)求证:BCD ACE ≌△△;(2)求DE 的长度.24.【探索研究】已知:ABC V 和CDE V都是等边三角形.(1)如图1,若点A 、C 、E 在一条直线上时,我们可以得到结论:线段AD 与BE 的数量关系为:,线段AD 与BE 所成的锐角度数为︒;(2)如图2,当点A 、C 、E 不在一条直线上时,(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由;【灵活运用】(3)如图3,某广场是一个四边形区域ABCD ,现测得:60m AB =,80m BC =,且30ABC ∠=︒,60DAC DCA ∠=∠=︒,试求圆形水池两旁B 、D 两点之间的距离.25.在矩形纸片ABCD 中,6AB =,8BC =,将矩形纸片沿BD 折叠,点A 落在点E 处,设DE 与BC 相交于点F ,(1)判断BDF V 的形状,并说明理由;(2)求BF 的长.26.在等腰ABC V 中,,=⊥AB AC AD BC 于点D ,以AC 为边作等边ACE △,直线BE 与直线AD 交于点F ,直线FC 与直线AE 交于点G .(1)如图1,当120180BAC ︒<∠<︒,且ACE △与ABC V 在直线AC 的异侧时,①求证:FEA FCA ∠=∠;②猜想线段FE 、FA 、FB 之间的数量关系,并证明你的结论.(2)当60120BAC ︒<∠<︒,且ACE △与ABC V 在直线AC 的同侧时,利用图2探究线段FE 、FA 、FB 之间的数量关系,并直接写出你的结论.。
苏科版八年级上册数学期中考试试题一、单选题1.下列图形中,不一定是轴对称图形的是( )A .等腰三角形B .线段C .角D .直角三角形 2.已知等腰三角形的一边等于4,一边等于9,则它的周长为( )A .17B .17或22C .22D .20或223.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点4.如图,分别以直角三角形各边为一边向三角形外部作正方形,其中两个小正方形的面积分别为9和25,则正方形A 的面积是( )A .16B .32C .34D .645.AOB ∠的平分线上一点P 到OA 的距离为5,Q 是射线OB 上任意一点,则( ) A .5PQ > B .5PQ ≥ C .5PQ < D .5PQ ≤ 6.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC∠AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC∠AB ,垂足为C7.如图,在方格纸中,以AB 为一边作∠ABP ,使之与∠ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个8.如图,ABE ACD △≌△,则与B 相等的是( )A .CAD ∠B .AED ∠C .C ∠D .CAE ∠9.下列各数中,是勾股数的是( )A .0.3,0.4,0.5B .6,8,10C .13,14,15 D .10,15,1810.下列图形中,是轴对称图形的是( )A .B .C .D .二、填空题11.已知∠ABC∠∠DEF ,∠A=80°,∠E =50°,则∠F 的度数为_______.12.在等腰ABC 中,已知顶角∠A=40°,则底角∠B=________°.13.直角三角形斜边上的中线长为5cm ,则斜边长为____cm .14.如图,∠ABC∠∠ADC ,∠B =120°,∠BAC =40°,则∠ACD =________°.15.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地上,此处离树底部________m处.16.在正方形网格中,A,B,C,D,E均为格点,则∠BAC-∠DAE=___________°.17.如图,AD是Rt∠ABC的角平分线,∠C=90°,DC=6,则D到AB的距离是___.三、解答题18.已知:如图,AC∠DF,AC=DF,AB=DE.求证:(1)∠ABC∠∠DEF;(2)BC∠EF.19.如图,在ABC中,AB=AC=10cm,BC=6cm,∠A=50°,DE为AB的垂直平分线,分别交AB、AC于点E、D.(1)求BCD △的周长;(2)求∠CBD 的度数.20.已知:如图,90ABC ADC ∠=∠=︒,点O 是线段AC 的中点.(1)求证:OB=OD ;(2)若30ACD ∠=︒,OB=6,求AOD △的周长.21.如图,,12,5ACF ADE AD AE ∆≅∆==,求DF 的长,22.如图,Rt ABC 中,∠ACB =90°,CD AB ⊥,AC =8,BC =6,则线段CD 的长度是多少?23.如图,在∠ABC中,∠BAC=120°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)试求∠DAE 的度数.(2)如果把题中“AB=AC”的条件去掉,其余条件不变,试求∠DAE的度数.(3)若将已知条件“∠BAC=120°”改为BAC∠α=,其它条件与(2)相同,请直接写出∠DAE 的度数为°.24.如图,在∠ABC中,AD为∠BAC的平分线,DE∠AB于E,DF∠AC于F,∠ABC的面积是64cm2,AB=20cm,AC=12cm,求DE的长.25.如图所示,在正方形网格中,每个小正方形的边长为1个单位.'''';(1)过直线m作四边形ABCD的对称图形A B C D(2)直接写出四边形ABCD的面积为.参考答案1.D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形判断即可.【详解】解:角、线段、等腰三角形都是轴对称图形,而直角三角形不一定是轴对称图形.故选:D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.2.C【解析】【分析】此题先要分类讨论,已知等腰三角形的一边等于4,另一边等于9,先根据三角形的三边关系判定能否组成三角形,若能则求出其周长.【详解】解:当4为腰,9为底时,∠4+4<9,∠不能构成三角形;当腰为9时,∠9+4>9,∠能构成三角形,∠等腰三角形的周长为:9+9+4=22,故选:C.【点睛】此题考查了等腰三角形的基本性质及分类讨论的思想方法,另外求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.B【解析】【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【详解】解:∠三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∠凳子应放在∠ABC的三边中垂线的交点最适当.故选:B.【点睛】本题主要考查了游戏的公平性与线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.4.C【解析】【详解】解:如图:根据题意得:EF2=25,FG2=9,根据勾股定理得:EG2=25+9=34,则以斜边为边长的正方形的面积为34.故选C.【点睛】本题考查了勾股定理,解题的关键是正确的计算.5.B【解析】【分析】根据角平分线性质可得点P到OB的距离为5,再根据垂线段最短来解答即可.【详解】解:∠点P在∠AOB的平分线上,点P到OA边的距离等于5,∠点P到OB的距离为5,∠点Q是OB边上的任意一点,∠PQ≥5【点睛】本题考查了角平分线的性质和垂线段最短,利用角平分线性质求点P到OB的距离是解决本题的关键.6.B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A.利用SAS判断出∠PCA∠∠PCB,∠CA=CB,∠PCA=∠PCB=90°,∠点P在线段AB的垂直平分线上,符合题意;B.过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C.利用SSS判断出∠PCA∠∠PCB,∠CA=CB,∠PCA=∠PCB=90°,∠点P在线段AB的垂直平分线上,符合题意;D.利用HL判断出∠PCA∠∠PCB,∠CA=CB,∠点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.7.C【解析】【详解】要使∠ABP与∠ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.8.C【解析】【分析】根据全等三角形的性质,即可判定.【详解】△≌△解:∠ABE ACD∠=∠∠B C故选C【点睛】此题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.9.B【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为0.3、0.4、0.5都不是整数,所以它们不是勾股数,故本选项错误;B、因为2221068=+,所以它们是勾股数,故本选项正确;C、因为13、14、15都不是整数,所以它们不是勾股数,故本选项错误;D、因为222181015≠+,所以它们不是勾股数,故本选项错误.故选:B.【点睛】考查了勾股数,勾股数:满足222+=a b c的三个正整数,称为勾股数.10.C【解析】【分析】根据轴对称图形的定义判断即可.【详解】A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故答案为C.【点睛】本题考查了轴对称图形的定义,属于基础题型,熟知定义是正确判断的关键.11.50°【解析】【分析】要求∠F的大小,利用∠ABC∠∠DEF,得到对应角相等,然后在∠DEF中依据三角形内角和定理,求出∠F的大小.【详解】解:∠∠ABC∠∠DEF,∠∠D=∠A=80°∠∠F=180-∠D -∠E=50°. 故答案为:50°. 12.70 【解析】 【分析】根据等腰三角形的性质即可得到结论. 【详解】解:∠等腰三角形ABC 中顶角∠A=40°, ∠底角∠B 的度数=12(180°-40°)=70°,故答案为:70. 【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 13.10 【解析】 【分析】根据直角三角形中斜边上的中线等于斜边的一半,直接计算即可. 【详解】解:∠直角三角形中斜边上的中线等于斜边的一半,直角三角形斜边上的中线长为5cm , ∠斜边长=2×5=10(cm ). 故答案为:10 【点睛】本题考查了直角三角形的性质,解题关键是明确直角三角形中斜边上的中线等于斜边的一半. 14.20 【解析】 【分析】由∠ABC ∠ ∠ADC ,∠B =120°,∠BAC =40°,可得12040,,D DAC ∠=︒∠=︒ 再利用三角形的内角和定理可得答案. 【详解】解: ∠ABC ∠ ∠ADC ,∠B =120°,∠BAC =40°,12040,,D B DAC BAC ∴∠=∠=︒∠=∠=︒ 1801204020,ACD ∴∠=︒-︒-︒=︒ 故答案为:20 【点睛】本题考查的是全等三角形的性质,三角形的内角和定理,掌握全等三角形的性质是解题的关键. 15.8 【解析】 【分析】首先设树顶端落在离树底部x 米处,根据勾股定理可得62+x 2=(16-6)2,再解即可. 【详解】解:设树顶端落在离树底部x 米处,由题意得:62+x 2=(16-6)2,解得:x=8或x=-8(不合题意舍去). 故答案为:8. 16.45 【详解】解:如图示,在正方形网格中,连接正方形的顶点,得到Rt EFD ∆和Rt EGD ∆,设正方形网格的边长为1,则有22112EG ,1FG =,2AG =,∠22EGAG,1222FG EG , ∠EG FGAG EGEGF AGE ∽,又∠根据作图可知CBAFDE ,∠BAC DEF∠=∠故答案为:45.【点睛】本题考查了勾股定理,相似三角形的判定和性质,全等三角形的性质,求得EGF AGE∽是解题的关键.17.6【解析】【分析】作DE∠AB于E,根据角的平分线上的点到角的两边的距离相等解答即可.【详解】解:作DE∠AB于E,∠AD是∠ABC的角平分线,∠C=90°,DE∠AB,∠DE=DC=6,故答案为:6.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.(1)见解析;(2)见解析【解析】【分析】(1)由平行线的性质可得∠A=∠FDE,再由已知即可证得结论;(2)由全等三角形的性质可得∠ABC=∠E,由平行线的判定定理即可得到结论.(1)∠AC∠DF∠∠A=∠FDE在∠ABC和∠DEF中AC DF A FDE AB DE =⎧⎪∠=∠⎨⎪=⎩∠∠ABC∠∠DEF(SAS) (2)∠∠ABC∠∠DEF ∠∠ABC=∠E ∠BC∠EF 【点睛】本题考查了全等三角形的判定与性质、平行线的判定与性质,掌握这两个判定与性质是关键. 19.(1)16cm ;(2)15°. 【解析】 【分析】(1)证明DA=DB ,DB+DC=AC ,即可解决问题.(2)证明∠A=∠ABD 先求出∠ABD 的度数;再证明∠C=∠ABC ,据此求出∠ABC 的度数,即可求出∠DBC 的度数. 【详解】解:(1)∠DE∠AB ,且平分AB , ∠DA=DB ,DB+DC=AC , ∠∠BDC 的周长 = DB+DC +BC = DA+DC +BC =AC+BC =10+6 =16(cm ). (2)∠DA=DB , ∠∠ABD=∠A=50°; ∠AB=AC ,∠∠C=∠ABC=1(180)2A -∠=1(18050)652-=;∠∠CBD=∠ABC -∠ABD=65°-50°=15°. 【点睛】该题主要考查了线段垂直平分线的性质、等腰三角形的性质;牢固掌握定理是灵活运用的基础和关键.20.(1)证明见详解;(2)18. 【解析】 【分析】(1)由已知∠ABC=∠ADC=90°,∠ACB 与∠ACD 均为直角三角形,点O 是线段AC 的中点.利用直角三角形斜边中线的性质即可得到结论,(2)OB=6,由(1)得OD=OC ,OD 可求,点O 是线段AC 的中点. AC=2OB=12,AO 可求,90ADC ∠=︒,30ACD ∠=︒,利用30º角所对直角边等于斜边的一半,AD 可求,AOD △的周长=OD+OA+AD 计算即可. 【详解】(1)如图,∠90ABC ∠=︒, ∠∠ACB 为直角三角形, ∠点O 是线段AC 的中点, ∠OB=12AC , ∠90ADC ∠=︒, ∠∠ACD 为直角三角形, ∠点O 是线段AC 的中点, ∠OD=12AC , ∠OB=OC ;(2)∠OB=6,点O 是线段AC 的中点, ∠AC=2OB=12 ,AO =12AC=6,∠由(1)知OD=OB=6, 又∠90ADC ∠=︒,30ACD ∠=︒, ∠AD=12AC=6, AO=DO=AD=6,AOD △的周长=OD+OA+AD=6+6+6=18.【点睛】本题考查直角三角形的斜边中线的性质,以及三角形的周长问题,关键掌握直角三角形的性质,以及30度角的直角三角形性质,会利用中线证线段相等,会利用30º角的直角三角形,求求直角边的边长解决问题. 21.7. 【解析】 【分析】先由全等三角形的性质得到AF=AE=4,继而根据DF=AD -AF 进行求解即可. 【详解】∠∠ACF∠∠ADE , ∠AF=AE , ∠AE=5, ∠AF=5,∠DF=AD -AF ,AD=12, ∠DF=12-5=7. 【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的对应边相等是解题的关键. 22.245【解析】 【分析】根据勾股定理求得AB 的长,再根据三角形的面积公式求得CD 即可. 【详解】解:∠在Rt ABC 中,∠ACB=90°,AC=8,BC=6,∠10AB =. ∠CD AB ⊥,∠11681022ABC S CD =⨯⨯=⨯⨯△.∠245CD =. 23.(1)∠DAE =60° (2)∠DAE =60° (3)12α 【分析】(1)由AB AC =可得30B ACB ∠=∠=︒,由BA BD =可推出75BAD BDA ∠=∠=︒,进一步得出45DAC ∠=︒,可得15E CAE ∠=∠=︒,最后得出60DAE DAC CAE ∠=∠+∠=︒; (2)设B x ∠=︒,等腰三角形的性质得,1902BAD BDA x ∠=∠=︒-︒,三角形的内角和定理得,60ACB x ∠=︒-,可得1302DAC ADB ACD x ∠=∠-∠=︒+︒,由等腰三角形的性质得1302E CAE x ∠=∠=︒-︒,所以60DAE DAC CAE ∠=∠+∠=︒; (3)设∠B=x°,等腰三角形的性质得,∠BAD=∠BDA=90°-12x°,三角形的内角和定理得,∠ACB=180°-x°-α°,所以,∠DAC=∠ADB -∠ACD=-90°+12x°+α°,由等腰三角形的性质得∠E=∠CAE=90°-12x°-12α°,所以∠DAE=∠DAC+∠CAE=12α°;(1)解:∠AB AC =,∠BAC =120°, ∠180120302B ACB ︒-︒∠=∠==︒, ∠BA BD =, ∠18030752BAD BDA ︒-︒∠=∠==︒, ∠1207545DAC ∠=︒-︒=︒, ∠CA CE =,30ACB ∠=︒ ∠15E CAE ∠=∠=︒,∠60DAE DAC CAE ∠=∠+∠=︒;(2)不改变,设∠CAE=x°,∠CE=CA,∠∠E=∠CAE=x°,∠∠ACB=∠E+∠CAE=2x°,∠在∠ABC中,∠BAC=120°,∠∠B=180°-∠BAC-∠ACB=60°-2x°,又∠BD=BA,∠∠BAD=∠BDA=12(180°−∠B) =12[(180°−(60°-2x°)]=60°+x°,∠∠DAE=∠BAE-∠BAD=(120°+x°)-(60°+x°)=60°;(3)∠DAE=12α,∠BD=BA,∠∠BAD=∠BDA=12(180°−∠B),∠∠DAC=∠BAC−∠BAD=α−12(180°−∠B)=α−90°+12∠B,∠CE=CA,∠∠CAE=∠E=12∠ACB,∠∠DAE=∠DAC+∠CAE=α−90°+12∠B+12∠ACB=α−90°+12(180°−α)=12α.故答案为:12 .24.4cm 【分析】先根据角平分线的性质得到DE=DF,利用三角形面积公式得到12×20×DE+ 12×12×DF=64,即10DE+6DE=64,从而得到DE.【详解】解:∠AD为∠BAC的平分线,DE∠AB,DF∠AC,∠DE=DF,∠S∠ABD+S∠ACD=S∠ABC,∠12×20×DE+12×12×DF=64.即10DE+6DE=64,∠DE=4(cm).答:DE的长为4cm.25.(1)见解析;(2)6.【分析】(1)先作出四边形ABCD各个顶点关于直线m的对称点,再顺次连接起来,即可;(2)四边形对角线的乘积÷2,即可求解.(1)解:如图:(2)解:14362S=⨯⨯=.。
苏科版八年级上册数学期中考试试卷一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.一个等腰三角形的两边长分别是2cm 和5cm ,则它的周长为()A .9cm B .12cm C .7cm D .9cm 或12cm 3.如图,点C 、D 分别在BO 、AO 上,AC 、BD 相交于点E ,若CO DO =,则再添加一个条件,仍不能证明AOC △≌BOD 的是()A .A B∠=∠B .ADE BCE ∠=∠C .AC BD =D .AD BC=4.如图,点A 、B 、C 都在方格纸的“格点”上,请找出“格点”D ,使点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有()个.A .1B .2C .3D .45.根据下列已知条件,能画出唯一的ABC ∆的是()A .90C ∠=︒,6AB =B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =6.如图,Rt △ABC 中,AB =AC =3,AO =1,D 点在线段BC 上运动,若将AD 绕A 点逆时针旋转90°得到AE ,连接OE ,则在D 点运动过程中,线段OE²的最小值为()A.1B.2C.3D.4二、填空题7.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.8.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为_____.9.等腰三角形的一个内角为100°,则它的一个底角的度数为______.10.已知直角三角形两直角边长分别为8和6,则此直角三角形斜边长为___.11.如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是_____.12.如图,在△ABC中,∠C=90°,BD平分∠ABC,DC=5,则点D到AB的距离为___.13.如图所示,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为______.14.如图,在△ABC中,BD平分∠ABC,ED∥BC,AB=9,AD=6,则△AED的周长为___.15.如图,∠ADB=90°,正方形ABCG和正方形AEFD的面积分别是100和36,则以BD 为直径的半圆的面积是___.(结果保留π)16.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是___.17.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC 沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是A、M 的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为___.18.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE =___.三、解答题19.已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.20.已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AC=BD,AE=BF,求证:(1)△AED≌△BFC;(2)AE∥BF.21.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积=;(3)在AE上找一点P,使得PC+PD的值最小.22.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.23.如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD =ED=12.(1)求证:△CDE≌△BDA;(2)判断△ACE的形状,并证明;(3)求△ABC的面积.24.尺规作图:如图,射线OM ⊥射线ON ,A 为OM 上一点,请以OA 为一边作两个大小不等的等腰直角三角形.保留作图痕迹,标上顶点字母,并写出所画的三角形.25.如图,在ABC 中,90ACB ∠=︒,5AB =,3BC =,点P 从点A 出发,以每秒2个单位长度的速度沿折线A C B A ---运动.设点P 的运动时间为t 秒()0t >.(1)求AC 的长及斜边AB 上的高.(2)当点P 在CB 上时,①CP 的长为______________(用含t 的代数式表示).②若点P 在BAC ∠的角平分线上,则t 的值为______________.(3)在整个运动过程中,直接写出BCP 是等腰三角形时t 的值.26.【问题发现】(1)如图1,△ABC 和△ADE 均为等边三角形,点B ,D ,E 在同一直线上,连接CE ,容易发现:①∠BEC 的度数为;②线段BD 、CE 之间的数量关系为;【类比探究】(2)如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点B ,D ,E 在同一直线上,连接CE ,试判断∠BEC 的度数及线段BE 、CE 、DE 之间的数列关系,并【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=3,OB=6,AC=BC,则OC2的值为.参考答案1.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.不是轴对称图形,故A不符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D符合题意.故选:D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠2.B【解析】【分析】根据已知条件和三角形三边关系可知,等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得三角形的周长.【详解】本题只知道等腰三角形的两边的长,并不知道腰和底,所以需要分两种情况讨论,当腰长为2cm时,由于2+2<5,所以此时三角形不存在;当腰长为5cm时,5+5>2,所以此三角形满足题意,此时三角形的周长为:5+5+2=12cm.故答案为B.【点睛】本题考查了等腰三角形的概念,注意三角形两边之和大于第三边是解题的关键.3.C【解析】【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.【详解】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;B、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;C、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A 、B 、C 、D 组成一个轴对称图形,这样的点D 共有4个.故选D .【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.5.C【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6.B【解析】在AB 上截取AQ=AO=1,利用SAS 证明△AQD ≌△AOE ,推出QD=OE ,当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,利用勾股定理即可求解.【详解】解:如图,在AB 上截取AQ=AO=1,连接DQ,∵将AD 绕A 点逆时针旋转90°得到AE ,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC =∠DAE-∠DAC ,即∠BAD=∠CAE ,在△AQD 和△AOE 中,AQ AOQAD OAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△AQD ≌△AOE(SAS),∴QD=OE ,∵D 点在线段BC 上运动,∴当QD ⊥BC 时,QD 的值最小,即线段OE²有最小值,∵△ABC 是等腰直角三角形,∴∠B=45°,∵QD ⊥BC ,∴△QBD 是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得∴线段OE²有最小值为2,故选:B .【点睛】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键.7.WL027【解析】【详解】解:关于水面对称的图形为W L027,∴该汽车牌照号码为WL027.8.9【解析】【分析】根据直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半,即可得出答案.【详解】在△ABC中,∵∠ACB=90°,D是AB边的中点,∴CD=12AB=9.故答案为9.【点睛】本题考查的是直角三角形的性质.掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.9.40°【解析】【分析】由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.【详解】解:①当100°这个角是顶角时,底角=(180°-100°)÷2=40°;②当100°这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.【点睛】本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.10.10【解析】【分析】根据勾股定理列式计算即可得解.【详解】解:∵直角三角形的两直角边长分别为8和6,∴斜边长=10.故答案为:10.【点睛】本题主要考查了勾股定理,比较简单,熟练掌握勾股定理是解题的关键.11.AB=AC【解析】【分析】根据角平分线定义求出∠BAD=∠CAD ,根据SAS 推出两三角形全等即可.【详解】解:AB=AC ,理由是:∵AD 平分∠BAC ,∴∠BAD=∠CAD ,在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故答案为AB=AC .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .12.5【解析】【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD .【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,BD 平分∠ABC ,∴DE=CD=5,即点D 到AB 的距离是5.故答案为:5.13.62【分析】根据C ∠和AEB DFC V V ≌可得28B ∠=︒,再根据AE CB ⊥和三角形的内角和定理即可求解.【详解】解:∵AEB DFC V V ≌,28C ∠=︒,∴28B C ∠=∠=︒.∵AE CB ⊥,∴90AEB =︒∠.∴18062A AEB B ∠=︒-∠-∠=︒.故答案为:62.14.15【详解】解:∵ED ∥BC ,∴∠EDB=∠CBD ,∵BD 平分∠ABC ,∴∠CBD=∠ABD ,∴∠EDB=∠ABD ,∴DE=BE ,∴AE+ED+AD=AE+BE+AD=AB+AD=9+6=15,即△AED 的周长为15,故答案为:15.15.8π【分析】根据勾股定理求出BD ,再利用圆的面积公式求半圆面积即可.【详解】∵正方形ABCG 和正方形AEFD 的面积分别是100和36,∴AB 2=100,AD 2=36,∵∠ADB =90°,∴在Rt ABD △中,8BD =,∴半圆面积:218822ππ⎛⎫⨯= ⎪⎝⎭.故答案为:8π.16.30°【分析】由折叠的性质可得出:∠CAE=∠DAE ,∠ADE=∠C=90°,结合点D 为线段AB 的中点,利用等腰三角形的三线合一可得出AE=BE ,进而可得出∠B=∠DAE ,再利用三角形内角和定理,即可求出∠B 的度数.【详解】解:由折叠,可知:∠CAE=∠DAE ,∠ADE=∠C=90°,∴ED ⊥AB .∵点D 为线段AB 的中点,ED ⊥AB ,∴AE=BE ,∴∠B=∠DAE .又∵∠CAE+∠DAE+∠B+∠C=180°,∴3∠B=90°,∴∠B=30°.故答案为:30°.17.10【解析】连接PQ,AM,根据PQ=AM即可解答.【详解】解:连接PQ,AM,由图形变换可知:PQ=AM,由勾股定理得:AM2=12+32=10.∴PQ2=AM2=12+32=10.故答案为:10.18.8 3【解析】设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x.当AE=AC′时,作AH⊥EC′,由∠AEF=90°,EF平分∠CEC′可证得∠AEB=∠AEH,则△ABE≌△AHE,所以BE=HE=x,由三线合一得EC′=2EH,即8-x=2x,解方程即可.【详解】解:∵四边形ABCD是矩形,设BE=x,则EC=8-x,由翻折得:EC′=EC=8-x,作AH⊥EC′,如图,∵EF⊥AE,∴∠AEF=∠AEC′+∠FEC′=90°,∴∠BEA+∠FEC=90°,∵△ECF沿EF翻折得△EC′F,∴∠FEC′=∠FEC,∴∠AEB=∠AEH,∵∠B=∠AHE=90°,AH=AH,∴△ABE≌△AHE(AAS),∴BE=HE=x,∵AE=AC′,∴EC′=2EH,即8-x=2x,解得x=8 3,∴BE=8 3.故答案为:8 3.19.见解析【解析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.【详解】证明:∵点C是AE的中点,∵AB ∥CD ,∴∠A=∠ECD ,在△ABC 和△CDE 中,AC CE A ECD AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ).20.(1)见解析;(2)见解析【解析】(1)求出90EDA FCB ∠=∠=︒,AD=BC ,根据HL 证明Rt AED Rt BFC ∆≅∆即可;(2)根据全等三角形的性质得出∠A=∠B ,根据平行线的判定得出即可.【详解】解:(1)∵ED ⊥AB ,FC ⊥AB ,∴90EDA FCB ∠=∠=︒∵AC =BD ,∴AC CD BD CD +=+,即AD BC=在Rt AED ∆和Rt BFC ∆中,AD BC AE BF=⎧⎨=⎩∴Rt AED Rt BFC∆≅∆(2)由(1)知Rt AED Rt BFC∆≅∆∴∠A=∠B∴AE ∥BF .21.(1)见解析;(2)6;(3)见解析【解析】(1)根据轴对称的性质确定出点B 关于AE 的对称点F 即可;(2)即DC 与EF 的交点为G ,由四边形ADGE 的面积=平行四边形ADCE 的面积-△ECG 的面积求解即可;(3)根据轴对称的性质取格点M ,连接MC 交AE 于点P ,此时PC+PD 的值最小.【详解】解:(1)如图所示,△AEF 即为所求作:(2)重叠部分的面积=S 四边形ADCE-S △ECG =2×4-12×2×2=8-2=6.故答案为:6;(3)如图所示,点P 即为所求作:22.(1)证明见解析;(2)22°.【解析】(1)连接DE .由G 是CE 的中点,DG CE ^得到DG 是CE 的垂直平分线,根据线段垂直平分线的性质得到DE DC =,由DE 是Rt ADB 的斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半得到12DE BE AB ==,即可得到DC BE =.(2)由DE DC =得到DEC BCE ∠=∠,由DE BE =得到B EDB ∠=∠,根据三角形外角性质得到2EDB DEC BCE BCE ∠=∠+∠=∠,则2B BCE ∠=∠,由此根据外角的性质来求BCE ∠的度数.【详解】(1)如图,连接DE .∵G是CE的中点,DG CE^,∴DG是CE的垂直平分线,∴DE DC=.∵AD是高,CE是中线,∴DE是Rt ADB的斜边AB上的中线,∴12DE BE AB==.∴DC BE=;(2)∵DC DE=,DEC BCE∴∠=∠,2EDB DEC BCE BCE∴∠=∠+∠=∠,DE BE=,B EDB∴∠=∠,2B BCE∴∠=∠,366AEC BCE∴∠=∠= ,22BCE∴∠= .23.(1)见解析;(2)△ACE是直角三角形,证明见解析;(3)84【解析】(1)根据SAS证明△CDE≌△BDA即可;(2)由全等三角形的性质得出AB=CE=7,利用勾股定理逆定理证得△ACE是直角三角形;(3)求得△ACE的面积,即可得出△ABC的面积.【详解】解:(1)证明:∵AD 是边BC 上的中线,∴BD=CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD ED ⎧⎪∠∠⎨⎪⎩===,∴△CDE ≌△BDA (SAS ),(2)△ACE 是直角三角形,证明如下:∵△ABD ≌△ECD ,∴AB=CE=7,∵AE=AD+ED=24,AC=25,CE=7,∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,(3)∵△CDE ≌△BDA∴CDE BDAS =S ∴△ABC 的面积=△ACE 的面积=12×7×24=84.【点睛】此题考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.24.见解析【分析】以O 为圆心,OA 为半径作圆,与射线ON 交于点B ,则△AOB 是以OA 为腰的等腰直角三角形;作∠MON 的平分线OP ,过点A 作AC ⊥OP 于点C ,则△AOC 是以OA 为斜边的等腰直角三角形.【详解】解:如图:△AOB 和△AOC 即为所作..【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定.25.(1)125;(2)①24t -;②83;(3)t 的值为0.5或4.75或5或5.3.【解析】(1)直接利用勾股定理即可求得AC 的长,再利用等面积法即可求得斜边AB 上的高;(2)①CP 的长度等于运动的路程减去AC 的长度,②过点P '作P 'D ⊥AB ,证明Rt △AC P '≌Rt △AD P '得出AD=AC=4,分别表示各线段,在Rt △BD P '利用勾股定理即可求得t 的值;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,②当点P 在线段AB 上时,又分三种情况:BC=BP ;PC=BC ;PC=PB ,分别求得点P 运动的路程,再除以速度即可得出答案.【详解】解:(1)∵90C ∠=︒,5AB =,3BC =,∴在Rt ABC ∆中,2222534AC AB BC =-=-=.∴AC 的长为4.设斜边AB 上的高为h .∵1122AB h AC BC ⨯⨯=⨯⨯,∴1153422h ⨯⨯=⨯⨯,∴125h =.∴斜边AB 上的高为125.(2)已知点P 从点A 出发,以每秒2个单位长度的速度沿折线A-C-B-A 运动,①当点P 在CB 上时,点P 运动的长度为:AC+CP=2t ,∵AC=4,∴CP=2t-AC=2t-4.故答案为:2t-4.②当点P '在∠BAC 的角平分线上时,过点P '作P 'D ⊥AB ,如图:∵A P '平分∠BAC ,P 'C ⊥AC ,P 'D ⊥AB ,∴P 'D=P 'C=2t-4,∵BC=3,∴B P '=3-(2t-4)=7-2t ,在Rt △AC P '和Rt △AD P '中,AP AP P D P C ''''=⎧⎨=⎩,∴Rt △AC P '≌Rt △AD P '(HL ),∴AD=AC=4,又∵AB=5,∴BD=1,在Rt △BD P '中,由勾股定理得:2221(24)(72)t t +-=-解得:83t =,故答案为:83;(3)由图可知,当△BCP 是等腰三角形时,点P 必在线段AC 或线段AB 上,①当点P 在线段AC 上时,此时△BCP 是等腰直角三角形,∴此时CP=BC=3,∴AP=AC-CP=4-3=1,∴2t=1,∴t=0.5;②当点P在线段AB上时,若BC=BP,则点P运动的长度为:AC+BC+BP=4+3+3=10,∴2t=10,∴t=5;若PC=BC,如图2,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=5,BC=3,AC=4,∴AB•CH=AC•BC,∴5CH=4×3,∴125 CH=,在Rt△BCH中,由勾股定理得:1.8BH==,∴BP=3.6,∴点P运动的长度为:AC+BC+BP=4+3+3.6=10.6,∴2t=10.6,∴t=5.3;若PC=PB,如图3所示,过点P作PQ⊥BC于点Q,则30.52BQ CQ BC ==⨯=,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ ∥AC ,∴PQ 为△ABC 的中位线,∴PQ=0.5×AC=0.5×4=2,在Rt △BPQ中,由勾股定理得: 2.5BP ==,点P 运动的长度为:AC+BC+BP=4+3+2.5=9.5,∴2t=9.5,∴t=4.75.综上,t 的值为0.5或4.75或5或5.3.【点睛】本题考查勾股定理,HL 定理,等腰三角形的性质和判定.掌握等面积法和分类讨论思想是解题关键.26.(1)60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由见解析;(3)92【解析】【分析】(1)根据等边三角形的性质得到AB=AC ,AD=AE ,∠BAC=∠DAE=60°,得到∠BAD=∠CAE ,证明△BAD ≌△CAE ,根据全等三角形的性质证明结论;(2)由“SAS”可证△ABD ≌△ACE ,可得BD=CE ,∠AEC=∠ADB=135°,即可求解;(3)由“AAS”可证△ACF ≌△CBE ,可得BE=CF ,AF=CE ,可求OF=CF=32,由勾股定理可求解.【详解】解:(1)∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD=CE ;∠AEC=∠ADB=180°-∠ADE=120°,∴∠BEC=∠AEC-∠AED=120°-60°=60°,故答案为:60°,BD=CE ;(2)∠BEC=90°,BE=CE+DE ,理由如下:∵∠BAC=∠DAE=90°,∴AB=AC ,AD=AE ,∠BAC-∠DAC=∠DAE-∠DAC ,即∠BAD=∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠AEC=∠ADB=135°,∴∠BEC=∠AEC-∠AED=135°-45°=90°,∵BE=BD+DE ,∴BE=CE+DE ;(3)如图,过点C 作CF ⊥AO 交AO 延长线于F ,过点B 作BE ⊥CF 于E,∵∠ACB=90°=∠E=∠AFC ,∴∠BCE+∠ACF=90°=∠BCE+∠CBE ,∴∠ACF=∠CBE ,又∵AC=BC ,∠AFC=∠E ,∴△ACF ≌△CBE (AAS ),∴BE=CF,AF=CE,∵OA=3,OB=6,∴EC+CF=BO=6,OA=AF-OF=CE-BE=CE-CF=3,∴EC=92,CF=32=OF,∴OC2=CF2+OF2=(32)2+(32)2=92.故答案为:9 2.。
江苏省镇江市2024-2025学年苏科版数学八年级上册期中模拟卷一、单选题1.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是()A .B .C .D .2.满足下列条件的ABC V 是直角三角形的是()A .2BC =,3AC =,4AB =B .2BC =,3AC =,3AB =C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠=3.一个等腰三角形顶角的度数是底角度数的2倍,则这个等腰三角形的底角是()A .30︒B .40︒C .45︒D .50︒4.如图,已知12∠=∠,若用“SAS ”证明BDA ACB ≌,还需加上条件()A .AD BC =B .DC ∠=∠C .BD AC =D .OA OB =5.校园湖边一角的形状如图所示,其中AB ,BC ,CD 表示围墙,若在线段右侧的区域中找到一点P 修建一个观赏亭,使点P 到三面墙的距离都相等,则点P 在()A .线段AC 、BD 的交点B .ABC ∠、BCD ∠角平分线的交点C .线段AB 、BC 垂直平分线的交点D .线段BC 、CD 垂直平分线的交点6.如图,把ABC V 沿线段DE 折叠,使点A 落在点F 处,BC DE ∥;若50B ∠=︒,则BDF ∠的度数为()A .40︒B .80︒C .50︒D .100︒7.如图所示,点O 是ABC V 内一点,BO 平分ABC ∠,OD BC ⊥于点D ,连接OA ,若5OD =,20AB =,则AOB V 的面积是()A .20B .30C .50D .1008.如图所示,边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B 、C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==.点D 在BC 边上从B 至C 的运动过程中,BED 周长变化规律为()A .不变B .一直变小C .先变大后变小D .先变小后变大二、填空题9.若一直角三角形两直角边长分别为6和8,则斜边长为.10.等腰三角形的一边长12cm ,另一边长5cm ,它的第三边长为cm .11.如图,已知ABC DEF ≌△△,点B ,E ,C ,F 依次在同一条直线上.若85BC CE ==,,则CF 的长为.12.如图,ABC V 中,90C ∠=︒,AD 平分BAC ∠,52AB CD ==,,则ABD △的面积是13.如图,在Rt ABC △中,90ACB ∠=︒,以AB AC 、为边的正方形的面积分别为S S ₁、₂,若3115S S ==₁,₂,则BC 的长为.14.如图,在Rt ABC △中,90C ∠=︒,20B ∠=︒,MN 垂直平分AB ,交BC 于点D ,连接AD ,则CAD ∠=︒.15.如图,在等腰三角形ABC V 中,=AB AC ,D 为BC 延长线上一点,EC AC ⊥且=AC CE ,垂足为C ,连接BE ,若=6BC ,则BCE 的面积为.16.如图,在Rt ABC △中,90ABC ∠=︒,以AC 为边,作ACD ,满足AD AC =,点E 为BC 上一点,连接AE ,12BAE CAD ∠=∠,连接DE .下列结论中正确的是.(填序号)①AC DE ⊥;②ADE ACB ∠=∠;③若//CD AB ,则AE AD ⊥;④2DE CE BE =+.三、解答题17.在如图的网格中按要求画图:(1)把ABC V 向右平移5格,再向下平移2格,画出所得111A B C △;(2)画111D E F V ,使得它与DEF 关于直线MN 对称;(3)画出111A B C △与111D E F V 的对称直线l .18.如图,点A ,B ,C ,D 在一条直线上,AE DF ∥,AE DF =,AB CD =.(1)求证:AEC DFB ≅ .(2)若40A ∠=︒,145ECD ∠=︒,求∠F 的度数.19.如图,点E 在BC 上,AC CB DB BC ⊥⊥,,且.AC BE AB DE ==,(1)求证:CE BD AC =-;(2)若ABC V 的三边长分别为a ,b ,c ,利用此图证明勾股定理.20.如图,折叠等腰三角形纸片ABC ,使点C 落在AB 边上的F 处,折痕为DE .已知AB AC =,FD BC ⊥.(1)判断AEF △的形状,并说明你的结论;(2)若2AF =,8BF =,求AE 的长.21.如图,在ABC V 中,BD CE 、分别是边AC AB 、上的高,点M 是BC 的中点,连接ME MD DE 、、.(1)求证:DEM △为等腰三角形;(2)直接写出....EMD ∠与ABD ∠之间的数量关系:.22.(1)如图1,已知以△ABC 的边AB 、AC 分别向外作等腰直角△ABD 与等腰直角△ACE ,∠BAD =∠CAE =90°,连接BE 和CD 相交于点O ,AB 交CD 于点F ,AC 交BE 于点G ,求证:BE =DC ,且BE ⊥DC .(2)探究:若以△ABC 的边AB 、AC 分别向外作等边△ABD 与等边△ACE ,连接BE 和CD 相交于点O ,AB 交CD 于点F ,AC 交BE 于G ,如图2,则BE 与DC 还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD 的度数?23.图①是由边长分别为a ,()a b >的两个正方形拼成的图形,其面积为1S ,图②是长、宽分别为a ,b 的长方形,其面积为2S .(1)图③是由图①中的图形补成的大正方形,其面积为3S ,则1S ,2S ,3S 的数量关系是______;(2)对于图③,通过两种不同方法计算它的面积,可以得到一个代数恒等式是:_______;(3)在图①边长为a 的正方形中放入两个边长为b 的小正方形,得到图④所示的图形,若116S =,25S =,求图④中阴影部分的面积.24.定义:若过三角形的一个顶点作射线与其对边相交,将这个三角形分成的两个三角形中有等腰三角形,那么这条射线就叫做原三角形的“等腰分割线”.(1)在Rt ABC △中,90C ∠=︒,8AC =,6BC =.①如图1,若O 为AB 的中点,则射线OC _____ABC V 的等腰分割线(填“是”或“不是”)②如图2,已知ABC V 的一条等腰分割线BP 交AC 边于点P ,且PB PA =,请求出CP 的长度.(2)如图3,ABC V 中,CD 为AB 边上的高,F 为AC 的中点,过点F 的直线l 交AD 于点E ,作CM l ⊥,DN l ⊥,垂足为M ,N ,3BD =,5AC =,且45A ∠<︒.若射线CD 为ABC V 的“等腰分割线”,求CM DN +的最大值.。
苏科版八年级上册数学期中考试试题一、单选题1..下列图形中,不是轴对称图形的是()A.B.C.D.2.下列选项可使△ABC≌△A′B′C′的是()A.AB=A′B′,∠B=∠B′,AC=A′C′B.AB=A′B′,BC=B′C′,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′3.在下列各组数中,是勾股数的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6 4.在Rt△ABC中,∠A=90°,AB=3,AC=4,则点A到BC的距离为()A.125B.425C.34D.525.如图,在△ABC中,AC=6,F是高AD和BE的交点,若AD=BD,则BF的长是()A.4B.5C.6D.86.如图,在△ABC中,CD是边AB上的高,BE平分∠ABC,交CD于点E,BC=10,DE=3,则△BCE的面积为()A.16B.15C.14D.137.如图,在△ABC中,∠A=60°,BD⊥AC,垂足为D,CE⊥AB,垂足为E,O为BC的中点,连接OD、OE,则∠DOE的度数为()A.40°B.45°C.60°D.65°8.如图,在△ABC中,AC=BC,∠ACB=90°D是AB的中点,点E在AC上,点F在BC上,DE⊥DF,AE=4,BF=3,则EF的长为()A.4B.5C.6D.7二、填空题9.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=___.10.在△ABC中,∠C=40°,CA=CB,则∠B=_____°.11.如图,在Rt△ABC中,∠BAC=90°,点D在边BC上,将△ABD沿AD折叠,使点B 恰好落在边AC上的点E处.若∠C=28°,则∠CDE=_____°.12.已知一个直角三角形的两条边长分别为1和2,则第三条边长的平方是_____.13.如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长为_________cm;14.如图,以Rt△ABC的三边分别向外作正方形,若斜边AB=a,则图中阴影部分的面积和为______.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是_____.AC,则△ABC顶角的度数16.在△ABC中,AB=AC,BD⊥AC,垂足为D,且BD=12为_____.三、解答题17.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.18.已知:如图,在Rt△ABC中,∠A=90°,在BC边上取CD=CA,过D点作DE⊥BC 交AB于点E.若AB=10,DE=4,求BE的长.19.已知:如图,在△ABC中,点D、E分别在边AB、AC上,BE平分∠ABC,DE∥BC.求证:BD=DE.20.如图,在△ABC中.(1)作BC的垂直平分线DE,分别交AC、BC于点D、E;(要求:尺规作图保留作图痕迹,不写作法.)(2)若AB=6,AC=10,求△ABD的周长.21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(三角形的顶点都在网格格点上).(1)在图中画出△ABC关于直线l对称的△A′B′C′(要求:点A与点A′、点B与点B′、点C与点C′相对应);(2)在(1)的结果下,设AB交直线l于点D,连接AB′,求四边形AB′CD的面积.22.已知:如图,AD是△ABC的中线,AB=25,BC=14,AD=24,求AC的长.23.如图,折叠等腰三角形纸片ABC,使点C落在边AB上的点F处,折痕为DE.已知AB=AC,FD⊥BC.(1)求证:∠AFE=90°;(2)如果AF=3,BF=6,求AE的长.24.已知:如图,在Rt△ABC中,∠A=90°,AB=AC,点D在BC上,点E与点A在BC的同侧,且∠CED=90°,∠B=2∠EDC.(1)求证:∠FDC=∠ECF;(2)若CE=1,求DF的长.25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.设P点的运动时间为t.(1)CP=cm.(用含t的式子表示);(2)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案1.B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选B.【点睛】考点:轴对称图形.2.C【解析】【分析】根据全等三角形的判定逐项判定即可.【详解】解:A、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意;B、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意;C、满足SAS,能证明△ABC≌△A′B′C′,符合题意;D、不满足SAS,不能证明△ABC≌△A′B′C′,不符合题意,故选:C.【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.3.C【解析】【分析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、12+22=5≠32,不是勾股数,故本选项不符合题意.B、22+32=13≠42,不是勾股数,故本选项不符合题意.C、32+42=52,是勾股数,故本选项符合题意.D、42+52=41≠62,不是勾股数,故本选项不符合题意.故选C.【点睛】本题考查了勾股数的知识,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a2+b2=c2,则△ABC是直角三角形.4.A【解析】【分析】根据勾股定理求出BC,再根据三角形的面积公式求解即可.【详解】解:∵在Rt△ABC中,∠A=90°,AB=3,AC=4,∴5BC===,设点A到BC的距离为h,由1122ABCS AB AC BC h=⋅⋅=⋅⋅得:1134522h⨯⨯=⨯,解得:125h=,即点A到BC的距离为12 5,故选:A.【点睛】本题考查勾股定理、三角形的面积公式,会利用等面积法求距离是解答的关键.5.C【解析】【分析】证△DBF≌△DAC,推出BF=AC即可解决问题.【详解】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD ,在△DBF 和△DAC 中,FBD CAD DB AD FDB CDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DBF ≌△DAC (ASA ),∴BF=AC=6,故选:C .【点睛】本题考查了全等三角形的性质和判定,等角的余角相等,关键是推出△DBF ≌△DAC .6.B【解析】【分析】作EH ⊥BC 于点H ,根据角平分线的性质得出EH=DE ,最后根据三角形的面积公式进行求解.【详解】解:如图,作EH ⊥BC 于点H,∵BE 平分∠ABC ,CD 是AB 边上的高,EH ⊥BC ,∴EH=DE=3,∴111031522BCE S BC EH =⋅=⨯⨯=△.故选B .【点睛】本题考查角平分线的性质,三角形面积,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.C【解析】【分析】根据垂直的定义得到∠AEC=∠BEC=∠ADB=∠BDC=90°,根据三角形的内角和定理得到∠ABD=∠ACE=30°,根据直角三角形的性质得到OE=CD=12BC,OD=OB=12BC,根据三角形的外角性质和平角的定义即可得到∠EDF=60°.【详解】证明:∵CE⊥AB,BD⊥AC,∴∠AEC=∠BEC=∠ADB=∠BDC=90°,∵∠A=60°,∴∠ABD=∠ACE=30°,∴∠DBC+∠ECB=180°-∠A-∠ABD-∠ACE=60°,∵点O是BC的中点,∴OE=OC=12BC,OD=OB=12BC,∴∠OEC=∠OCE,∠OBD=∠ODB,OE=OD,∵∠BOE=∠OEC+∠OCE=2∠OCE,∠COD=∠OBD+∠ODB=2∠OBD,∴∠BOE+∠COD=2∠OCE+2∠OBD=2×60°=120°,∴∠DOE=60°.故选:C.【点睛】本题考查了直角三角形斜边上的中线,等腰三角形的判定和性质,熟练掌握直角三角形斜边上的中线是斜边的一半是解题的关键.8.B【解析】【分析】连接CD,根据全等三角形的判定易得到△ADE≌△CDF,求得CF、CE的长,利用勾股定理可得出结论.【详解】解:连接CD,∵AC=BC ,∠ACB=90°,∴△ABC 是等腰直角三角形,∠A=∠B=45°,∵D 为AB 中点,∴BD=AD ,CD 平分∠BCA ,CD ⊥AB .∴∠DCF=45°,∵DE ⊥DF ,即∠EDF=90°,∴∠ADE+∠EDC=90°,∠CDF+∠EDC=90°,∴∠ADE=∠CDF ,在△ADE 和△CDF 中,ADE CDF AD CD A DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ),∴AE=CF ,∵AE=4,BF=3,∴CF=4,则AC=BC=4+3=7,∴CE=7-4=3,∴2222345CE CF +=+=,故选:B .【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,关键是掌握全等三角形的判定方法.9.20【解析】【分析】先利用三角形的内角和定理求出70A ∠=︒,然后根据全等三角形对应边相等解答.【详解】解:如图,180506070A ∠=︒-︒-︒=︒,ABC DEF ∆≅∆ ,20EF BC ∴==,即20x =.故答案为:20.【点睛】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.10.70【解析】【分析】根据等边对等角和三角形的内角和定理即可求得答案.【详解】如图,∠C =40°,CA =CB ,()1180702A B C ∴∠=∠=︒-∠=︒故答案为:70【点睛】本题考查了等边对等角,三角形内角和定理,掌握以上知识是解题的关键.11.34【解析】【分析】根据直角三角形的两锐角互余和折叠性质求出∠AED=∠B=62°,再根据三角形的外角性质求解即可.【详解】解:∵在Rt △ABC 中,∠BAC =90°,∠C =28°,∴∠B=90°﹣∠C=90°﹣28°=62°,由折叠知∠AED=∠B=62°,∵∠AED=∠C+∠CDE ,∴∠CDE=62°﹣28°=34°,故答案为:34.【点睛】本题考查直角三角形的两锐角互余、折叠性质、三角形的外角性质,熟练掌握折叠性质和三角形的外角性质是解答的关键.12.3或5【解析】【分析】求第三边的长必须分类讨论,分2是斜边或直角边两种情况,然后利用勾股定理求解.【详解】解:当直角三角形的直角边为1和2时,第三边的平方为22125=+=当直角三角形的斜边为2时,第三边的平方为22213=-=综上所述,第三边的平方为3或5故答案为3或5【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.13.5cm【解析】【详解】∵O 是∠APB 内的一点,点M ,N 分别是O 点关于PA ,PB 的对称点,∴OE=ME ,OF=NF ,∵MN=5cm ,∴△OEF 的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm ).故答案为5cm .【点睛】考点:轴对称的性质.14.2a 2【解析】【分析】根据勾股定理可得AC 2+BC 2=AB 2,然后判断出阴影部分的面积=2S 正方形,再利用正方形的面积等于边长的平方计算即可得解.【详解】∵△ABC 是直角三角形,∴AC 2+BC 2=AB 2,∵图中阴影部分的面积和=2S 正方形=2a 2,故答案为2a 2【点睛】本题考查了勾股定理,正方形的性质,熟记定理与正方形的面积的求法是解题的关键.15.50【解析】【分析】通过“AAS ”得到EFA AGB ≌、BCG CDH △≌△,求得四个直角三角形的面积,围成的图形面积,就是梯形DEFH 减去四个直角三角形的面积,即可求解.【详解】解:由题意可得:EF AF ⊥、BG AC ⊥、DH AC⊥∴90BGA EFA FAE FEA ∠=∠=∠+∠=︒∵AE ⊥AB∴90EAB ∠=︒,即90EAF BAG ∠+∠=︒∴BAG FEA ∠=∠、BGA EFA∠=∠又∵AE AB=∴()EFA AGB AAS △≌△∴3AF BG ==,6EF AG ==同理可得:()BCG CDH AAS △≌△∴3==BG CH ,4CG DH ==∴16FH AF AG CG CH =+++=192AEF ABG S S AF EF ==⨯⨯=△△,162BCG CDH S S CH DH ==⨯⨯=△△11()10168022DEFH S DH EF FH =⨯+⨯=⨯⨯=梯形所围成的图形的面积2250AEF BCG DEFH SS S S --==△△梯形故答案为50【点睛】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.16.30°或150°##150°或30°【解析】【分析】根据题意分两种情况作出图形,证明ABD AED ≌,进而证明ABE △是等边三角形,即可求得30BAC ∠=︒.【详解】①如图,延长BD 至E ,使DE BD =, BD =12AC ,AB =AC ,BD ⊥AC ,则2BE BD AB==在ABD △和AED 中90AD AD ADB ADE BD DE =⎧⎪∠=∠=︒⎨⎪=⎩ABD AED∴△≌△AE AB ∴=,BAD EAD∠=∠AB AE BE∴==ABE ∴ 是等边三角形60BAE ∴∠=︒1302BAD EAD BAE ∴∠=∠=∠=︒②如图,当BD AC ⊥的延长线时,1122DB AC AB ==,同理可得30BAD ∠=︒,150BAC ∴∠=︒故答案为:30°或150︒【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质,三角形全等的判定与性质,分类讨论画出图形是解题的关键.17.详见解析【解析】【分析】要证明BE=CD ,把BE 与CD 分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA 可得出三角形ABE 与三角形ACD 全等,利用全等三角形的对应边相等可得证.【详解】证明:在△ABE 和△ACD 中,∵B C AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△ACD∴BE=CD (全等三角形的对应边相等)18.BE=6.【解析】【分析】连接EC ,先证Rt △AEC ≌Rt △DEC (HL ),得出AE=DE=4,再用线段之差计算BE=AB-AE=10-4=6即可.【详解】解:连接EC ,∵∠A =90°,DE ⊥BC∴∠EDC=∠A=90°,在Rt △AEC 和Rt △DEC 中,CA CD EC EC=⎧⎨=⎩∴Rt △AEC ≌Rt △DEC (HL ),∴AE=DE=4,∴BE=AB-AE=10-4=6.【点睛】本题考查直角三角形全等判定与性质,线段差,掌握直角三角形全等判定与性质是解题关键.19.见解析【解析】【分析】根据角平分线的性质和平行线的性质得到∠DBE=∠DEB ,根据等角对等边解答即可证得结论.【详解】解:∵BE平分∠ABC,∴∠DBE=∠CBE,∵DE∥BC,∴∠CBE=∠DEB,∴∠DBE=∠DEB,∴BD=DE.【点睛】本题考查角平分线的性质、平行线的性质、等腰三角形的判定,会利用等角对等边证明线段相等是解答的关键.20.(1)见解析;(2)16【解析】【分析】(1)分别以,B C为圆心,大于12BC为半径作弧,过两弧的交点作直线DE,分别交AC、BC于点D、E;(2)根据垂直平分线的性质可得DB DC=,进而根据AB BD AD AB DC AD AB AC++=++=+即可求得△ABD的周长.【详解】(1)如图,(2)连接BD,DE是BC的垂直平分线,DB DC∴=AB=6,AC=10,∴△ABD的周长为16AB BD AD AB DC AD AB AC++=++=+= 21.(1)见解析;(2)14【分析】(1)根据轴对称图形的性质画图即可;(2)根据网格结构和割补法进行计算即可求得面积.【详解】解:(1)如图,△A′B′C′即为所求作的三角形;(2)四边形AB′CD的面积为:4×6-12×3×5-12×4×1-12×1×1=24-7.5-2-0.5 =14.【点睛】本题考查画轴对称图形,熟练掌握轴对称的性质,会利用割补法求解网格中不规则图形的面积是解答的关键.22.25【解析】【分析】=.先根据勾股定理的逆定理证明AD BC⊥,进而根据垂直平分线的性质可得AC AB【详解】AD是△ABC的中线,AB=25,BC=14,AD=24,7∴==BD DC()()222524252449,249AB AD-=+-=BD=222∴+=AB AD BD∴ 是直角三角形ABD∴⊥AD BCBD DC=∴==AB AC25【点睛】本题考查了勾股定理的逆定理,垂直平分线的性质,三角形的中线的定义,证明AD BC⊥是解题的关键.23.(1)见解析;(2)5【解析】【分析】(1)根据折叠性质和等腰三角形性质得出∠B=∠C=∠EFD,再根据直角三角形的两锐角互余解答即可;(2)根据折叠性质和勾股定理解答即可.【详解】解:(1)由折叠性质,∠C=∠EFD,EF=CE,∵AB=AC,∴∠B=∠C=∠EFD,∵FD⊥BC,∴∠B+∠BFD=90°,∴∠EFD+∠BFD=90°,∴∠AFE=180°﹣∠EFD﹣∠BFD=90°;(2)∵AF=3,BF=6,AB=AC,∴AC=AB=3+6=9,∴EF=CE=AC﹣AE=9﹣AE,在Rt△AFE中,AF2+EF2=AE2,∴32+(9﹣AE)2=AE2,解得:AE=5.【点睛】本题考查折叠性质、等腰三角形的性质、直角三角形的两锐角互余、勾股定理,熟练掌握折叠性质和等腰三角形的性质,利用勾股定理建立方程思想是解答的关键.24.(1)见解析(2)2【解析】【分析】(1)如图,作C点关于DE的对称点H,设DH与AC交于G点,得到DE垂直平分CH,再证明AB∥DH,得到∠DGC=∠A=90°,再利用直角三角形两锐角互余求解;(2)先△ABC和△GDC是等腰直角三角形,得到DG=CG,再证明△GDF≌△GCH,得到DF=CH=2CE=2.【详解】(1)如图,作C点关于DE的对称点H,设DH与AC交于G点,∵∠CED=90°∴DE垂直平分CH∴CD=DH∴∠HDC=2∠EDC=2∠EDH∴∠EDC=∠EDH∵∠B=2∠EDC∴∠B=∠HDC∴AB∥DH∴∠DGC=∠A=90°∴∠GDF+∠GFD=∠ECF+∠EFC=90°∴∠GDF=∠ECF故∠FDC =∠ECF ;(2)∵∠A=90°,AB=AC∴△ABC 是等腰直角三角形∴∠ACB=45°∴∠GDC=90°-∠ACB=45°∴△GDC 是等腰直角三角形∴DG=CG∵∠GDF=∠GCH ,∠DGF=∠CGH=90°∴△GDF ≌△GCH (ASA )∴DF=CH=2CE=2.【点睛】此题主要考查等腰三角形与全等三角形综合,解题的关键是根据题意作辅助线,证明三角形全等进行求解.25.(1)(83)t cm -;(2)全等;(3)当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等.【解析】【分析】(1)根据题意可得出答案;(2)由“SAS ”可证BPD CQP ∆≅∆;(3)根据全等三角形的性质得出4BPPC cm ==,5CQ BD cm ==,则可得出答案.【详解】解:(1)由题意可得,(83)PC BC BP t cm =-=-,故答案为:(83)t cm -.(2)全等,理由:1t s = ,点Q 的运动速度与点P 的运动速度相等,313()BP CQ cm ∴==⨯=,10AB cm = ,点D 为AB 的中点,5()BD cm ∴=.又PC BC BP =- ,8BC cm =,835()PC cm ∴=-=,PC BD ∴=,又AB AC = ,B C ∴∠=∠,在BPD ∆和CQP ∆中,PC BDB C BP CQ=⎧⎪∠=∠⎨⎪=⎩,()BPD CQP SAS ∴∆≅∆;(3) 点Q 的运动速度与点P 的运动速度不相等,BP ∴与CQ 不是对应边,即BP CQ ≠,∴若BPD CPQ ∆≅∆,且B C ∠=∠,则4()BP PC cm ==,5()CQ BD cm ==,∴点P ,点Q 运动的时间4()33BPt s ==,∴点Q 的运动速度515(/)443CQcm s t ===;答:当点Q 的运动速度为15/4cm s 时,能够使BPD ∆与CQP ∆全等.。
2024-2025学年八年级数学上学期期中测试卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(苏科版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列说法中,错误的有()A.平面上两个全等的图形不一定关于某直线对称B.周长相等的两个等边三角形全等C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.有两边及一角对应相等的两个三角形全等3.(3分)如图,∠C=∠DFE=90°,下列条件中,不能判定△ACB与△DFE全等的是()A .∠A =∠D ,AB =DEB .AC =DF ,BC =EF C .AB =DE ,BC =EFD .∠A =∠D ,∠ABC =∠E4.(3分)等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为( )A .50°B .130°C .50°或130°D .55°或130°5.(3分)五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列示意图中正确的是( )A .B .C .D .6.(3分)如图,在△ABC 中,AC 的垂直平分线交AB 于点D ,垂足为点E ,CD 平分∠ACB ,若∠A =50°,则∠B 的度数为( )A .25°B .30°C .35°D .40°7.(3分)如图,一张三角形纸片ABC ,其中∠C =90°,AC =6,BC =8.某同学将纸片折叠使点A 落在B 处,折痕记为n .则n 的长度是( )A .154B .3C .125D .58.(3分)如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E .△ABC 的面积为70,AB =16,BC =12.求DE 的长为( )A.4B.5C.10D.289.(3分)如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4B.5C.6D.810.(3分)在△ABC中,已知D为直线BC上一点,若∠ABC=α,∠BAD=β,且AB=AC=CD,则β与α之间不可能存在的关系式是()A.β=90°−32αB.β=180°−32αC.β=32α−90°D.β=120°−32α第II卷二、填空题(本题共6小题,每小题3分,共18分.)11.(3分)若在直角三角形中,斜边比一直角边大1,且另一直角边长为5,则斜边上的中线长为.12.(3分)如图,△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,D,E在同一条直线上,若∠BEC=40°,则∠ADE=°.13.(3分)把长方形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕EF,若AB=3cm,BC =5cm,则线段DE=cm.14.(3分)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.15.(3分)如图所示的网格是正方形网格,则∠PAB﹣∠PCD=°.(点A,B,C,D,P 是网格线交点)16.(3分)如图,在△ABC中,∠B=90°,AB=4,BC=3,E为AC边上一动点(不与点A重合),△AEF为等边三角形,过点E作EF的垂线,D为垂线上任意一点,连接DF,G为DF的中点,连接CG,则CG的最小值是.三、解答题(本题共8小题,共72分.第17-18题每题6分,第19-20题每题8分,第21-22题每题10分,第23-24题每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)如图,已知CB=DE,∠C=∠E,∠BAD=∠CAE,AC与DE交于点F.求证:AD平分∠BDE.18.(6分)如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE为AB上的高,DE=12,S△ABE=60,求△ABC的面积.19.(8分)如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=12,BO=4,求OD的长.20.(8分)方格纸中每个小方格都是边长为1的正方形.(1)在图1中画一个格点正方形,使其面积等于5;(2)在图2中确定格点C,使△ABC为等腰三角形(如果有多个点C,请分别以点C1,C2,C3…编号);(3)在图3中,请用无刻度的直尺找出一个格点P,使BP平分∠ABC.(不写画法,保留画图痕迹)21.(10分)已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长.22.(10分)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).23.(12分)如图1,在△ABC中,AD⊥BC于D,且BD:AD:CD=3:4:2.(1)求证:△ABC是等腰三角形;(2)如图2,已知S△ABC=40cm2,动点M从点C出发以2cm/s的速度沿线段CB向点B运动,同时动点N从点B出发以相同的速度沿线段BA向点A运动,当其中一点到达终点时整个运动都停止.设运动时间为t s.若△DMN的边与AC平行,求t的值;(3)在(2)的条件下,设AD的垂直平分线交AB于点E,利用图3及备用图分析:在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.24.(12分)央视科教频道播放的《被数学选中的人》节目中说到:“数学区别于其它学科最主要的特征是抽象与推理”.几何学习尤其需要我们从复杂的问题中进行抽象,形成一些基本几何模型,用类比等方法,进行再探究、推理,以解决新的问题.(1)模型探究.如图1,△ABC和△AED中,AB=AC,AE=AD,∠BAC=∠EAD,连接BE、CD.这里△ABE与△ACD有一个公共的顶点,且将其中的一个三角形通过旋转可以和另一个三角形重合,我们将这样的图形称为“手拉手模型”.请你说明△ABE与△ACD全等的理由.(2)模型应用.如图2,△ABC中,AB=AC,∠BAC=50°,D为平面内一点,且∠ADB=∠ACB.求∠BDC的度数.聪明的小亮同学,想到可以通过辅助线构造“手拉手模型”来解决这个问题.小亮先在线段BD上找到一点E,使得AE=AD.请你根据小亮的思路,求出∠BDC的度数(要有必要的说理过程).(3)拓展提高.如图3,△ABC是等腰直角三角形,斜边BC=15,点D是射线BC上的一点,连接AD,以点A为直角顶点作等腰Rt△ADE(点A、D、E按逆时针方向排列),若CD=5,直接写出DE2的值.。
苏科版八年级下册数学期中试卷及答案百度文库一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.下列调查中,最适合采用普查的是( )A .长江中现有鱼的种类B .八年级(1)班36名学生的身高C .某品牌灯泡的使用寿命D .某品牌饮料的质量3.满足下列条件的四边形,不一定是平行四边形的是( )A .两组对边分别平行B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等 4.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =5.如图,将△ABC 沿着它的中位线DE 折叠后,点A 落到点A ’,若∠C =120°,∠A =26°,则∠A ′DB 的度数是( )A .120°B .112°C .110°D .100°6.如图,在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 和BD 相交于点O ,OE ⊥BD 交AD 于E ,则ΔABE 的周长为( )A .4cmB .6cmC .8cmD .10cm7.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE,延长AF交CD于点G,已知CG=2,DG=1,则BC的长是()A.32B.26C.25D.23 8.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=09.如果a=32+,b=3﹣2,那么a与b的关系是()A.a+b=0 B.a=b C.a=1bD.a>b10.下列事件为必然事件的是()A.射击一次,中靶B.12人中至少有2人的生日在同一个月C.画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上11.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差12.如图所示,在矩形ABCD中,E为AD上一点,EF CE⊥交AB于点F,若2DE=,矩形ABCD的周长为16,且CE EF=,求AE的长( )A.2B.3C.4D.6二、填空题13.在英文单词tomato中,字母o出现的频数是_____.14.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是_______.15.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.16.计算326⨯的结果是_____.17.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)18.在整数20200520中,数字“0”出现的频率是_________.19.如图,在矩形ABCD 中,AB =5,BC =6,P 为AD 上一动点,把△ABP 沿BP 翻折,使点A 落在点F 处,连接CF ,若BF =CF ,则AP 的长为_____.20.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______.21.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.22.如图,在平面直角坐标系中,四边形OBCD 是菱形,OB =OD =2,∠BOD =60°,将菱形OBCD 绕点O 旋转任意角度,得到菱形OB 1C 1D 1,则点C 1的纵坐标的最小值为_____.23.若关于x 的分式方程233x a x x+--=2a 无解,则a 的值为_____. 24.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=3,则BC 的长为 .三、解答题25.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2a2016450频率0.040.160.400.32b1(1)频数、频率分布表中a=,b=;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少.26.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?27.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:EO=FO;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =1时,求AE 的长.28.如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)当DE =DF 时,求EF 的长.29.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.30.计算:(12354535(2()22360,0x yxy x y ≥≥; (3)48274153. 31.用适当的方法解方程:(1)x 2﹣4x ﹣5=0;(2)y (y ﹣7)=14﹣2y ;(3)2x 2﹣3x ﹣1=0.32.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,﹣1)、B (﹣1,0)、C (0,﹣3)(1)点A 关于坐标原点O 对称的点的坐标为 .(2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,A1A的长为.33.已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF求证:AC、EF互相平分.34.如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.35.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.36.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,4=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=124 2DE BD⋅=.故答案为B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.2.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.调查长江中现有鱼的种类,调查的难度大,范围广,适合抽样调查;B.调查八年级(1)班36名学生的身高,难度不大,适合普查;C.调查某品牌灯泡的使用寿命,调查带有破坏性,适合抽样调查;D.调查某品牌饮料的质量,调查带有破坏性,适合抽样调查;故选:B.【点睛】本题考查的是普查与抽样调查的含义与运用,掌握以上知识是解题的关键.3.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A 、∵两组对边分别平行的四边形是平行四边形,∴选项A 不符合题意;B 、∵两组对边分别相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵一组对边平行且相等的四边形是平行四边形,∴选项C 不符合题意;D 、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形, ∴选项D 符合题意;故选:D .【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.4.D解析:D【分析】平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.根据平行四边形的判定,逐个验证即可.【详解】解:A.∵//AB CD , AB CD =∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故本选项不符合题意;B.∵//AB CD , //AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;C.∵//AB CD∴180C D ∠+∠=︒∵A C ∠=∠∴180A D +=︒∠∠∴//AD BC∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故本选项不符合题意;D.若添加AD BC =不一定是平行四边形,如图:四边形ABCD为等腰梯形,故本选项符合题意.故选:D【点睛】本题考查了平行四边形的判定,是开放题,可以针对平行四边形的各种判定方法,结合给出相应的条件进行判定.5.B解析:B【分析】根据轴对称和平行线的性质,可得∠A'DE=∠B,又根据∠C=120°,∠A=26°可求出∠B的值,继而求出答案.【详解】解:由题意得:DE∥BC,∴∠A'DE=∠B=180°﹣120°﹣26°=34°,∴∠BDE=180°﹣∠B=146°,故∠A'DB=∠BDE﹣∠A'DE=146°﹣34°=112°.故选:B.【点睛】本题考查了轴对称以及三角形中位线的性质,解题的关键是熟知三角形的中位线平行于第三边.6.D解析:D【解析】分析:利用平行四边形、等腰三角形的性质,将△ABE的周长转化为平行四边形的边长之间的和差关系.详解:∵四边形ABCD是平行四边形,∴AC、BD互相平分,∴O是BD的中点.又∵OE⊥BD,∴OE为线段BD的中垂线,∴BE=DE.又∵△ABE的周长=AB+AE+BE,∴△ABE的周长=AB+AE+DE=AB+AD.又∵□ABCD的周长为20cm,∴AB+AD=10cm∴△ABE 的周长=10cm .故选D.点睛:本题考查了平行四边形的性质.平行四边形的对角线互相平分.请在此填写本题解析!7.B解析:B【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt △EGF ≌Rt △EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG ,∵E 是BC 的中点,∴BE =EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE =EF ,∴EF =EC ,∵在矩形ABCD 中,∴∠C =90°,∴∠EFG =∠B =90°,∵在Rt △EGF 和Rt △EGC 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ),∴FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∴AF =AB =3,∴AG =AF +FG =3+2=5,∴BC =AD 22AG DG -2251-=6. 故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.8.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.9.A解析:A【分析】先利用分母有理化得到a2),从而得到a与b的关系.【详解】2),∵a而b2,∴a=﹣b,即a+b=0.故选:A.【点睛】﹣2是解答本题的关键.10.C解析:C【分析】必然事件就是一定会发生的事件,依据定义即可判断.【详解】解:A.射击一次,中靶是随机事件;B.12人中至少有2人的生日在同一个月是随机事件;C .画一个三角形,其内角和是180°是必然事件;D .掷一枚质地均匀的硬币,正面朝上是随机事件;故选:C .【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.C解析:C【解析】【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;12.B解析:B【分析】易证△AEF ≌△ECD ,可得AE=CD ,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE 的长度.【详解】∵四边形ABCD 为矩形,∴∠A=∠D=90°,∵EF ⊥CE ,∴∠CEF=90°,∴∠CED+∠AEF=90°,∵∠CED+∠DCE=90°,∴∠DCE=∠AEF ,在△AEF 和△DCE 中,A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DCE(AAS),∴AE=DC ,由题意可知:2(AE+DE+CD)=16,DE=2,∴2AE=6,∴AE=3;故选:B.【点睛】本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.二、填空题13.2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.解析:2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.14.5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-解析:5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率15..【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠20.解析:0【解析】试题分析:根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为20°.16.【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】=2=2×3=6.故答案为:6.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.解析:62【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】===.故答案为:.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.17.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质. 18.5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是.故答案为:.【点睛】此题主要考查了频率的求解析:5【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.19.【分析】过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.【详解】解:过点F作EN∥DC交BC于点N,交AD于点E,∵四解析:5 3【分析】过点F作EN∥DC交BC于点N,交AD于点E,设AP=x,则PF=x,得出(3﹣x)2+12=x2,解方程即可得解.【详解】解:过点F作EN∥DC交BC于点N,交AD于点E,∵四边形ABCD是矩形,∴∠A=∠D=∠DCB=90°,∴FN⊥BC,FE⊥AD,∵BF=CF,BC=6,∴CN=BN=3,由折叠的性质可知,AB=BF=5,AP=PF,∴224FN BF BN=-=,∴EF=EN﹣FN=5﹣4=1,设AP =x ,则PF =x ,∵PE 2+EF 2=PF 2,∴(3﹣x )2+12=x 2, 解得,53x =, 故答案为:53. 【点睛】本题主要考查了折叠变换的性质、等腰三角形的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠变换的性质、勾股定理是关键. 20.且【分析】根据二次项系数非零结合根的判别式△,即可得出关于的一元一次不等式,解之即可得出结论.【详解】解:关于的一元二次方程有实数根,且△,解得:且,故答案为:且.【点睛】本题考查解析:4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式△0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】 解:关于x 的一元二次方程2410kx x ++=有实数根, 0k ∴≠且△2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△0时,方程有实数根”是解题的关键. 21.或5【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC ,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角 解析:103或5 【分析】 当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示.连结AC ,先利用勾股定理计算出AC=13,根据折叠的性质得∠AB ′E=∠B=90°,而当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,所以点A 、B ′、C 共线,即ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,则EB=EB ′,AB=AB ′=5,可计算出CB ′=8,设BE=a ,则EB ′=a ,CE=12-a ,然后在Rt △CEB ′中运用勾股定理可计算出a .②当点B ′落在AD 边上时,如图2所示.此时ABEB ′为正方形.【详解】当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如图1所示,连结AC ,在Rt △ABC 中,AB=5,BC=12,∴AC=22512+=13,∵将ΔABE 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°,当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即将ΔABE 沿AE 折叠,使点B 落在对角线AC 上的点B ′处,设:BE a B'E ==,则CE 12a =-,AB AB'5==,B'C AC AB'1358=-=-=,由勾股定理得:()22212a a 8-=+,解得:10a 3=; ②当点B ′落在AD 边上时,如图2所示,此时ABEB ′为正方形,∴BE=AB=5,综上所述,BE 的长为103或5, 故答案为103或5. 【点睛】本题考查了矩形的性质,折叠问题,勾股定理等知识,熟练掌握折叠前后两图形全等,即对应线段相等;对应角相等是解题的关键.注意本题有两种情况,需要分类讨论,避免漏解.22.【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=BC=1,CE =,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,解析:23-【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=12BC=1,CE=3,由勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,∵CE⊥OE,∴BE=12BC=1,CE3∴2223OC OE CE=+=∴当点C1在y轴上时,点C1的纵坐标有最小值为3-,故答案为:23-【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键. 23.5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x==3时,分式方程无解,则a=1.5 .【详解】解析:5或1.5【分析】先直接解分式方程,整理得:(1﹣2a)x=﹣4a,再分类讨论①当1﹣2a=0时,方程无解,故a=0.5;②当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5 .【详解】解:2233x aax x+=--,去分母得:x﹣2a=2a(x﹣3),整理得:(1﹣2a)x=﹣4a,当1﹣2a=0时,方程无解,故a=0.5;当1﹣2a≠0时,x=421aa-=3时,分式方程无解,则a=1.5,则a的值为0.5或1.5.故答案为:0.5或1.5.【点睛】本题主要考查了当分式方程无意义时,求字母的值.值得引起注意的是,当分式方程化为整式方程(1﹣2a)x=﹣4a时,一定要分1-2a=0和1-2a≠0两种情况,来分别求m的值. 24.【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO解析:【分析】根据折叠的性质结合菱形的性质可得∠FCO=∠ECO=∠BCE=30°,再根据含30°角的直角三角形的性质结合勾股定理即可求得结果.【详解】解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴223BC EC EB=-=【点睛】解题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.三、解答题25.(1)a=8,b=0.08;(2)作图见解析;(3)14.【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可;(2)直接根据(1)中的结果补全频数分布直方图即可;(3)根据89.5~100.5这一组的人数及概率公式求解即可.【详解】解:(1)由题意得a=50-2-20-16-4=8,b=1-0.04-0.16-0.40-0.32=0.08;(2)如图所示:(3)由题意得张明被选上的概率是14.【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握.26.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE ≌△BOF (ASA ),∴DE =BF ,又∵DE ∥BF ,∴四边形BFDE 为平行四边形;(2)∠DOE =90°时,四边形BFDE 为菱形;理由如下:由(1)得:四边形BFDE 是平行四边形,若∠DOE =90°,则EF ⊥BD ,∴四边形BFDE 为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE ≌△BOF 是解题的关键.27.(1)见解析;(2)AE =3.【分析】(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果.【详解】(1)∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠OBE =∠ODF .在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBE ≌△ODF (AAS ).∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC ,∴∠GEA =∠GFD =90°.∵∠A =45°,∴∠G =∠A =45°.∴AE =GE ,∵BD ⊥AD ,∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°.∴DG =DO ,∴OF =FG =1,由(1)可知,OE =OF =1,∴GE =OE +OF +FG =3,∴AE =3.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.28.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2,∴x 2+62=(8-x)2.解得x =74. ∴DE =8-74=254. 在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD 2,∴BD=10.∴OD =12BD =5. 在Rt △DOE 中,根据勾股定理,有DE 2-OD 2=OE 2,∴OE=154.∴EF=2OE=152.【点睛】考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.29.(1)详见解析;(2)10cm【分析】(1)由三角形中位线定理推知BD∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=16﹣AB,然后根据勾股定理即可求得.【详解】(1)证明:∵D、E分别是AB、AC的中点,∴ED是Rt△ABC的中位线,∴ED∥BC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为16cm,AC的长8cm,∴BC=16﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(16﹣AB)2+82,解得:AB=10cm,【点睛】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.30.(1)6;(2)3;(3)【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的乘法法则运算;(3)利用二次根式的除法法则运算.【详解】(1=23×35=6;(2()260,0y xy x y ≥≥=3(3)=4﹣=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.31.(1)x 1=-1,x 2=5.(2)y 1=7,y 2=﹣2.(3)12x x == 【分析】(1)根据因式分解法即可求出答案;(2)根据因式分解法即可求出答案.(3)利用公式法求解可得.【详解】(1)x 2﹣4x ﹣5=0,分解因式得:(x +1)(x ﹣5)=0,则x +1=0或x ﹣5=0,解得:x 1=-1,x 2=5.(2)y (y ﹣7)=14﹣2y ,移项得,y (y ﹣7)-14+2y =0,分解因式得:(y ﹣7)(y +2)=0,则y ﹣7=0或y +2=0,解得:y 1=7,y 2=﹣2.(3)2x 2﹣3x ﹣1=0,∴a =2,b =﹣3,c =﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x1=3174+,x2=3174-.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.32.(1)(3,1);(2)作图见解析;26.【分析】(1)根据对称性即可得点A关于坐标原点O对称的点的坐标;(2)根据旋转的性质即可将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C,进而可得A1A的长.【详解】(1)∵A(﹣3,﹣1),∴点A关于坐标原点O对称的点的坐标为(3,1).故答案为:(3,1);(2)如图,△A1B1C即为所求,A1A的长为:2215+=26.故答案为:26.【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.33.证明见解析【分析】连接AE、CF,证明四边形AECF为平行四边形即可得到AC、EF互相平分.【详解】解:连接AE、CF,∵四边形ABCD为平行四边形,∴AD∥BC,AD﹦BC,又∵DF﹦BE,∴AF﹦CE,又∵AF∥CE,∴四边形AECF为平行四边形,∴AC、EF互相平分.【点睛】本题考查平行四边形的判定与性质,正确添加辅助线是解题关键.34.(1)见解析;(2)当∠A=90°时,FG⊥FH.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质、等腰三角形的判定定理得到AD=AE,得到DB=EC,根据三角形中位线定理证明结论;(2)延长FG交AC于N,根据三角形中位线定理得到FH∥AC,FN∥AB,根据平行线的性质解答即可.【详解】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=12BD,FH=12CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.35.见解析【分析】根据平行线的性质和全等三角形的判定和性质定理以及平行四边形的判定即可得到结论.。
2023-2024学年苏科新版八年级上册数学期中复习试卷一.选择题(共8小题,满分24分,每小题3分)1.在下列数中,π,,3.14.0.101010,4,(π﹣1)0,无理数有( )个.A.1个B.2个C.3个D.4个2.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )A.B.C.D.3.如图,∠1=∠2,∠3=∠4,则判定△ABD≌△ACD的依据是( )A.角角角B.角边角C.边角边D.边边边4.已知等腰三角形三边的长分别为4,x,10,则x的值是( )A.4B.10C.4 或10D.6 或105.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25B.5,12,13C.12,16,20D.4,7,86.把边长为1的正方形ABCD按如图所示放置在数轴上,以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,则点F对应的数值是( )A.2B.C.D.7.如图,若△ABE≌△ACF,且AB=7cm,AE=3cm,则EC的长为( )A.3cm B.4cm C.5cm D.7cm8.如图,把直角△ABC沿AD折叠后,使点B落在AC边上点E处,若AB=6,AC=10,则S△CDE=( )A.15B.12C.9D.6二.填空题(共8小题,满分24分,每小题3分)9.用四舍五入法将3.694精确到0.01,所得到的近似数为 .10.定义新运算“△”:对于任意实数a,b都有a△b=ab﹣a﹣b+2.(1)若3△x值不大于3,则x的取值范围是 ;(2)若(﹣2m)△5的值大于3且小于9,则m的整数值是 .11.若+y2﹣4y+4=0,则x= ,y= .12.如图,由两个直角三角形和三个正方形组成的图形.其中两正方形面积分别是S1=22,S2=14,AC=10,则AB= .13.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,垂足为D.若∠F=30°,BE=4,则DE的长等于 .14.三角形的三边长分别为cm,cm,cm,这个三角形的周长是 cm.15.如图,将长方形ABCD沿对角线AC折叠,点B的对应点为点E,连接CE交AD于点F,且AD=2AB=8,则△AFC的面积为 .16.若三边均不相等的三角形三边a、b、c满足a﹣b>b﹣c(a为最长边,c为最短边),则称它为“不均衡三角形”.例如,一个三角形三边分别为7,5,4,因为7﹣5>5﹣4,所以这个三角形为“不均衡三角形”.(1)以下4组长度的小木棚能组成“不均衡三角形”的为 (填序号).①4cm,2cm,1cm;②19cm,20cm,19cm;③13cm,18cm,9cm;④9cm,8cm,6cm.(2)已知“不均衡三角形”三边分别为2x+2,16,2x﹣6,直接写出x的整数值为 .三.解答题(共11小题,满分82分)17.计算:×﹣|﹣2|+(﹣)﹣1.18.计算下列各式的值.(1)±;(2);(3);19.求下列各式中x的值:(1)x2=2;(2)(x﹣3)3=﹣8.20.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形△ABC,使它的三边长分别为AB=、BC=2、CA=;(2)在图中建立正确的平面直角坐标系,并写出△ABC各顶点的坐标;(3)作△ABC关于y轴的轴对称图形△A′B′C′(不要求写作法);(4)直接写出△ABC的面积为 .21.如图,已知AC,BD相交于点O,BO=DO,CO=AO,EF过点O分别交BC、AD于点E、F.(1)根据所给的条件,写出图中所有的全等三角形;(2)请说明BE=DF的理由.22.如图,河岸上A、B两点相距25km,C、D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A、B,已知AD=15km,BC=10km,现要在河岸AB上建一水厂E向C,D两村输送自来水,要求水厂到两村的距离相等,且DE⊥EC,则水厂E应建在距A点多少千米处?23.如图,在四边形ABCD中,AD∥BC,∠A=∠C=90°,点E、F分别在AB、DC上,连接DE,BF,若AE=CF;求证:DE=BF.24.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.25.已知+2=a,且与互为相反数,求a,b的值.26.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从点A出发,沿AB以每秒4cm的速度向终点B运动.当点P不与点A、B重合时,过点P作PQ⊥AB交射线BC于点Q,以PQ为一边向上作正方形PQMN,设点P的运动时间为t(秒).(1)求线段PQ的长.(用含t的代数式表示)(2)求点Q与点C重合时t的值.(3)设正方形PQMN与△ABC的重叠部分周长为1(cm),求l与t之间的函数关系式.(4)作点C关于直线QM的对称点C',连接PC'.当PC′与△ABC的边垂直或重合时,直接写出t的值.27.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC,将线段BC绕点B顺时针旋转一定角度得到线段BD.连接AD交BC于点E,过点C作线段AD的垂线,垂足为点F,交BD于点G.(1)如图1,若∠CBD=45°.①求∠BCG的度数;②求证:CE=DG;(2)如图2,若∠CBD=60°,当AC﹣DE=6时,求CE的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:无理数有π,共1个.故选:A.2.解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.3.解:在△ADB和△ADC中,,∴△ADB≌△ADC(ASA),故判定两个三角形全等最直接的依据是角边角.故选:B.4.解:当x=4时,4+4<10,不符合三角形三边关系,舍去;当x=10时,4+10>10,符合三角形三边关系.故选:B.5.解:A、72+242=252,此三角形能组成直角三角形;B、52+122=132,此三角形能组成直角三角形;C、122+162=202,此三角形能组成直角三角形;D、(4)2+(7)2≠(8)2,此三角形不能组成直角三角形.故选:D.6.解:根据勾股定理得正方形的对角线==,∴OC=,∵以原点为圆心,对角线AC为半径画弧,与数轴交于E,F两点,∴点F对应的数是.故选:D.7.解:∵△ABE≌△ACF,∴AB=AC=7cm.∴EC=AC﹣AE=7﹣3=4(cm).故选:B.8.解:在Rt△ABC中,由勾股定理得,BC===8,由翻折变换的性质可知,AB=AE=6,∠B=∠AED=90°,∴EC=AC﹣AE=10﹣6=4,在Rt△DEC中,设DE=x,则BD=x,DC=8﹣x,由勾股定理得,DE2+EC2=CD2,x2+42=(8﹣x)2,解得x=3,即DE=3,∴S△DEC=DE•EC=×3×4=6,故选:D.二.填空题(共8小题,满分24分,每小题3分)9.解:将3.694精确到0.01,所得到的近似数为3.69.故答案为3.69.10.解:(1)∵3△x值不大于3,∴3x﹣3﹣x+2≤3,∴3x﹣x≤3+3﹣2,∴2x≤4,∴x≤2,即x的取值范围是x≤2,故答案为:x≤2;(2)∵(﹣2m)△5的值大于3且小于9,∴,解不等式①,得m<﹣,解不等式②,得m>﹣,所以不等式组的解集是﹣<m<﹣,即整数m为﹣1,故答案为:﹣1.11.解:∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x﹣y=0,y﹣2=0,解得x=2,y=2,故答案为:2,2.12.解:∵S1=22,S2=14,∴S3=S1+S2=22+14=36,∴BC==6,∵AC=10,∴AB===8,故答案为:8.13.解:∵∠C=90°,FD⊥AB,而∠AED=∠CEF,∴∠A=∠F=30°,∵DE垂直平分AB,∴EA=EB,∴∠EBA=∠A=30°,∴DE=BE=×4=2.故答案为2.14.解:根据题意得:++=4+5+5=(9+5)cm;故答案为:9+5.15.解:由折叠的性质,可知:AE=AB=4,CE=CB=8,∠E=∠B=90°,∠ACE=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACE,∴AF=CF.设AF=x,则EF=8﹣x.在Rt△AEF中,AE=4,AF=x,EF=8﹣x,∠E=90°,∴42+(8﹣x)2=x2,∴x=5,∴S△AFC=AF•AB=×5×4=10.故答案为:10.16.解:(1)①∵1+2<4,∴4cm,2cm,1cm不能组成三角形,也就不能组成“不均衡三角形”;②∵19=19,∴19cm,20cm,19cm不能组成“不均衡三角形”;③∵18﹣13>13﹣9,∴13cm,18cm,9cm能组成“不均衡三角形”;④∵9﹣8<8﹣6,∴9cm,8cm,6cm不能组成“不均衡三角形”.故答案为:③;(2)①16﹣(2x+2)>2x+2﹣(2x﹣6),解得:x<3,∵2x﹣6>0,解得:x>3,故不合题意,舍去;②2x+2>16>2x﹣6,解得:7<x<11,2x+2﹣16>16﹣(2x﹣6),解得:x>9,∴9<x<11,∵x为整数,∴x=10,经检验,当x=10时,22,16,14可构成三角形;③2x﹣6>16,解得:x>11,2x+2﹣(2x﹣6)>2x﹣6﹣16,解得:x<15,∴11<x<15,∵x为整数,∴x=12或13或14,都可以构成三角形;综上所述,x的整数值为10或12或13或14,故答案为:10或12或13或14.三.解答题(共11小题,满分82分)17.解:原式=×2﹣(2﹣)﹣8=2﹣2+﹣8=3﹣10.18.解:(1)∵(±)2=,∴=;(2)∵0.33=0.027,∴=0.3;(3)∵(﹣1)3=﹣1,∴=﹣1.19.解:(1)∵x2=2,∴x2=6,∴;(2)∵(x﹣3)3=﹣8,∴x﹣3=﹣2,∴x=1.20.解:(1)如图,△ABC即为所求;(2)平面直角坐标系如图所示.A(﹣3,4),B(﹣4,2),C(﹣2,0)(答案不唯一);(3)如图,△A′B′C′即为所求;(4)S△ABC=2×4﹣×1×2﹣×2×2﹣×1×4=3.故答案为:3.21.解:(1)图中所有的全等三角形:△ADO≌△CBO,△AFO≌△CEO,△DFO≌△BEO;(2)在△CBO和△ADO中,,∴△CBO≌△ADO(SAS),∴∠B=∠D,在△BEO和△DFO中,,∴△BEO≌△DFO(ASA),∴BE=DF.22.解:E站应建在离A站10km处,即AE=BC=10km,∵AB=25km、AD=15km,∴BE=AB﹣AE=15km=AD,∵CB⊥AB、DA⊥AB,∴∠A=∠B=90°,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴DE=CE.23.证明:∵AD∥BC,∴∠ADC+∠C=180°,∵∠C=90°,∴∠ADC=90°,∵∠A=90°,∴∠ADC+∠A=180°,∴AB∥CD,∴四边形ABCD为平行四边形,∴AB=CD,∵AE=CF,∴AB﹣AE=CD﹣CF,即BE=DF,∵AB∥CD,∴四边形EDFB为平行四边形,∴DE=BF.24.解:∵BD平分∠ABC交AC于点D,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,S△ABC=28,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=28,即DE(6+8)=28,∴DE=4.25.解:∵,∴,∴a﹣2=1或a﹣2=0或a﹣2=﹣1,∴a=3或2或1,当a=3时,,∴,∴b=2,当a=2时,,∴,∴,当a=1时,,∴=1,∴b=,综上所述,,.26.解:(1)∵在Rt△ABC中、∠C=90°,∴AB===10,∴AP=4t,BP=10﹣4t,PQ=BP•tan B=BP•=(10﹣4t)×=﹣3t;(2)当点Q与点C重合时,如图1所示:∵cos A==,cos A===,∴=,∴t=(s);(3)当0<t≤时,如图2所示:BN=AB﹣AP﹣PN=10﹣4t﹣+3t=﹣t,∵tan B==,∴NH===(﹣t),cos B==,∴BH===(﹣t),∴CH=BC﹣BH=8﹣(﹣t),∵tan A==,∴PD===t,∵cos A==,∴AD===t,∴CD=AC﹣AD=6﹣t,∴l=PN+NH+CH+CD+PD=﹣3t+(﹣t)+8﹣(﹣t)+6﹣t+t=﹣t+;当<t<时,如图3所示:同理:NH=(﹣t),BH=(﹣t),BQ=(10﹣4t),∴HQ=BQ﹣BH=(10﹣4t)﹣(﹣t),∴l=2PQ+NH+HQ=2(﹣3t)+(﹣t)+(10﹣4t)﹣(﹣t)=﹣t+;(4)①当C′与C重合时,PC′⊥AB,如图4所示:由(2)得:t=s;②当PC′⊥AC时,如图5所示:则PC′∥BC,连接C′E,∵点C关于直线QM的对称点C',∴CC′⊥MQ,CE=C′E,∴CC′∥PQ,∴四边形CC′PQ是平行四边形,∴CQ=C′P,CC′=PQ=﹣3t,由(3)得:BQ=(10﹣4t),∴C′P=CQ=8﹣(10﹣4t)=﹣+5t,∵PD∥BC,∴==,即==,∴PD=t,AD=t,∴C′D=PD﹣C′P=t﹣(﹣+5t)=﹣t,∵MQ∥AB,∴=,即=,∴CE=﹣+t=C′E,∴DE=AC﹣AD﹣CE=6﹣t﹣(﹣+t)=﹣t,∵C′D2+DE2=C′E2,即(﹣t)2+(﹣t)2=(﹣+t)2整理得:27t2﹣t+=0,解得:t1=(s),t2=(s)(不合题意舍去);③当C′落在AB上时,PC′与AB重合,如图6所示:∵点C关于直线QM的对称点C',∴OC=OC′,∵四边形PQMN是正方形,∴MQ∥AB,∴AD=CD=AC=3,∴DQ是△CAB的中位线,∴CQ=BQ=BC=4,由(3)得:BQ=(10﹣4t),∴(10﹣4t)=4,∴t=(s),综上所述,当PC′与△ABC的边垂直或重合时,t的值为s或s或s.27.(1)①解:∵BA=BC,∠ABC=90°,∴∠ACB=∠CAB=45°,∵∠CBD=45°,∴∠ACB=∠CBD,∴AC∥BD,∴∠CAD=∠D,∵BD=BC=BA,∴∠D=∠BAD,∴∠CAD=∠BAD=∠CAB=22.5°,∵CG⊥AD,∴∠CFD=90°,∴∠ACF=90°﹣22.5°=67.5°,∴∠BCG=∠ACF﹣∠ACB=22.5°;②证明:延长CG,AB交于T,如图:∵∠ABE=∠CBT=90°,AB=BC,∠BAE=∠BCT=22.5°,∴△ABE≌△CBT(ASA),∴BE=BT,∠AEB=∠T,∵∠BAE=22.5°,∴∠AEB=90°﹣∠BAE=67.5°=∠T,∵∠EBG=∠TBG=45°,∴∠TGB=180°﹣∠T﹣∠TBG=67.5°,∴∠T=∠TGB,∴BT=BG,∴BE=BT=BG,∵BC=BD,∴BC﹣BE=BD﹣BG,即CE=DG;(2)解:连接CD,过点D作DH⊥BC于H,在DH上取一点J,使得EJ=DJ,设CF=a,如图:∵CB=BD,∠CBD=60°,∴△BCD是等边三角形,∵AB=BC,∠ABC=90°,∴∠ABD=90°+60°=150°,∠BAC=∠ACB=45°,∴∠BAD=∠BDA=15°,∴∠CAF=30°,∵CG⊥AD,∴∠CFA=90°,∴AC=2CF=2a,∵∠CDB=60°,∠BDA=15°,∴∠FDC=∠FCD=45°,∴FC=DF=a,DC=BC=BD=a,∵DH⊥BC,∴CH=BH=a,DH=CH=a,∠HDB=30°,∴∠JDE=∠HDB﹣∠BDA=15°,设EH=x,∵JE=JD,∴∠JED=∠JDE=15°,∴∠EJH=∠JED+∠JDE=30°,∴EJ=2EH=DJ=2x,HJ=x,DE===(+)x,∵DH=a=HJ+DJ,∴x+2x=a,∴x=(﹣)a,∴DE=(3﹣)a,∵AC﹣DE=6,∴2a﹣(3﹣)a=6,∴a=3(+1),∴CE=CH+EH=a+(﹣)a=(﹣)a=(﹣)×3(+1)=6.。
苏科版八年级(下)期中数学试卷(01)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)为了了解某区12000名八年级学生的体重情况,从中随机抽取了500名学生的体重进行调查.其中,下面说法错误的是()A.此调查属于抽样调查B.12000名学生的体重是总体C.每个学生的体重是个体D.500名学生是所抽取的一个样本3.(3分)下列事件是必然事件的是()A.掷一次骰子,向上的一面是6点B.购买一张彩票,中奖C.经过城市中某一有交通信号灯的路口,遇到红灯D.如果a、b都是实数,那么a•b=b•a4.(3分)正方形具有而矩形不一定具有的性质是()A.四个角都是直角B.对角线相等C.对角线互相垂直D.对角线互相平分5.(3分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.5B.10C.15D.206.(3分)如图,在Rt△ABC中,∠C=90°,∠B=35°,现将Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°7.(3分)如图,在菱形ABCD中,AB=5,AC=8,则菱形的高为()A.B.C.12D.248.(3分)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD是平行四边形.其依据是()A.一组对边平行且相等的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.一组对边平行,另一组对边相等的四边形是平行四边形9.(3分)如图,四边形ABCD中,AB与CD不平行,M,N分别是AD、BC的中点,AB =6,CD=3,则MN的长可能是()A.4B.6C.8D.1010.(3分)如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD2的最大值是()A.25B.C.36D.二、填空题(本大题共8小题,每空3分,共24分)11.(3分)无锡市有42000名学生参加中考,为了解这些考生的数学考试成绩,从中抽取了1600名考生的成绩进行统计分析,则样本容量是.12.(3分)排队时,小亮和2位同学站成一横排,其中小亮“站在中间”的可能性小亮“站在两边”的可能性(填“大于”、“小于”或“等于”).13.(3分)一次数学测试后,某班40名学生的成绩被分成5组,第1﹣4组的频数分别为12、10、6、8,则第5组的频数是.14.(3分)已知平行四边形ABCD中,∠C=2∠B,则∠A=度.15.(3分)菱形的两条对角线长分别为6和8,则这个菱形的周长为.16.(3分)如图,在平行四边形ABCD中,对角线AC与BD交于点O,若S△AOB=4,则平行四边形ABCD的面积=.17.(3分)如图,在长方形ABCD中,AB=6,AD=10,将△AED沿AE翻折,使得点D 落在BC边上D'处,则折痕AE的长是.18.(3分)如图,矩形ABCD中,AB=16,BC=12,E为BC边的中点,点F在边AB上,∠EDF=45°,则AF的长为.三、解答题(本大题共8小题,共66分.解答需写出必要的文字说明或演算步骤)19.(6分)已知:如图,在▱ABCD中,点E、F分别在BC、AD上,且BE=DF 求证:AC、EF互相平分.20.(6分)在一个不透明的盒子里装有黑、白两种颜色的球共30只,这些球除颜色外其余完全相同.搅匀后,小明做摸球试验,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据.摸球的次10020030050080010003000数n521381783024815991803摸到白球的次数m0.520.690.5930.6040.600.5990.601摸到白球的频率(1)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(精确到0.1);(2)盒子里白色的球有只;(3)若将m个完全一样的白球放入这个盒子里并摇匀,随机摸出1个球是白球的概率是0.8,求m的值.21.(8分)国家航天局消息北京时间2021年5月15日,我国首次火星着陆任务宣告成功,某中学科技兴趣小组为了解本校学生对航天科技的关注程度,在该校内进行了随机调查统计,将调查结果分为不关注、关注、比较关注、非常关注四类,回收、整理好全部调查问卷后,得到下列不完整的统计图:(1)此次调查中接受调查的人数为人;(2)补全图1条形统计图;(3)扇形统计图中,“关注”对应扇形的圆心角为;(4)该校共有900人,根据调查结果估计该校“关注”,“比较关注”及“非常关注”航天科技的人数共多少人?22.(8分)如图,▱ABCD的对角线相交于点O,过点D作DE∥AC,且DE=OC,连接CE、OE,OE=CD.求证:▱ABCD是菱形.23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B (5,1)、C(4,4).(1)请画出将△ABC向左平移5个单位后得到的△A1B1C1;(2)请画出将△ABC绕原点O逆时针旋转90°后得到的△A2B2C2,请写出下列各顶点的坐标:A2,B2,C2;(3)△A1B1C1与△A2B2C2重合部分的面积为(直接写出).24.(10分)如图,AC=BC,D是AB的中点,CE∥AB,CE=AB.(1)求证:四边形CDBE是矩形.(2)若AC=5,CD=3,F是BC上一点,且DF⊥BC,求DF长.25.(8分)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.26.(10分)数学课上,李老师给出这么一道数学问题:如图①,正方形ABCD中,点E是对角线AC上任意一点,过点E作EF⊥AC,垂足为E,交BC所在直线于点F.探索AF 与DE之间的数量关系,并说明理由.小明在解决这一问题之前,先进行特殊思考:如图②,当E是对角线AC的中点时,他发现AF与DE之间的数量关系是.若点E在其它位置时,这个结论是否都成立呢?小明继续探究,他用“平移法”将AF沿AD方向平移得到DG,将原来分散的两条线段集中到同一个三角形中,如图③,这样就可以将问题转化为探究DG与DE之间的数量关系.(1)请你按照小明的思路,完成解题过程;(2)你能用与小明不同的方法来解决李老师给出的“数学问题”吗?请写出解题过程.。
苏科版初二数学期中考试模拟试卷 姓名一.选择题(本大题共8小题,每题3分,共24分) 1.4的算术平方根是 ()A .2B .±2C .4D .±42.下列结论错误的是 ()A .等腰三角形的底角必为锐角B .等腰直角三角形底边上的高等于底边的一半C .任何直角三角形都不是轴对称图形D .线段有两条对称轴3.已知等腰三角形的周长为15 cm ,其中一边长为7 cm ,则该等腰三角形的底边长为( )A.3 cm 或5 cmB.1 cm 或7 cmC.3 cmD.5 cm4.如图,∠MON 内有一点P ,P 点关于OM 的轴对称点是G ,P 点关于ON 的轴对称点是H , GH 分别交OM 、ON 于A 、B 点,若 ∠MON = 350,则 ∠GOH = ()A . 600B . 700C . 800D . 9005.在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若BD=1,则AC 的长是 ()A . 4B.C.D. 36.如图,在Rt △ABC 中,∠C=90°,斜边AB 的垂直平分线DE 交AB 于点D ,交BC 于点E ,且 AE 平分∠BAC ,下列关系式不成立的是 ()A .AC=2ECB .∠B=∠CAEC .∠DEA=∠CEAD . BC=3CE7. 在等腰△ABC 中,AB=AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为 ()A .7B .11C .7或10D .7或118.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ; ②∠BCE+∠BCD=180°; ③AD=AE=EC ;④BA+BC=2BF .其中正确的是 ()A .①②③B .①③④图4图图图6图图B图8图图EBC .①②④D .①②③④二.填空题(本大题共10小题,每题3分,共30分)9.如图,把△ABC 绕点C 顺时针旋转430,得到△A’B’C’,A’B’交AC 于点D ,若∠A’DC=900,则∠A =;10.如图,矩形ABCD 中,AB =12cm ,BC =24cm ,如果将该矩形沿对角线BD 折叠,那么图中阴影部分的面积cm 2 .11.等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为cm ;12.已知△ABC 的三边长a 、b 、c ,则△ABC 一定是(210c -+=13.如图,在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21, 1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S 1+2S 2+2S 3+S 4=;14.已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=BC ,则△ABC 底角的度数为1215.用一块等边三角形的硬纸片(如图a )做一个底面为等边三角形且高相等的无盖的盒子(边缝忽略不计,如图b ),在△ABC 的每个顶点处各需剪掉一个四边形,其中四边形AMDN 中,∠ MDN 的度数为.16.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若 PE=2,则两平行线AD 与BC 间的距离为___________.17.如图,△ABC 中,AB=AC ,∠BAC=54°,∠BAC的平分线与AB 的垂直平分线交于点O ,将 ∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为_______. 18. 如图,在等腰三角形ACB 中, AC=BC=5 , AB=8 ,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC , DF ⊥BC ,垂足分别为E 、F ,,则DE+DF=.图9图图B 图10图图第13题图16题图DB第15题图图b图aCB17题图B18题图三.解答题(本大题共10小题,19---22题每题8分,23---26题每题10分,27---28题每题12分)19. 计算(1)、(2)、29160x -=()1112π-⎛⎫-++⎪⎝⎭20.如图,BE ⊥AC 、CF ⊥AB 于点E 、F ,BE 与CF 交于点D ,DE =DF ,连结AD 。
求证:(1)∠FAD =∠EAD(2)BD =CD21 已知:如图,锐角△ABC 的两条高BD 、CE 相交于点O ,且OB =OC.(1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.22.如图,△ABC 中,AB = AC ,DE 是AB 的垂直平分线,D 为垂足,交AC 于E 。
(1) 若∠A = 42°,求∠EBC 的度数。
(2) 若AB = 10cm ,△ABC 的周长为27cm ,求△BCE 的周长23如图,在△ABC 中,CF⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,(1)若EF =4,BC =10,求△EFM 的周长;(2)若∠ABC =50°,∠ACB =60°,求△EFM 的三内角的度数.24.已知等腰△ABC 的腰长为5,一边上的高为3,试求△ABC 的底边长25如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东450 方向上. (1)求出A ,B 两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺 规在图中作出点P 的位置(保留清晰的作图痕迹,并简要写明作法).CBC26.如图,△ACD △和△BCE △都是等腰直角三角形,∠ACD=∠BCE=90° ,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H 。
试猜测线段AE 和BD 的数量和位置关系,并说明理由.27. 如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒.(1)若点Q 的运动速度与点P 的运动速度相等,经过2秒后,△BPE 与△CQP 是否全等?说明理由(2)若点Q 的运动速度与点P 的运动速度不相等,则当t 为何值时,能够使△BPE 与△CQP 全等;此时点Q 的运动速度为多少?28.如图,将矩形纸片ABCD 按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC 折叠,使点B 落在EF 上的点B ’处(如图②);展平,得折痕GC(如图③);沿GH 折叠,使点C 落在DH 上的点C ’处(如图④);沿GC ’折叠(如图⑤);展平,得折痕GC ’、GH(如图⑥).(1)判断图②中BB ’连线与GC 的关系,说明理由;(2)求图②中∠BCB ’的大小;(3)图⑥中的△GCC ’是正三角形吗?请说明理由.(在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半)苏科版初二数学期中考试模拟试卷答题纸姓名学号一、选择题题号12345678答案二、填空题9.10 11121314 15161718三.解答题(本大题共10小题,19---22题每题8分,23---26题每题10分,27---28题每题12分)19. 计算(1)、(2)、29160x -=()1112π-⎛⎫-++⎪⎝⎭20.如图,BE ⊥AC 、CF ⊥AB 于点E 、F ,BE 与CF 交于点D ,DE =DF ,连结AD 。
求证:(1)∠FAD =∠EAD(2)BD =CD21 已知:如图,锐角△ABC 的两条高BD 、CE 相交于点O ,且OB =OC.(1)求证:△ABC是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.CC22.如图,△ABC 中,AB = AC ,DE 是AB 的垂直平分线,D 为垂足,交AC 于E 。
(1) 若∠A = 42°,求∠EBC 的度数。
(2) 若AB = 10cm ,△ABC 的周长为27cm ,求△BCE 的周长23如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,(1)若EF =4,BC =10,求△EFM 的周长;(2)若∠ABC =50°,∠ACB =60°,求△EFM 的三内角的度数.24.已知等腰△ABC 的腰长为5,一边上的高为3,试求△ABC 的底边长25如图,A ,B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东450 方向上. (1)求出A ,B 两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺 规在图中作出点P 的位置(保留清晰的作图痕迹,并简要写明作法).CABC26.如图,△ACD△和△BCE△都是等腰直角三角形,∠ACD=∠BCE=90° ,AE交CD于点F,BD分别交CE、AE于点G、H。
试猜测线段AE和BD的数量和位置关系,并说明理由.27. 如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?说明理由(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少?28.如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B’处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C’处(如图④);沿GC’折叠(如图⑤);展平,得折痕GC’、GH(如图⑥).(1)判断图②中BB’连线与GC的关系,说明理由;(2)求图②中∠BCB’的大小;(3)图⑥中的△GCC’是正三角形吗?请说明理由.(在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半)。