2018年中考数学复习难题突破专题四:特殊三角形存在性问题
- 格式:doc
- 大小:1.67 MB
- 文档页数:14
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3B.﹣3C.32D.﹣322.对于不为零的两个实数m,n,我们定义:m⊗n=()()m n m nnm nm-⎧⎪⎨-<⎪⎩…,那么函数y=x⊗3的图象大致是()A.B .C.D .3.在△ABC中,点D是AB上一点,△ADC与△BDC都是等腰三角形且底边分别为AC,BC,则∠ACB的度数为( )A.60°B.72°C.90°D.120°4.二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的x与y的部分对应值如下表:有下列结论:①a>0;②4a﹣2b+1>0;③x=﹣3是关于x的一元二次方程ax2+(b﹣1)x+c=0的一个根;④当﹣3≤x≤n时,ax2+(b﹣1)x+c≥0.其中正确结论的个数为( )A.4 B.3 C.2 D.15.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A.x y 4.51x y12-=⎧⎪⎨-=⎪⎩B.x y 4.51y x12-=⎧⎪⎨-=⎪⎩C.x y 4.51y x12+=⎧⎪⎨-=⎪⎩D.x y 4.51x y12-=⎧⎪⎨-=⎪⎩6.已知点(﹣2,y1),(﹣3,y2),(2,y3)在函数y=﹣8x的图象上,则()A.y2>y1>y3B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.如图,在圆O中,点A、B、C在圆上,∠OAB=50°,则∠C的度数为()A.30°B.40°C.50°D.60°8.如图,在Rt△ABC中,∠C=90°,AB=10,AC=6,D、E、F分别是△ABC三边的中点,则△DEF的周长为()A.24 B.16 C.14 D.129.一个不透明的袋子中装有4个标号为1,2,3,4的小球,它们除标号外其余均相同,先从袋子中随机摸出一个小球记下标号后放回搅匀,再从袋子中随机摸出一个小球记下标号;把第一次摸出的小球标号作为十位数字,第二次摸出的小球标号作为个位数字,则所组成的数是3的倍数的概率是()A.14B.13C.512D.51610.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A .B .C .D .11的正方形ABCD 中,点E 是边AD 上的一点,连结BE ,将△ABE 绕着点B 顺时针旋转一定的角度,使得点A 落在线段BE 上,记为点F ,此时点E 恰好落在边CD 上记为点G ,则AE 的长为( )A B CD .112.如图,将直线y=x 向下平移b 个单位长度后得到直线l ,l 与反比例函数2y x=(x >0)的图像相交于点A ,与x 轴相交于点B ,则22OA OB -的值是( )A .4B .3C .2D .1二、填空题13.如图,以半圆中的一条弦BC (非直径)为对称轴将弧BC 折叠后与直径AB 交于点D ,若AD BD =23,且AB =10,则CB 的长为_____.14.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB >BC ,M 是弧ABC 的中点,MF ⊥AB 于F ,则AF =FB+BC .如图2,△ABC 中,∠ABC =60°,AB =8,BC =6,D 是AB 上一点,BD =1,作DE ⊥AB 交△ABC 的外接圆于E ,连接EA ,则∠EAC =_____°.15.正六边形的外接圆的半径与内切圆的半径之比为_____.16.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.17.如图,在直角三角形纸片ABC中,∠ACB=90°,AC=2,BC=4,点D在边AB上,以CD为折痕将△CBD折叠得到△CPD,CP与边AB交于点E,若△DEP为直角三角形,则BD的长是_____18.如图,在矩形ABCD中,AD=2AB=2,E是BC边上的一个动点,连接AE,过点D作DF⊥AE于F,连接CF,当△CDF为等腰三角形时,则BE的长是____.三、解答题19.如图,O是菱形ABCD对角线BD上的一点,且OC=OD,连接OA.(1)求证:∠AOC=2∠ABC;(2)求证:CD2=OD·BD.20.如图,⊙O是△ABC的外接圆,直线l与⊙O相切于点E,且l∥BC.(1)求证:AE平分∠BAC;(2)作∠ABC的平分线BF交AE于点F,求证:BE=EF.21.计算:|﹣﹣(2019﹣π)022.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上,P为BC与网格线的交点,连接AP.(Ⅰ)BC的长等于________;(Ⅱ)Q为边BC上一点,请在如图所示的网格中,用无刻度...的直尺,画出线段AQ,使45 PAQ∠=︒,并简要说明点Q的位置是如何找到的(不要求证明)_______.23.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,动点D从点A出发,沿线段AC以每秒1个单位的速度向终点C运动,动点E同时从点B出发,以每秒2个单位的速度沿射线BC方向运动,当点D停止时,点E也随之停止,连结DE,当C.D.E三点不在同一直线上时,以ED、EC我邻边作▱ECFD,设点D运动的时间为t(秒).(1)用含t的代数式表示CE的长度。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.如图,矩形ABCD,AD=1,CD=2,点P为边CD上的动点(P不与C重合),作点P关于BC的对称点Q,连结AP,BP和BQ,现有两个结论:①若DP≥1,当△APB为等腰三角形时,△APB和△PBQ一定相似;②记经过P,Q,A三点的圆面积为S,则4π≤S<254.下列说法正确的是()A.①对②对B.①对②错C.①错②对D.①错②错2.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④3.小明用尺规作了如下四幅图形:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,从保留的作图痕迹看出作图正确的是()A.①②④B.②③C.①③④D.①②③④4.下列四个图案中,不是中心对称图案的是()A. B. C. D.5.如图,已知一次函数的图像与轴分别交于点,与反比例函数的图像交于点,且,则的值为()A. B. C. D.6.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A.主视图是中心对称图形B.左视图是中心对称图形C.俯视图既是中心对称图形又是轴对称图形D.主视图既是中心对称图形又是轴对称图形7.有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,下列四个结论中,错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.b=0时,方程M和方程N有一个相同的根,那么这个根必是x=1C.如果5是方程M的一个根,那么15是方程N的一个根D.ac≠08.如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A′处,若AO=OB=2,则阴影部分面积为()A.πB.23π﹣1 C.43π+1 D.43π9.下列命题中哪一个是假命题()A.8的立方根是2B.在函数y=3x的图象中,y随x增大而增大C.菱形的对角线相等且平分D.在同圆中,相等的圆心角所对的弧相等10.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A .12B .2C D .11.如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有( ) A .1B .2C .3D .412.如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F 、H 在对角线BD 上,若四边形EFGH 是正方形,则AE 的长是( )A .5B .11924C .13024D .16924二、填空题13.如图,在ABC △中,,点D 在BC 上,且BD BA =,ABC ∠的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和△BDE 的面积都为3,则△ABC 的面积为____.14.如图,将矩形OABC 置于一平面直角坐标系中,顶点A ,C 分别位于x 轴,y 轴的正半轴上,点B 的坐标为(5,6),双曲线y =kx(k≠0)在第一象限中的图象经过BC 的中点D ,与AB 交于点E ,P 为y 轴正半轴上一动点,把△OAP 沿直线AP 翻折,使点O 落在点F 处,连接FE ,若FE ∥x 轴,则点P 的坐标为___.15.如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为_____.16.计算:1-+=________.12-17.某校抽查50名九年级学生对艾滋病三种主要传授途径的知晓情况,结果如表估计该校九年级600名学生中,三种传播途径都知道的有_____人.18_____.三、解答题19.如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.(1)求∠AOC的度数;(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.20.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF(1)如图1,求证:AE=CF;(2)如图2,若A,E,O三点共线,求点F到直线BC的距离.21.计算:0)﹣122.如图,在平面直角坐标系中,二次函数y=﹣14x2+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点C的坐标为(4,0).点P(m,n)为该二次函数在第二象限内图象上的动点,点D的坐标为(0,4),连接BD.(1)求该二次函数的表达式及点B的坐标;(2)连接OP,过点P作PQ⊥x轴于点Q,当以O、P、Q为顶点的三角形与△OBD相似时,求m的值;(3)连接BP,以BD、BP为邻边作▱BDEP,直线PE交x轴于点T.当点E落在该二次函数图象上时,求点E的坐标.23.如图,在平面直角坐标系中,已知△AOB,A(0,﹣3),B(﹣2,0).将△OAB先绕点B 逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.24.如图,△ABC内接于⊙O,AB是⊙O的直径,弦CD与AB交于点E,连接AD,过点A作直线MN,使∠MAC=∠ADC.(1)求证:直线MN是⊙O的切线.(2)若sin∠ADC=12,AB=8,AE=3,求DE的长.25.在一次数学考试中,小明有一道选择题(只能在四个选项A、B、C、D中选一个)不会做,便随机选了一个答案;小亮有两道选择题都不会做,他也随机选了两个答案.(1)小明随机选的这个答案,答对的概率是;(2)通过画树状图或列表法求小亮两题都答对概率是多少?(3)这个班数学老师参加集体阅卷,在阅卷的过程中,发现学生的错误率较高.他想:若这10道选择题都是靠随机选择答案,则这10道选择题全对的概率是.【参考答案】***一、选择题二、填空题13.1014.(0,53)或(0,15).15.10 316.1 2 -17.300 18.1 三、解答题19.(1)∠AOC=60°;(2)PO=8;(3)点M经过的弧长为43π或83π或163π或203π.【解析】【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,∴∠AOC=60°(2)由CP与⊙O相切,OC是半径.得CP⊥OC,∴∠P=90°−∠AOC=30°,∴PO=2 CO=8 (3)如图,当S△MAO=S△CAO时,动点M的位置有四种.①作点C关于直径AB的对称点M1,连接AM1,OM1.②过点M1作M1M2∥AB交⊙O于点M2,连接AM2,OM2,③过点C作CM3∥AB交⊙O于点M3,连接AM3,OM3,④当点M运动到C时,M与C重合,求得每种情况的OM转过的度数,再根据弧长公式求得弧AM的长.【详解】(1)∵在△ACO中,∠OAC=60°,OC=OA∴△ACO是等边三角形∴∠AOC=60°.(2)∵CP与⊙O相切,OC是半径.∴CP⊥OC,又∵∠OAC=∠AOC=60°,∴∠P=90°﹣∠AOC=30°,∴在Rt△POC中,CO=12PO=4,则PO=2CO=8;(3)如图,①作点C关于直径AB的对称点M1.易得S△M1AO=S△CAO,∠AOM1=60°∴144603 180AMππ︒︒=⨯=∴当点M运动到M1时,S△MAO=S△CAO,此时点M经过的弧长为43π.②过点M1作M1M2∥AB交⊙O于点M2,易得S△M2AO=S△CAO.∴∠AOM1=∠M1OM2=∠BOM2=60°∴2481203 180AMππ︒︒=⨯=∴当点M运动到M2时,S△MAO=S△CAO,此时点M经过的弧长为83π.③过点C作CM3∥AB交⊙O于点M3,易得S△M3AO=S△CAO ∴∠BOM3=60°,234162403 180AM Mππ︒︒=⨯=,∴当点M运动到M3时,S△MAO=S△CAO,此时点M经过的弧长为163π.④当点M运动到C时,M与C重合,S△MAO=S△CAO,此时点M经过的弧长为4203003180ππ︒︒⨯=.【点睛】本题利用了等边三角形的判定和性质,切线的性质,弧长公式,同底等高的三角形的面积相等的性质求解.20.(1)详见解析;(2)点F到直线BC的距离为5.【解析】【分析】(1)由旋转的性质可得∠EDF=90°,DE=DF,由正方形的性质可得∠ADC=90°,DE=DF,可得∠ADE=∠CDF,由“SAS”可证△ADE≌△CDF,可得AE=CF;(2)由勾股定理可求AO的长,可得AE=CF=3,通过证明△ABO∽△CPF,可得CF PFAO BO=,即可求PF的长,即可求点F到直线BC的距离.【详解】证明:(1)∵将线段DE绕点D逆时针旋转90°得DF,∴∠EDF=90°,DE=DF.∵四边形ABCD是正方形,∴∠ADC=90°,DE=DF,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE =2, ∴AE =AO ﹣OE =3. ∵△ADE ≌△CDF ,∴AE =CF =3,∠DAO =∠DCF ,∴∠BAO =∠FCP ,且∠ABO =∠FPC =90°, ∴△ABO ∽△CPF , ∴CF PFAO BO=, ∴35=∴PF ,∴点F 到直线BC . 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO ∽△CPF 是本题的关键.21【解析】 【分析】将原式中每一项分别化为11+再进行化简. 【详解】解:原式=11+= 【点睛】本题考查实数的运算;熟练掌握运算性质,绝对值的意义,负整数指数幂,零指数幂是解题的关键.22.(1)2184y x x =--+ ,(﹣8,0);(2)﹣4或﹣1;(3)(1,274). 【解析】 【分析】(1)直接将A ,C 两点代入即可求 (2)可设P (m ,-14m 2-m+8),由∠OQP=∠BOD=90°,则分两种情况:△POQ ∽△OBD 和△POQ ∽△OBD 分别求出PQ 与OQ 的关系即可(3)作平行四边形,实质是将B 、P 向右平移8个单位,再向上平移4个单位即可得到点E 和点D ,点E 在二次函数上,代入即可求m 的值,从而求得点E 的坐标. 【详解】(1)把A (0,8),C (4,0)代入y =﹣14x 2+bx+c 得8440c b c =⎧⎨-++=⎩,解得18b c =-⎧⎨=⎩ ∴该二次函数的表达为y =﹣14x 2﹣x+8 当y =0时,﹣14x 2﹣x+8=0,解得x 1=﹣8,x 2=4 ∴点B 的坐标为(﹣8,0) (2)设P (m ,﹣14m 2﹣m+8),由∠OQP =∠BOD =90°,分两种情况: 当△POQ ∽△OBD 时,PQ BO 82OQ OD 4=== ∴PQ =2OQ 即﹣14m 2﹣m+8=2×(﹣m ),解得m =﹣4,或m =8(舍去) 当△POQ ∽△OBD 时,OQ B 82PQ D 4O O === ∴OQ =2PQ即﹣m =2×(﹣14m 2﹣m+8),解m =﹣1或m =﹣综上所述,m 的值为﹣4或﹣1(3)∵四边形BDEP 为平行四边形,∴PE ∥BD ,PE =BD∵点B 向右平移8个单位,再向上平移4个单位得到点D∴点P 向右平移8个单位,再向上平衡4个单位得到点E∵点P (m ,﹣14m 2﹣m+8), ∴点E (m+8,﹣14m 2﹣m+12), ∵点E 落在二次函数的图象上 ∴﹣14(m+8)2﹣(m+8)+8=﹣14m 2﹣m+12 解得,m =﹣7 ∴点E 的坐标为(1,274). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23.(1)详见解析;(2)1394π+ 【解析】【分析】(1)根据旋转的性质,结合网格结构找出点A 、O 的对应点A 1、O 1,再与点B 顺次连接即可得到△BO 1A 1;再根据平移的性质,结合网格结构找出点B 、A 1、O 1的对应点B 1、A 2、O 2,然后顺次连接即可得解;(2)结合图形不难看出,变换过程所扫过的面积为扇形BAA 1,与梯形A 1A 2O 2B 的面积的和,然后根据扇形的面积公式与梯形的面积公式列式进行计算即可求解.【详解】(1)如图所示;(2)在Rt △AOB 中,AB ==∴扇形BAA 1的面积=290133604ππ⋅⨯=, 梯形A 1A 2O 2B 的面积=12×(2+4)×3=9, ∴变换过程所扫过的面积=扇形BAA 1的面积+梯形A 1A 2O 2B 的面积=134π+9. 【点睛】本题考查了利用旋转变换与平移变换作图,以及扇形的面积计算,熟悉网格结构找出对应点的位置是解题的关键.24.(1)见解析;(2)13. 【解析】【分析】(1)由圆周角定理得到∠ACB=90°,求得∠BAM=90°,根据垂直的定义得到AB ⊥MN ,即可得到结论;(2)连接OC ,过E 作EH ⊥OC 于H ,根据三角函数的定义得到∠D=30°,求得∠AOC=60°,解直角三角形得到1,22OH EH ==,根据相交弦定理得到结论. 【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠B+∠BAC =90°,∵∠B =∠D ,∠MAC =∠ADC ,∴∠B =∠MAC ,∴∠MAC+∠CAB =90°,∴∠BAM =90°,∴AB ⊥MN ,∴直线MN 是⊙O 的切线;(2)解:连接OC ,过E 作EH ⊥OC 于H ,∵sin ∠ADC =12, ∴∠D =30°,∴∠B =∠D =30°,∴∠AOC =60°,∵AB =8,∴AO =BO =4,∵AE =3,∴OE =1,BE =5,∵∠EHO =90°,∴1,22OH EH ==, ∴CH =72,CE ∴==∵弦CD 与AB 交于点E ,由相交弦定理得,AE•BE=CE•DE,13AE BE DE CE ⋅∴===. 【点睛】本题考查了切线的判定和性质,解直角三角形,相交弦定理,正确的作出辅助线是解题的关键.25.(1)14;(2)116;(3)1014. 【解析】【分析】(1)错误答有3个,除以答案总数4即可(2)根据题意画出树状图即可知道一共有16种情况,选出两题都错的情况,即可解答(3)由(2)可知两题都对的概率为(14)2,10道选择题全对的概率是10个14的乘积 【详解】(1)∵只有四个选项A 、B 、C 、D ,对的只有一项,∴答对的概率是14 ; 故答案为:14; (2)根据题意画图如下:共有16种等情况数,两题都答对的情况有1种, 则小亮两题都答对概率是116; (3)由(2)得2道题都答对的概率是(14)2,则这10道选择题全对的概率是(14)10=1014. 故答案为:1014. 【点睛】 此题考查概率公式和列表法与树状图法,解题关键在于看懂题中数据2019-2020学年数学中考模拟试卷一、选择题1.如图,⊙O 1与⊙O 2相交于A 、B 两点,经过点A 的直线CD 分别与⊙O 1、⊙O 2交于C 、D ,经过点B 的直线EF 分别与⊙O 1、⊙O 2交于E 、F ,且EF ∥O 1O 2.下列结论:①CE ∥DF ;②∠D =∠F ;③EF =2O 1O 2.必定成立的有( )A .0个B .1个C .2个D .3个2.若关于x 的方程3x 2﹣2x+m =0的一个根是﹣1,则m 的值为( )A .﹣5B .﹣1C .1D .53.如图是洛阳市某周内日最高气温的折线统计图,关于这7天的日最高气温说法正确的是()A.众数是28B.中位数是24C.平均数是26D.方差是84.方程的两个根为( )A.,B.,C.,D.,5.将直角三角形纸片按如图方式折叠,不可能折出( )A.直角B.中位线C.菱形D.矩形6.下列计算正确的是( ) A.221a a -=- B.()()2220m m m m +-=≠C.1155155⨯⨯⎛⎫-+-= ⎪⎝⎭ 2-7.下列运算正确的是( )A.235a a a +=B.248•a a a =C.()3263a b a b =D.22a a a ÷=8.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A ,C 之间的距离为12cm ,点B ,D 之间的距离为16m ,则线段AB 的长为( )A.9.6cmB.10cmC.20cmD.12cm9.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )A .B .C .D .10.如图,直线y =kx 和y =ax+4交于A (1,k ),则不等式kx ﹣6<ax+4<kx 的解集为( )A .1<x <52B .1<x <3C .﹣52<x <1D .52<x <3 11.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A.πB.32πC.6﹣π π12.已知关于x 的方程x 2+mx+1=0根的判别式的值为5,则m =( )A .±3B .3C .1D .±1 二、填空题13.如图,梯形ABCD 中,AB CD ∥,BE AD ∥,且BE 交CD 于点E ,AEB C ∠=∠.如果3AB =,8CD =,那么AD 的长是_____.14.不等式组211112xx-⎧⎪⎨-<⎪⎩…的整数解的个数为_____.15.已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是_____.16.如图,在Rt△ABC中,AC=BC,AB=10,以AB为斜边向上作Rt△ABD,使∠ADB=90°.连接CD,若CD=,则AD=_____.17.A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为__.18.计算:的结果是_____.三、解答题19.用同样图案的正方形地砖(图1),可以铺成如图2的正方形和正八边形镶嵌效果的地面图案(地砖与地砖拼接线忽略不计).已知正方形地砖的边长为a,效果图中的正八边形的边长为20cm.(1)求a的值;(2)我们还可以在正方形地砖上画出与图1不同的图案,使它能拼出符合条件的图2镶嵌效果图,请你按这个要求,在图3中画出2种与图1不同的地砖图案,并且所画的图形既是轴对称图形,又是中心对称图形.20.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?21.化简求值21211m mm m--⎛⎫+÷⎪⎝⎭,其中m=222.解方程组或不等式组:(1)2035x yx y-=⎧⎨+=⎩(2)330-6-2xx x+≥⎧⎨≤⎩23.先化简再求值:22211221x x x xx x x++--÷++-,其中x=()011260-20162π--︒++-24.解不等式组21122x xx->⎧⎪⎨⎪⎩…;并把其解集表示在数轴上.25.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,(1)作出△APC的PC边上的高;(2)若∠2=51°,求∠3;(3)若直尺上点P处刻度为2,点C处为8,点M处为3,点N处为7,求S△BMN:S△BPC的值.【参考答案】***一、选择题二、填空题1314.315.a=1.16.6或817.5%.18.1三、解答题19.(1)20;(2)见解析.【解析】【分析】(1)根据正方形和正八边形的性质及勾股定理作答;(2)根据平面图形镶嵌的条件及轴对称图形,中心对称图形的定义作答.【详解】解:(1)2022020a=+=,(2)【点睛】本题难度较大,结合轴对称图形,中心对称图形考查了平面图形镶嵌的图案,同时考查了正方形和正八边形的性质及勾股定理.20.(1)16,43;(2) 78;(3)283或60分钟【解析】【分析】(1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.【详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43, 即乙的速度为43米/分钟. 故答案为:16;43; (2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米) 相遇后乙到达A 站还需1416263⎛⎫⨯÷= ⎪⎝⎭(分钟), 相遇后甲到达B 站还需411036⎛⎫⨯÷ ⎪⎝⎭=80分钟, 当乙到达终点A 时,甲还需80-2=78分钟到达终点B .故答案为:78;(3)110606÷=(分钟), 设甲出发了x 分钟后,甲、乙之间的距离为10千米时, 根据题意得,16x+43(x-6)=16-10, 解得x=283, 答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时. 【点睛】本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.21.13【解析】【分析】括号内先通分进行分式的加法运算,然后再进行分式的除法运算,最后把数值代入进行计算即可.【详解】21211m m m m --⎛⎫+÷ ⎪⎝⎭=()()1112m m m m mm m +--⎛⎫+÷ ⎪⎝⎭ =()()111m m m m m -+- =11m +,。
题型特点三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、等腰三角形、全等三角形及相似三角形的存在性.常结合动点、函数与几何,考查分类讨论、画图及建等式计算.解题思路①由判定定理确定三角形所满足的特殊关系;②分类讨论,画图;③建等式,对结果验证取舍.对于目标三角形不确定、点的位置难以寻找等存在性问题的思考方向为:①从角度入手,通过角的对应关系尝试画出一种情形.②解决第一种情形.能根据几何特征表达线段长的,借助对应边成比例、或线段长转坐标代入函数表达式求解;不能直接表达线段长的,观察点的位置,考虑联立函数表达式求解.③分类讨论,类比解决其他情形.分类时,先考虑点的位置,再考虑对应关系,用同样方法解决问题.难点拆解①直角三角形关键是用好直角,可考虑:勾股定理逆定理、弦图模型、直线k值乘积为 1;②等腰三角形可考虑直接表达线段长,利用两腰相等建等式,或借助三线合一找相似建等式;③全等三角形或相似三角形关键是研究目标三角形的边角关系,进而表达线段长,借助函数或几何特征建等式.④分类不仅要考虑图形存在性的分类,也要考虑点运动的分类.1.(2012云南改编)如图,在平面直角坐标系中,抛物线错误!未找到引用源。
的图象经过点(2,4),且与直线错误!未找到引用源。
交于A,B两点.(1)求抛物线的函数解析式.(2)过点A作AC⊥AB交x轴于点C,求点C的坐标.(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.2.(2009广西钦州)如图,已知抛物线错误!未找到引用源。
与坐标轴交于A,B,C三点,A点的坐标为(﹣1,0),过点C的直线错误!未找到引用源。
与x 轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.(1)点C的坐标是____________,b=_______,c=______.(2)求线段QH的长(用含t的式子表示).(3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ 相似?若存在,求出所有t的值;若不存在,说明理由.3.(2012海南)如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M,N关于点P对称,连接AN,ON.(1)求该二次函数的关系式.(2)若点A的坐标是(6,﹣3),求△ANO的面积.(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下列问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.4.(2011湖北天门)在平面直角坐标系中,抛物线错误!未找到引用源。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.不等式组211(2)13x x x -≤⎧⎪⎨-+⎪⎩的所有整数解的和为( ) A .0 B .1 C .3 D .22.已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积是( )A.24cm 2B.24πcm 2C.48cm 2D.48πcm 23.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是红球的概率是( )A. B. C. D.4.已知一元二次方程22410x x +-=的两个根为1x ,2x ,且12x x <,下列结论正确的是( )A .122x x +=B .121x x =-C .12x x <D .211122x x += 5.在一个不透明的口袋中装有2个绿球和若干个红球,这些球除颜色外无其它差别,从这个口袋中随机摸出一个球,摸到绿球的概率为14,则红球的个数是( ) A.2 B.4 C.6 D.86.如图,在ABCD 中,E 为边CD 上一点,将ADE 沿AE 折叠至AD'E △处,'AD 与CE 交于点F ,若52B ∠=︒,20DAE ∠=︒,则'FED ∠的大小为( )A .20°B .30°C .36°D .40°7.据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( )A .1.05×105B .0.105×10–4C .1.05×10–5D .105×10–78.下列计算正确的是( )A .23a a a ⋅=B .(a 3)2=a 5C .23a a a +=D .623a a a ÷=9.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定( )A .与x 轴相切,与y 轴相切B .与x 轴相切,与y 轴相离C .与x 轴相离,与y 轴相切D .与x 轴相离,与y 轴相离 10.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是( )A. B. C. D.11.如图,在同一平面内,将△ABC绕点A逆时针旋转50°到△AB′C′的位置,使得C′C∥AB,则∠CAB 等于()A.50°B.60°C.65°D.70°12.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=52二、填空题13.如果一个多边形的内角和是1080°,则这个多边形是________边形.14.如图,点M(2,m)是函数y与y=kx的图象在第一象限内的交点,则k的值为_____.15.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连接AD1,BC1.若∠ACB=30°,AB=1,CC1=x,则下列结论:①△A1AD1≌△CC1B;②当x=1时,四边形ABC1D1是菱形;③当x=2时,△BDD1为等边三角形.其中正确的是______(填序号).16.计算(-3x 2y)•(13xy 2)=_____________. 17.在数轴上,实数2﹣对应的点在原点的_____侧.(填“左”、“右”)18.21322--⨯=______.三、解答题19.已知两个函数:y 1=ax+4,y 2=a (x ﹣12)(x ﹣4)(a≠0). (1)求证:y 1的图象经过点M (0,4);(2)当a >0,﹣2≤x≤2时,若y =y 2﹣y 1的最大值为4,求a 的值;(3)当a >0,x <2时,比较函数值y 1与y 2的大小.20.甲市居民生活用水收费按阶梯式水价计量:20立方米及以下,按基本水价计收,20﹣30立方米(包括30立方米)的部分,按基本水价的1.5倍计收,30立方米以上的部分,按基本水价的2倍计收.从2018年7月1日起,该市居民生活用水基本水价将进行调整,收费方式仍按原来阶梯式水价计量.小明读到有关新闻后立刻对他家两个月的水费进行计算,得到下表:请根据以上信息,回答以下问题:(1)求本次基本水价调整提幅的百分率?(保留3个有效数字)(2)小明家07年7月的水费是128.25元,该月用水量若按调整后水价计费需缴多少元?(3)小明又上网查了有关资料发现:甲市取水点分散,引水管线合计350千米,而同类城市乙市只有一座水库供水,引水管线合计70千米.若两市每年每千米引水管线的运行成本都为150万元,乙市的现行基本水价为2.35元,甲市共有200万户家庭,乙市共有180万户家庭.若甲乙两市都按平均每户每月用水量为11.21立方米计算,请你确定出甲市的基本水价至少调整为多少时甲市自来水公司的年收入(全市居民总水费﹣引水管线运行成本)不低于乙市?(保留3个有效数字)21.如图,正方形ABCD 中,AB =O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE ,CF(1)如图1,求证:AE=CF;(2)如图2,若A,E,O三点共线,求点F到直线BC的距离.22.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.23.某幼儿园购买了A,B两种型号的玩具,A型玩具的单价比B型玩具的单价少9元,已知该幼儿园用了3120元购买A型玩具的件数与用4200元购买B型玩具的件数相等.(1)该幼儿园购买的A,B型玩具的单价各是多少元?(2)若A,B两种型号的玩具共购买200件,且A型玩具数量不多于B型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?24.如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)25.如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,点Q为CA延长线上一点,延长QD交BC于点P,连接OD,∠ADQ=12∠DOQ.(1)求证:PD是⊙O的切线;(2)若AQ=AC,AD=2时,求BP的长.【参考答案】***一、选择题二、填空题13.八14.15.①②③16.33x y -17.左18.5三、解答题 19.(1)证明见解析;(2)817a =;(3)见解析. 【解析】【分析】(1)只需要把M 的坐标带入到1y 即可 (2)把1y ,2y 代入到等式化简取y 最大值时,即可解答 (3)由(2)可知当a >0,x <2时,随x 的增大而减小,然后再根二次函数的增减性可解此题【详解】解:(1)证明:当x =0时,y 1=0+4=4,∴点M (0,4)在y 1的图象上,即y 1的图象经过点M (0,4);(2)∵y 1=ax+4,y 2=a (x ﹣12 )(x ﹣4)(a≠0). ∴y =y 2﹣y 1=a (x ﹣12 )(x ﹣4)﹣(ax+4), 即y =211242ax ax a -+- , ∵a >0,对称轴为x =114>2, ∴当﹣2≤x≤2时,y 随x 的增大而减小,∴当x =﹣2时,y 取最大值为4a+11a+2a ﹣4=17a ﹣4,∵y =y 2﹣y 1的最大值为4,∴17a ﹣4=4,解得,a =817;(3)由(2)知y =y 2﹣y 1=211242ax ax a -+-, 当a >0,x <2时,随x 的增大而减小,当x =2时,y =y 2﹣y 1=4a ﹣11a+2a ﹣4=﹣5﹣4<0,又当y =0时,211242ax ax a -+-=0,即2ax 2﹣11ax+4a ﹣8=0,x =114a a, ∵△=121a 2﹣32a 2+64a =89a 2+64a >0,2 , 根据二次函数的增减性可得,当x >2时,y 2﹣y 1<0,即y 2<y 1;当x 2时,y 2﹣y 1=0,即y 2=y 1;当x 2时,y 2﹣y 1>0,即y 2>y 1. 【点睛】此题主要考察函数解析式的求解及常用方法,需要把已知的点,带入到函数解析式里面进行求解20.(1)15.8%;(2)148.5元;(3)甲市的基本水价至少调整为3.68元/立方米时,甲市自来水公司的年收入不低于乙市.【解析】【分析】(1)基本水价调整提幅的百分率为:(3月份的基本水价−2月份的基本水价)÷2月份的基本水价×100%;(2)应先判断出是否超过基本用水单位,若超过基本用水单位,应先算出用水量,则:新付费为:3.3×20+3.3×10×1.5+(用水数-30)×3.3×2;(3)关系式为:甲市水费收入-运营成本≥乙市水费收入-运营成本.【详解】解:(1)调整前基本水价为:45.6÷16=2.85(元);调整后基本水价为:52.8÷16=3.3(元); ∴本次水价调整提幅为:3.3 2.852.85-×100%≈15.8%; (2)∵2.85×20+2.85×1.5×10=99.75<128.25,∴用水量超过30m 3,设小明家09年7月的用水量为x 立方米.2,85×20+2.85×10×1.5+(x ﹣30)×2.85×2=128.25,解得:x =35,∴新付费为:3.3×20+3.3×10×1.5+(35﹣30)×3.3×2=148.5(元);(3)设基本水价为y元/立方米,则11,21×12×y×200﹣350×150≥11.21×12×2.35×180﹣70×150,解得y≥3.68,答:甲市的基本水价至少调整为3.68元/立方米时,甲市自来水公司的年收入不低于乙市.【点睛】此类题目是一元一次方程和不等式的综合题目,旨在考查学生对一元一次方程和不等式求解的掌握程度,所以掌握解一元一次方程和不等式的一般步骤是解题的关键.21.(1)详见解析;(2)点F到直线BC.【解析】【分析】(1)由旋转的性质可得∠EDF=90°,DE=DF,由正方形的性质可得∠ADC=90°,DE=DF,可得∠ADE =∠CDF,由“SAS”可证△ADE≌△CDF,可得AE=CF;(2)由勾股定理可求AO的长,可得AE=CF=3,通过证明△ABO∽△CPF,可得CF PFAO BO=,即可求PF的长,即可求点F到直线BC的距离.【详解】证明:(1)∵将线段DE绕点D逆时针旋转90°得DF,∴∠EDF=90°,DE=DF.∵四边形ABCD是正方形,∴∠ADC=90°,DE=DF,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE=2,∴AE =AO ﹣OE =3.∵△ADE ≌△CDF ,∴AE =CF =3,∠DAO =∠DCF ,∴∠BAO =∠FCP ,且∠ABO =∠FPC =90°,∴△ABO ∽△CPF , ∴CF PF AO BO=, ∴35=∴PF =5,∴点F 到直线BC . 【点睛】 本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO ∽△CPF 是本题的关键.22 【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】 本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.23.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元.【解析】【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元;(2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题.【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元,312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解,∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元,w =26a+35(200﹣a )=﹣9a+7000,∵a≤3(200﹣a ),∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650,答:购买这些玩具的总费用最少需要5650元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答.24.(1)0<x <35;(2)当x =617时,S 最大=1817. 【解析】【分析】(1)根据2AB +7半径+弧长=6列出代数式即可;(2)设面积为S ,列出关于x 的二次函数求得最大值即可.【详解】解:(1)根据题意得:2AB+7x+πx =2AB+10x =6,整理得:AB =3﹣5x ;根据3﹣5x >0,所以x 的取值范围是:0<x <35; (2)设面积为S ,则S =222317176182(35)62221717x x x x x x ⎛⎫-+=-+=--+ ⎪⎝⎭, 当x =617时,S 最大=1817. 【点睛】本题考查的是二次函数的实际应用等知识,解题的关键是理解题意,学会构建二次函数解决最值问题,会用方程的思想思考问题,属于中考常考题型.25.(1)见解析;(2)BP =.【解析】【分析】(1)连接DC,根据圆周角定理得到∠DCA=12∠DOA,由于∠ADQ=12∠DOQ,得到∠DCA=∠ADQ,根据余角的性质得到∠ADQ+∠ADO=90°,于是得到结论,(2)根据切线的判定定理得到PC是⊙O切线,求得PD=PC,连接OP,得到∠DPO=∠CPO,根据平行线分线段长比例定理得到OP=3,根据三角形的中位线的性质得到AB=6,根据射影定理即可得到结论.【详解】解:(1)连接DC,∵AD AD=,∴∠DCA=12∠DOA,∵∠ADQ=12∠DOQ,∴∠DCA=∠ADQ,∵AC是⊙O的直径,∴∠ADC=90°,∴∠DCA+∠DAC=90°,∵∠ADQ+∠DAC=90°,∠ADO=∠DAO,∴∠ADQ+∠ADO=90°,∴DP是⊙O切线.(2)∵∠C=90°,OC为半径.∴PC是⊙O切线,∴PD=PC,连接OP,∴∠DPO=∠CPO,∴OP⊥CD,∴OP∥AD,∵AQ=AC=2OA,∴QA ADQO OP==23,∵AD=2,∴OP=3,∵OP是△ACB的中位线,∴AB=6,∵CD⊥AB,∠C=90°,∴BC2=BD•BA=24,∴BC=,∴BP.【点睛】本题考查了切线的判定和性质,圆周角定理,平行线分线段长比例定理,三角形的中位线的性质,射影定理,正确的作出辅助线是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,已知平行四边形的对角线交于点.2cm BD =,将AOB 绕其对称中心旋转180︒.则点所转过的路径长为( )km.A .B .C .D .2.已知抛物线y =a (x ﹣3)2+ 过点C (0,4),顶点为M ,与x 轴交于A 、B 两点.如图所示以AB 为直径作圆,记作⊙D ,下列结论:①抛物线的对称轴是直线x =3;②点C 在⊙D 外;③在抛物线上存在一点E ,能使四边形ADEC 为平行四边形;正确的结论是( )A.③B.①C.①③D.①②③3.关于的一元二次方程有两个相等的实数根,那么的值是( )A. B. C. D.4.下列运算正确的是( )A.B. C. D. 5.化简211x x x x -++的结果为( ) A .2xB .1x x -C .1x x +D .1x x - 6.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE的长为( )A B C.D.7.如图,P是抛物线y=﹣x2+x+3在第一象限的点,过点P分别向x轴和y轴引垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A.6 B.7.5 C.8 D.8.如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是()A cm B.C.485cm D.245cm9.如图,小亮从A点出发前进10m,向右转15º,再前进10m,再右转15º,这样一直走下去,他第一次回到出发点A时,一共走了多少米()A.120米B.240米C.360米D.480米10.四川省是全国重要的蔬菜主产区、“南菜北运”和冬春蔬菜优势区,位于成都市彭州濛阳镇的四川省农产品交易中心,日交量超过5000吨,年交易额超过150亿元,是省内设施最先进,交易量最大的蔬菜专业批发市场,也是全国第二大蔬菜产地交易中心。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.下列各式中,不相等的是 ( ) A.32-和 3-2 B.()23-和 23 C.()32-和 32- D.()23-和 23- 2.钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB 的坡度为1:2.4,AB 长为3.9米,钓竿AC 与水平线的夹角是60°,其长为4.5米,若钓竿AC 与钓鱼线CD 的夹角也是60°,则浮漂D 与河堤下端B 之间的距离约为( )米.(≈1.732)A .1.732B .1.754C .1.766D .1.8233.下列说法正确的是( )A .全国文明办对包头市全体市民进行文明指数测评适合采用普查的方式B .已知平面直角坐标系第二象限中一点A 的坐标为(-4,-a),则点A 到x 轴的距离为aC .因式分解:x 4+81=(x-3)(x+3)(x 2+9)D .小明沿着坡度为1的坡面向下走了2米,那么他下降的高度为1米4.我们探究得方程x+y =2的正整数解只有1组,方程x+y =3的正整数解只有2组,方程x+y =4的正整数解只有3组,……,那么方程x+y+z =10的正整数解得组数是( )A .34B .35C .36D .375.已知二次函数y =﹣(x ﹣k+2)(x+k )+m ,其中k ,m 为常数.下列说法正确的是( )A .若k≠1,m≠0,则二次函数y 的最大值小于0B .若k <1,m >0,则二次函数y 的最大值大于0C .若k =1,m≠0,则二次函数y 的最大值小于0D .若k >1,m <0,则二次函数y 的最大值大于06.已知抛物线y =3x 2+1与直线y =4cos α•x 只有一个交点,则锐角α等于( )A .60°B .45°C .30°D .15° 7.下列运算中正确的是( )A .236x x x ⋅=B .238()x x =C .222()xy x y -=- D .633x x x ÷= 8.如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则AD 的长为( )A .3B .4C .D .89.已知抛物线2y ax bx c =++的对称轴为2x =,且经过点()3,0,则a b c ++的值( ) A .等于0 B .等于1 C .等于1- D .不能确定10.如图是某几何体的三视图,则该几何体的表面积为( )A .B .C .D .11.休闲广场的边缘是一个坡度为i =1:2.5的缓坡CD ,靠近广场边缘有一架秋千.秋千静止时,底端A 到地面的距离AB =0.5m ,B 到缓坡底端C 的距离BC =0.7m .若秋千的长OA =2m ,则当秋千摆动到与静止位置成37°时,底端A′到坡面的竖直方向的距离A′E 约为( )(参考数据:sin37°=0.60,cos37°=0.80,tan37°=0.75)A .0.4mB .0.5mC .0.6mD .0.7m 12.若11x m =-是方程mx ﹣2m+2=0的根,则x ﹣m 的值为( ) A .0B .1C .﹣1D .2二、填空题 13.如图,线段AB =4,M 为AB 的中点,动点P 到点M 的距离是1,连接PB ,线段PB 绕点P 逆时针旋转90°得到线段PC ,连接AC ,则线段AC 长度的最大值是_____.14.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为_____.15.分解因式:mn2-2mn+m=_________.16.计算:﹣22÷(﹣14)=_____.17.如图,已知正方形ABCD,顶点 A (1,3)、B (1,1)、C (3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为_____.18.如图,在平面直角坐标系中,一次函数y=x+1的图象l与y轴交于点C,A1的坐标为(1,0),点B1在直线l上,且A1B1平行于y轴,连接CA1、OB1交于点P1,过点A1作A1B2∥OB1交直线l于点B2,过点B1作B1A2∥CA1交x轴于点A2,A1B2与B1A2交于点P2,……,按此进行下去,则点P2019的坐标为_____.三、解答题19.如图1,△ACB为等腰直角三角形,△EDF为非等腰直角三角形,∠ACB=∠EDF=90°,且AB=EF.(1)如图2,将两个直角三角形按如图2将斜边重叠摆放.当AB=EF=6,①DA=______;②求DC的长.(2)若将题中两个直角三角形的斜边重叠摆放,那么线段CD、AD、BD之间存在怎样的数量关系?请直接写出答案.20.先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =. 21.(1)解不等式组365(2)543123x x x x +≥-⎧⎪⎨---≤⎪⎩①②,并求出最小整数解与最大整数解的和. (2)先化简,再求值22331(1)1211x x x x x x --÷-+-++-,其中x 满足方程x 2+x ﹣2=0. 22.线段AB 在由边长为1的小正方形组成的网格中,端点A 、B 为格点(即网格线的交点).(1)线段AB 的长度为________;(2)在网格中找出一个格点C ,使得△ABC 是以AB 为直角边的等腰直角三角形,请画出△ABC ;(3)在网格中找出一个格点D ,使得△ABD 是以AB 为斜边的等腰直角三角形,请画出△ABD .23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC 是BC 边上的“半高”三角形.点P 在边AB 上,PQ ∥BC 交AC 于点Q ,PM ⊥BC 于点M ,QN ⊥BC 于点N ,连接MQ .(1)请证明△APQ 为PQ 边上的“半高”三角形.(2)请探究BM ,PM ,CN 之间的等量关系,并说明理由;(3)若△ABC 的面积等于16,求MQ 的最小值24.如图,BC 是半⊙O 的直径,A 是⊙O 上一点,过点的切线交CB 的延长线于点P ,过点B 的切线交CA 的延长线于点E ,AP 与BE 相交于点F .(1)求证:BF =EF ;(2)若AF =3,半⊙O 的半径为2,求PA 的长度.25.如图,AB是半⊙O的直径,点C,D为半圆O上的点,AE||OD,过点D的⊙O的切线交AC的延长线于点E,M为弦AC中点(1)填空:四边形ODEM的形状是;(2)①若CEkCM=,则当k为多少时,四边形AODC为菱形,请说明理由;②当四边形AODC为菱形时,若四边形ODEM的面积为O的半径.【参考答案】***一、选择题二、填空题1314.15.m(n-1)216.1617.(-2012,2)18.2020201922 1,33⎛⎫-+⎪⎝⎭三、解答题19.(1) ①CD, 【解析】(1)直接用勾股定理即可求出DA ,在AD 上截取AE=BD ,连接CE ,可证△ACE ≌△BCD (SAS ),从而判断出∠ECD=90°,在Rt △CDE 中,由勾股定理可得出DE 的值,即可求解.(2)由(1)题②中的过程可直接求得.【详解】解:(1)①在Rt △ABD 中,∠ADB=90°,由勾股定理,得==②在AD 上截取AE=BD ,连接CE ,如图∵∠ACB=∠ADB=90°∴∠CAE+∠CFA=∠DBA+∠DFB∵∠CFA=∠DFB∴∠CAE=∠DBC在△ACE 和△BCD 中AC BC CAE CBD AE BD =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD (SAS )∴∠ACE=∠BCD ,CE=CD∵∠ACE+∠ECB=90°∴∠ECD=∠ECB+∠BCD=∠ACE+∠ECB=90°在Rt △CDE 中,由勾股定理,得==∴CD DE 22==(AD-AE )=2=⎝⎭. (2)CD ,理由:在AD 上截取AE=BD ,如图,连接CE ,由(1)题②中可知CD ,∴CD ,即CD .此题主要考查等腰直角三角形,在运用勾股定理的过程中,关键在于利用辅助线构建直角三角形.20.11a +,2. 【解析】【分析】原始第一项先化简括号里面的,再利用除法法则变形,约分后利用同分母分式得到最简结果,将a 的值代入即可【详解】 解:21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++ =21(1)a a a a ++ =1+1a, 当a=2.【点睛】 此题考察分式的化简求值,关键在于约分 21.(1)﹣3≤x≤8,5;(2)11x -,13- . 【解析】【分析】(1)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,进而求出所求即可;(2)原式利用除法法则变形,约分后计算得到最简结果,求出x 的值,代入计算即可求出值.【详解】 (1)365(2)543123x x x x ①②+≥-⎧⎪⎨---≤⎪⎩由①得:x≤8,由②得:x≥﹣3,∴不等式组的解集为﹣3≤x≤8,则不等式组最小整数解为﹣3,最大整数解为8,之和为5;(2)原式=23(1)11(1)(1)3111x x x x x x x x x x x -++-⋅-==+-----, 由x 2+x ﹣2=0,得到(x ﹣1)(x+2)=0,解得:x =1(舍去)或x =﹣2,【点睛】此题考查了分式的化简求值,以及解一元二次方程-因式分解法,熟练掌握运算法则是解本题的关键.22.(1)(2)见解析(答案不唯一);(3)见解析(答案不唯一).【解析】【分析】(1)直接利用勾股定理进而得出答案;(2)直接利用网格结合勾股定理得出符合题意的图形;(3)直接利用网格结合勾股定理和圆周角定理得出符合题意的图形.【详解】解:(1)如图所示:=(2)如图,△ABC就是所要求的等腰直角三角形(答案不唯一);(3)如图,△ABD就是所要求的等腰直角三角形(答案不唯一).【点睛】此题主要考查了应用设计与作图,正确应用勾股定理和圆周角定理是解题关键.23.(1)见解析;(2)2PM=BM+CN,理由见解析;(3.【解析】【分析】(1)根据平行相似,证明△APQ∽△ABC,利用相似三角形对应边的比等于对应高的比:PQ AKBC AR=,由“半高”三角形的定义可结论;(2)证明四边形PMNQ是矩形,得PQ=MN,PM=KR,代入AR=12BC,可得结论;(3)先根据△ABC的面积等于16,计算BC和AR的长,设MN=x,则BM+CN=8﹣x,PM=QN=12(8﹣x),根据勾股定理表示MQ,配方可得最小值.【详解】(1)证明:如图,过A作AR⊥BC于R,交PQ于K,∵△ABC是BC边上的“半高”三角形,∴AR =12BC , ∵PQ ∥BC ,∴△APQ ∽△ABC , ∴PQ AK BC AR=, ∴AK AR 1PQ BC 2==, ∴AK =12PQ , ∴△APQ 为PQ 边上的“半高”三角形.(2)解:2PM =BM+CN ,理由是:∵PM ⊥BC ,QN ⊥BC ,∴∠PMN =∠MNQ =∠MPQ =90°,∴四边形PMNQ 是矩形,∴PQ =MN ,PM =KR ,∵AK =12PQ ,AR =12BC , ∴AK+RK =12(BM+MN+CN ), 12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.24.(1)见解析;(2)48 7.【解析】【分析】(1)连接OA,可得∠E+∠C=∠EAF+∠OAC=90°,再根据OA=OC,即可解答(2)连接AB,可得∠OAP=∠OBE=90°,且BF=AF=1.5,根据三角函数求出PB=34 PA,再证明△APB∽△CPA,即可解答【详解】(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠FAO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=OA BFPA PB=,即2 1.5PA PB=,∴PB=34PA,∵∠PAE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠PAE=∠AEB,∠P=∠P,∴△APB∽△CPA,∴PB PAPA PC= ,即PA 2=PB•PC, ∴233444PA PA PA ⎛⎫=⋅+ ⎪⎝⎭ ,解得PA =487.【点睛】此题考查切线的性质,相似三角形的性质,三角函数,解题关键在于作辅助线25.(1)四边形AODC 为菱形,见解析;(2)①当k 为1时,四边形AODC 为菱形.理由见解析;②⊙O 的半径为. 【解析】 【分析】(1)运用切线定理、垂径定理、平行线的性质证明四个角均为90°,即可说明四边形ODEM 为矩形; (2)①当k 为1时,四边形AODC 为菱形.连接CD ,CO .由四边形AODC 为菱形,可得AO =OD =CD =AC ,由OM 垂直平分AC ,得到OA =OC ,所以OA =OC =AC ,因此△OAC 为等边三角形,于是∠CAO =60°,∠CDO =60°,∠ECD =30°, 所以CE =12CD =12AC ,又CM =12AC ,因此CE =CM ,即 CECM=1,所以当k 为1时,四边形AODC 为菱形;②由四边形ODEM 的面积为可知OD•MO=43,由①四边形AODC 为菱形时,∠MAO =60°,所以OM OA=sin ∠MAO =sin60°,MO =AOsin60°=2AO ,因此OD•MO=OA•2OA =,所以OA =. 【详解】(1)∵DE 是⊙O 的切线, ∴OD ⊥DE ,∠ODE =90°, ∵M 为弦AC 中点, ∴OM ⊥AC ,∠OME =90°, ∵AE||OD ,∴∠E =90°,∠MOD =90°, ∴四边形ODEM 是矩形;(2)①当k 为1时,四边形AODC 为菱形. 理由如下: 连接C D ,CO . ∵四边形AODC 为菱形, ∴AO =OD =CD =AC , ∵OM 垂直平分AC , ∴OA =OC ,∴OA =OC =AC , ∴△OAC 为等边三角形, ∴∠CAO =60°,∠CDO =60°, ∴∠ECD =30°,∴CE =12CD =12AC , ∵CM =12AC ,∴CE =CM , ∴1CECM= , 当k 为1时,四边形AODC 为菱形;②∵四边形ODEM 的面积为,∴OD•MO=由①四边形AODC 为菱形时,∠MAO =60°,∴sin sin 60OM MAO OA ︒=∠= ,MO =AOsin60°=2AO ,∴OD•MO=2OA ⋅=,∴OA =∴⊙O 的半径为【点睛】本题是圆的综合题,熟练掌握矩形、菱形、三角函数、垂径定理等是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.以下所给的数值中,为不等式﹣2x+3<0的解集的是( ) A.x <﹣2B.x >﹣1C.x <﹣32D.x >322.某几何体的三视图如图所示,则该几何体的体积为( )A .3B .C .D .3.已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低( ) A .4℃B .﹣4℃C .4℃或者﹣4℃D .34℃4.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100B ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒5.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(a ,b ),则点A'的坐标为( )A .(-a ,-b )B .(-a ,-b-1)C .(-a ,-b+1)D .(-a ,-b+2)6.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=kx(k 为常数,k≠0)的图象上,正方形ADEF 的面积为4,且BF=2AF ,则k 值为( )A .4B .-4C .6D .-67.如图,小明从二次函数y =ax 2+bx+c 图象中看出这样四条结论:①a >0; ②b >0; ③c >0; ④b 2﹣4ac >0;其中正确的是( )A .①②④B .②④C .①②③D .①②③④8.已知一多边形的每一个内角都等于150°,则这个多边形是( ) A .十二边形B .十边形C .八边形D .六边形9.如图,在长方形ABCD 中,AB=8,BC=4,将长方形沿AC 折叠,则重叠部分△AFC 的面积为( )A.12B.10C.8D.610.下列运算正确的是( )A.222()x y x y +=+ B.632x x x ÷=3=D.32361126xy x y ⎛⎫-=- ⎪⎝⎭11.如图,下图经过折叠不能围成一个正方体是( )A .B .C .D .12.如图,在正方形ABCD 中,E 是边BC 上一点,且BE :CE =1:3,DE 交AC 于点F ,若DE =10,则CF 等于( )AB.C.7D.二、填空题13.不等式4x ﹣8<0的解集是______.14.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出1个小球,记下数字,前后两次的数字分别记为x ,y ,并以此确定点P (x ,y ),那么点P 在函数2y x图像上的概率为_____________. 15.已知反比例函数y =2x,当x <-1时,y 的取值范围为________. 16.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.17.如图,边长不等的正方形依次排列,第一个正方形的边长为1,第二个正方形的边长是第一个正方形边长的2倍,第三个正方形的边长是第二个正方形边长的2倍,依此类推,….若阴影三角形的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则S 4的值为_____.18.在数轴上,实数2﹣对应的点在原点的_____侧.(填“左”、“右”) 三、解答题19.为了实现伟大的强国复兴梦,全社会都在开展“扫黑除恶”专项斗争,某区为了解各学校老师对“扫黑除恶”应知应会知识的掌握情况,对甲、乙两个学校各180名老师进行了测试,从中各随机抽取30名教师的成绩(百分制),并对成绩(单位:分)进行整理、描述和分析,给出了部分成绩信息.甲校参与测试的老师成绩在96≤x<98这一组的数据是:96,96.5,97,97.5,97,96.5,97.5,96,96.5,96.5甲、乙两校参与测试的老师成绩的平均数平均数、中位数、众数如下表:根据以上信息,回答下列问题: (1)m = ;(2)在此次随机抽样测试中,甲校的王老师和乙校的李老师成绩均为97分,则在各自学校参与测试老师中成绩的名次相比较更靠前的是 (填“王”或“李”)老师,请写出理由;(3)在此次随机测试中,乙校96分以上(含96分)的总人数比甲校96分以上(含96分)的总人数的2倍少100人,试估计乙校96分以上(含96分)的总人数.20.如图:已知矩形ABCD 中,,BC=3cm ,点O 在边AD 上,且AO=1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A′B′C′D′ (1)求证:AC ⊥OB ;(2)如图1, 当B′落在AC 上时,求AA′;(3)如图2,求旋转过程中△CC′D′的面积的最大值.21.荆州市精准扶贫工作进入攻坚阶段.某村在工作组长期的技术资金支持下,成立了果农合作社,大力发展经济作物,其中樱桃和枇杷两种果树的种植已初具规模,请阅读以下信息.信息1:该村小李今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍.信息2:小李今年樱桃销量比去年减少了m%,枇杷销量比去年增加了2m%.若樱桃售价与去年相同,枇杷售价比去年减少了m%,则今年两种水果销售总额与去年两种水果的销售总额相同. 樱桃销量(千克)信息3:该村果农合作社共收获樱桃2800千克,经市场调研,樱桃市场需求量y (千克)与售价x (元/千克)之间的关系为:y =﹣100x+4800(8≤x≤38),因保质期和储存条件方面的原因剩余水果将被无偿处理销毁. 请解决以下问题:(1)求小李今年收获樱桃至少多少千克? (2)请补全信息2中的表格,求m 的值.(3)若樱桃种植成本为8元/千克,不计其它费用.求今年该果农合作社出售樱桃所获得的最大利润?22.已知:点A,B位于直线m的两侧,在直线m上求作点P,使|PA﹣PB|的值最大.23.(111|2|2cos453-︒⎛⎫-+-⎪⎝⎭;(2)解分式方程:2133xx x=++24.为了解某校九年级学生英语口语检测成绩等级的分布情况,随机抽取了该校若干名学生的英语口语检测成绩,按A,B,C,D四个等级进行统计分析,并绘制尚不完整的统计图;请根据统计图所提供的信息,解答下列问题:(1)求本次抽取的学生一共有多少人?(2)求本次抽取的学生中B级的学生人数,并补全条形统计图;(3)根据抽样调查结果,请你估计某校860名九年级学生英语口语检测成绩等级为A级的人数. 25.为了解学生对博鳌论坛会的了解情况,某中学随机抽取了部分学生进行问卷调查,将调查结果记作“A 非常了解,B了解,C了解较少,D不了解.”四类分别统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了______名学生;扇形统计图中D所在的扇形的圆心角度数为______;(2)将条形统计图补充完整;(3)若该校共有1600名学生,请你估计对博鳌论坛会的了解情况为“非常了解”的学生约有多少人?【参考答案】***一、选择题二、填空题 13.x <2. 14.2915.-2<y <0 16.12 17.2048 18.左 三、解答题19.(1)96.5;(2)王;(3)140人. 【解析】 【分析】(1)根据中位数的定义即可解决问题; (2)利用中位数的性质即可判断;(3)首先确定甲校的96分以上人数为206120⨯=人,再求出乙校的96分以上的人数即可. 【详解】 解:(1)中位数96.596.596.52+== ,故答案为96.5.(2)根据中位数即可判断,甲校的王老师成绩在各自学校参与测试老师中成绩的名次相比较更靠前. 故答案为王.(3)甲校的96分以上人数为206120⨯= 人, 所以乙校的96分以上的人数为2120100140⨯-=人. 【点睛】本题考查了用样本估计总体,中位数,平均数,众数等,理解题意,灵活运用所学知识解决问题是解题关键.20.(1)详见解析;(2)AA '=;(3【解析】 【分析】(1)由三角函数可求得∠AOB =60°,∠CAD =30°,易证AC ⊥OB ; (2)求出OB 、BB′,利用AOA BOB ∆∆''∽可求得AA ';(3)过C 点作CH ⊥于C′D′点H ,连结OC ,则CH≤OC+OD′,由此可判断出D′在CO 的延长线上时△CC′D′的面积最大,然后根据三角形面积公式求解即可. 【详解】解:(1)Rt △OAB 中,tan ABAOB OA∠== ∴∠AOB =60°。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.如图,AB,AC均为⊙O的切线,切点分别为B,C,点D是优弧BC上一点,则下列关系式中,一定成立的是()A.∠A+∠D=180°B.∠A+2∠D=180°C.∠B+∠C=270°D.∠B+2∠C=270°2.如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+4<0的解集是()A.x<﹣3B.x>﹣3C.x<﹣6D.x>﹣63.下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=5,S乙2=0.5,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,5,5,4,6的众数是5.4.用百度搜索关键词“北京大学”,百度找到相关结果约39700000个,把数据39700000用科学记数法表示为( )A.3.97×105B.39.7×108C.3.97×107D.3.97×1095.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米6.民间剪纸是中国古老的传统民间艺术,它历史悠久,风格独特,深受国内外人士所喜爱,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .7.下列运算正确的是( ) A .236a a a ⋅= B .22423a a a += C .236(2)2a a -=-D .422()a a a ÷-=8.如图,是由几个大小相同的小立方体搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方体的个数,则这个几何体的主视图是( )A .B .C .D .9.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位10.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.11.如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有( ) A .1B .2C .3D .412.如图,过点A 1(1,0)作x 轴的垂线,交直线y =2x 于点B ;点A 2与点O 关于直线A 1B 1对称;过点A 2(2,0)作x 轴的垂线,交直线y =2x 于点B 2;点A 3与点O 关于直线A 2B 2对称;过点A 3作x 轴的垂线,交直线y =2x 于点B 3;按B 3此规律作下去,则点B n 的坐标为( )A .(2n ,2n ﹣1)B .(2n ,2n+1)C .(2n+1,2n )D .(2n ﹣1,2n )二、填空题13.已知反比例函数5y x=,当2x <-时,y 的取值范围是____. 14.某玩具车间每天能生产甲种零件200个或乙种零件100个.甲种零件1个与乙种零件2个能组成一个完整的玩具,问怎样安排生产才能在30天内组装出最多的玩具?若设生产甲种零件x 天,乙种零件y 天,则根据题意列二元一次方程组是__.15_____16.某校901班共有50名同学,如图是该次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数),则测试成绩的中位数所在的组别是____.17.已知a 2+2a=-2,则22(21)(4)a a a +++的值为________.18.将y =2x 2的图象沿y 轴向下平移3个单位,则得到的新图象所对应的函数表达式为_____. 三、解答题19.如图,已知抛物线y=ax 2+85x+c 与x 轴交于A ,B 两点,与y 轴交于C 点,且A(2,0),C(0,-4),直线l:y=-12x-4与x轴交于点D,点P是抛物线y=ax2+85x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于F.(1)试求该抛物线表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),连接AC.求证:△ACD是直角三角形.20.为了传承中华优秀传统文化,某校学生会组织了一次全校1200名学生参加的“汉字听写”大赛,并设成绩优胜奖.赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩作为样本进行整理,得到下列不完整的统计图表:成绩在70≤x<80这一组的是:70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数是;(4)若这次比赛成绩在78分以上(含78分)的学生获得优胜奖,则该校参加这次比赛的1200名学生中获优胜奖的约有多少人?21.某体育用品商店购进了足球和排球共20个,一共花了1360元,进价和售价如表:(l)购进足球和排球各多少个?(2)全部销售完后商店共获利润多少元?22.如图,抛物线y=ax2+32x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.23.如图,在小正方形的边长均为1的方格纸中点A、B、C均在格点上;(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在格点上;(2)在图2中画出凸四边形ABCE,点E在格点上,∠AEC=90°,EC>EA,直接写出四边形ABCE的周长_____.24.在6×4的方格纸中,△ABC的三个顶点都在格点上(1)在图中画出线段BD,使BD∥AC,其中D是格点;(2)在图中画出线段BE,使BE⊥AC,其中E是格点,连接DE,并直接写出∠BED的度数.25.如图1是某品牌订书机,其截面示意图如图2所示.订书钉放置在轨槽CD内的MD处,由连接弹簧的推动器MN推紧,连杆EP一端固定在压柄CF上的点E处,另一端P在DM上移动.当点P与点M重合后,拉动压柄CF会带动推动器MN向点C移动.使用时,压柄CF的端点F与出钉口D重合,纸张放置在底座AB的合适位置下压完成装订(即点D与点H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.(1)求轨槽CD的长(结果精确到0.1);(2)装入订书钉需打开压柄FC,拉动推动器MN向点C移动,当∠FCD=53°时,能否在ND处装入一段长为2.5cm≈6.08,sin53°≈0.80,cos53°≈0.60)【参考答案】***一、选择题二、填空题13.50 2y-<<14.15.16.第4组17.618.y=2x2﹣3.三、解答题19.(1)y=15x2+85x-4;(2)P点的坐标为(-8,-4),(-2.5,-274);(3)证明见解析.【解析】【分析】(1)利用待定系数法即可求a、c的值,从而求得抛物线的表达式;(2)设P点的坐标是(x,15x2+85x-4),则F(x,-12x-4),由OCPF是平行四边形得OC=FP,OC∥PF,从而-15x2-2110x=4,求解即可得P的横坐标,代入解析式即可得P的坐标.(3)分别求出点A、C、D的坐标,可以根据勾股定理的逆定理即可判断【详解】(1)依题意,抛物线经过A(2,0),C(0,-4),则c=-4将点A代入得0=4a+85×2-4,解得a=15抛物线的解析式是y=15x2+85x-4(2)设P点的坐标是(x,15x2+85x-4),则F(x,-12x-4)∴PF=(-12x-4)-(15x2+85x-4)=-15x2-2110x∵四边形OCPF是平行四边形∴OC=FP,OC∥PF∴-15x2-2110x=4即2x2+21x+40=0解得x1=-8 x2=-2.5∴P点的坐标为(-8,-4),(-2.5,-274)(3)当y=0时,-12x-4=0,得x=-8,即D(-8,0)当x=0时,0-4=y,即C(0,-4)当y=0时,15x2+85x-4=0解得x1=-10 x2=2,即B(-10,0),A(2,0)∵AC2=22+42=20CD2=82+42=80∴AD2=AC2+CD2∴∠ACD=90°△ACD是直角三角形【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.20.(1)20,0.3;(2)详见解析;(3)75;(4)480(人).【解析】【分析】(1)根据频数、频率以及总数之间的关系即可求出a和b;(2)根据(1)求出a的值直接补全统计图即可;(3)根据中位数的定义直接解答即可;(4)用总人数乘以在这次比赛中获优胜奖的人数所占的百分比即可得出答案.【详解】解:(1)a=100×0.2=20(分),30÷100=0.3;故答案为:20,0.3;(2)根据(1)求出a的值,补图如下:(3)把这些数从小到大排列,中位数是第50、51个数的平均数,则中位数落在70≤x<80这组,中位数是75;故答案为:75;(4)样本中成绩在78分以上的人数为40人,占样本人数的40%,获优胜奖的人数约为1200×40%=480(人).【点睛】本题考查频数分布直方图、频数分布表、中位数、由样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.21.(1)购进足球12个,购进排球8个;(2)若全部销售完,商店共获利260元.【解析】【分析】(1)根据题意设购进足球x个,排球y个,列出方程组,即可解答(2)由题(1)可直接用足球排球的个数乘以各自的销售利润,即可解答(1)设购进足球x 个,排球y 个,由题意得;2080501360x y x y +=⎧⎨+=⎩解得:128x y =⎧⎨=⎩答:购进足球12个,购进排球8个.(2)若全部销售完,商店共获利:12(95﹣80)+8(60﹣50)=180+80=260(元) 答:若全部销售完,商店共获利260元. 【点睛】此题考查一元一次方程的应用,利用方程组计算出足球排球的数量是解题关键 22.(1)y =﹣12x 2+32x+2(2)(32,4)或(32,52)或(32,﹣52)(3)(2,1) 【解析】 【分析】(1)利用待定系数法转化为解方程组即可.(2)如图1中,分两种情形讨论①当CP =CD 时,②当DP =DC 时,分别求出点P 坐标即可. (3)如图2中,作CM ⊥EF 于M ,设2113,2,2222E a a F a a a ⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭,),则2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭,(0≤a≤4),根据S 四边形CDBF =S △BCD +S △CEF +S △BEF111,222BD OC EF CM EF BN =⋅+⋅+⋅构建二次函数,利用二次函数的性质即可解决问题. 【详解】解:(1)由题意3022,a c c ⎧-+=⎪⎨⎪=⎩ 解得122.a c ⎧=-⎪⎨⎪=⎩∴二次函数的解析式为213222y x x =-++. (2)存在.如图1中,∵C (0,2),3,0,2D ⎛⎫ ⎪⎝⎭∴CD 5.2= 当CP =CD 时,13,42P ⎛⎫ ⎪⎝⎭, 当DP =DC 时, 233535,,,.2222P P ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭综上所述,满足条件的点P 坐标为3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫⎪⎝⎭或35,.22⎛⎫- ⎪⎝⎭ (3)如图2中,作CM ⊥EF 于M ,∵B (4,0),C (0,2),∴直线BC 的解析式为122y x =-+,设2113,2,2222E a a F a a a ⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭,), ∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭,(0≤a≤4), ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF 111,222BD OC EF CM EF BN =⋅+⋅+⋅ ()225111124222222a a a a a a ⎛⎫⎛⎫=+-++--+ ⎪ ⎪⎝⎭⎝⎭,254,2a a =-++ ()21322a =--+, ∴a =2时,四边形CDBF 的面积最大,最大值为132, ∴E (2,1).【点睛】本题考查二次函数综合题、一次函数的应用、待定系数法,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,属于中考压轴题.23.(1)如图所示,见解析; (2)如图所示,周长为6+【解析】【分析】(1)根据轴对称的性质画出图形即可;(2)画出四边形 ABCDE,再求出其周长即可.【详解】(1)如图所示,(2)如图所示,四边形ABCE 的周长为6+【点睛】此题考查作图-轴对称变换,掌握作图法则是解题关键24.(1)见解析;(2)图见解析,∠BED =45°.【解析】【分析】(1)将线段AC 沿着CB 方向平移3个单位,即可得到线段BD ;(2)利用1×3的长方形的对角线,即可得到线段BE ⊥AC .【详解】解:(1)如图所示,线段BD 即为所求;(2)如图所示,线段BE 即为所求,∵△BDE 是等腰直角三角形,∴∠BED =45°.【点睛】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.25.(1)12.6(cm).(2)能在ND处装入一段长为2.5cm的订书钉.【解析】【分析】(1)由题意CD=CH,利用勾股定理求出CH即可.(2)如图2中,作EK⊥PC于K.解直角三角形求出CK,PK,DN即可判断.【详解】解:(1)由题意CD=CH,在Rt△ACH中,CH≈12.2(cm).∴CD=CH=12.6(cm).(2)如图2中,作EK⊥PC于K.在Rt△ECK中,EK=EC•sin53°≈4(cm),CK=EC•cos53°≈3(cm),在Rt△EPK中,PK cm),∴DP=CD﹣CK﹣PK﹣MN=12.6﹣3﹣4.48﹣2=3.12>2.5,∴能在ND处装入一段长为2.5cm的订书钉.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.2019-2020学年数学中考模拟试卷一、选择题1.如图,在平面直角坐标系中,函数y =2x 和y =﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 2019的坐标为( )A.(21009,21010)B.(﹣21009,21010)C.(21009,﹣21010)D.(﹣21009,﹣21010)2.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最多有( )A .12个B .10个C .8个D .6个3.如图,将△ABC 绕C 顺时针旋转,使点B 落在AB 边上的点B′处,此时,点A 的对应点A′恰好落在BC 边的延长线上,则下列结论中错误的是( )A.∠BCB′=∠ACA′B.∠ACB =2∠BC.B′C 平分∠BB′A′D.∠B′C A =∠B′AC 4.下列计算正确的是( )A .224a a a +=B .()2326a a =C .()23533a a a -=-gD .623422a a a ÷=5.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.如图所示的几何体的主视图是()A. B.C. D.2.我国古代《易经》一书中记载:远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.515B.346C.1314D.843.如图,在反比例函数y=-2x的图象上有一动点A,连结AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=kx的图象上运动,若tan∠CAB=3,则k的值为()A.23B.6 C.8 D.184④)A.①②B.③④C.①③D.①④5.已知一元二次方程22410x x +-=的两个根为1x ,2x ,且12x x <,下列结论正确的是( )A .122x x +=B .121x x =-C .12x x <D .211122x x += 6.直线y=2x 关于x 轴对称的直线是( )A .1y x 2=B .1y x 2=-C .y 2x =D .y 2x =-7.下列运算正确的是A .236a a a =B .()239a a =C .2142-⎛⎫-=- ⎪⎝⎭D .()00sin 301π-=8.如图,已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在边BC 上的点D 的位置,且ED BC ⊥,则CE 的长是( )A .15B .10-C .5D .20-9.下列计算正确的是( )A .3362a a a +=B .236()a a -=C .623a a a ÷=D .538a a a ⋅=10.如图,在矩形纸片ABCD 中,3AB =,点E 在BC 上,将ABE ∆沿AE 折叠,点B 恰好落在CD 边上点F 处,且1CF =.则tan CFE ∠的值为( )A .12B .23CD 11.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( )A .平均数B .方差C .众数D .中位数12.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:则下列说法正确的是( )A .10名学生是总体的一个样本B .中位数是40C .众数是90D .方差是400二、填空题13.已知8,3,m na a ==则m n a +=_____.14.从、、、、中,任取一个数,取到无理数的概率是_____.15______. 16.若一条直线经过点(0,2),则这条直线的解析式可以是(写出一个即可)______.17.一元二次方程23210x x -+=的根的判别式∆_______0.(填“>”,“=”或“<”)18.已知关于x 的方程2(1)20x k x k --+=的一个根是–4,则它的另一个根是_____.三、解答题19.已知反比例函数()0m y m =≠x与一次函数y =kx+b (k≠0)交于点A (﹣1,6)、B (n ,2). (1)求反比例函数与一次函数的表达式;(2)若点A 关于y 轴的对称点为A′,连接AA′,BA′,求△AA′B 的面积.20.如图,在⊙O 中,弦AC ⊥BD 于点E ,连接AB ,CD ,BC(1)求证:∠AOB+∠COD =180°;(2)若AB =8,CD =6,求⊙O 的直径.21.如图所示,边长为2的等边三角形OAB 的顶点A 在x 轴的正半轴上,B 点位于第一象限将△OAB 绕O 点顺时针旋转30°后,怡好A 点在双曲线k y x= ,(x>0)上(1)求双曲线k y x= (x>0)的解析式 (2)等边三角形OAB 继续按顺时针方向旋转多少度后,A 点再次落在双曲线上?22.某公司研发生产的560件新产品需要精加工后才能投放市场.现由甲、乙两个工厂来加工生产,已知甲工厂每天加工生产的新产品件数是乙工厂每天加工生产新产品件数的1.5倍,并且加工生产240件新产品甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少件新产品?(2)若甲工厂每天的加工生产成本为2.8万元,乙工厂每天的加工生产成本为2.4万元要使这批新产品的加工生产总成本不超过60万元,至少应安排甲工厂加工生产多少天?23.如图,⊙O 是△ABC 的外接圆,直线l 与⊙O 相切于点E ,且l ∥BC .(1)求证:AE 平分∠BAC ;(2)作∠ABC 的平分线BF 交AE 于点F ,求证:BE =EF .24.某商场销售一种小商品,每件进货价为190元.调查发现,当销售价为210元时,平均每天能销售8件;当销售价每降低2元时,平均每天就能多销售4件.设每件小商品降价x 元,平均每天销售y 件.(1)直接写出y 与x 之间的函数关系式(不必写出x 的取值范围);(2)商场要想使这种小商品平均每天的销售利润达到280元,求每件小商品的销售价应定为多少元?(3)设每天的销售总利润为w 元,求w 与x 之间的函数关系式;每件商品降价多少元时,每天的总利润最大?最大利润是多少?25.(1)计算121(3)2-︒⎛⎫-+-- ⎪⎝⎭(2)解方程:21421242x x x x +-=+--.【参考答案】***一、选择题二、填空题13.2414..1516.2y x =+(答案不唯一)17.<18.1三、解答题19.(1)y =2x+8;(2)4.【解析】【分析】(1)先把A 点坐标代入反比例函数y =()0m y m x=≠中求出m 的值,进而可得出反比例函数的解析式,再把B 点坐标代入即可求出n 的值,把A 、B 两点的坐标代入一次函数y =kx +b 中可求出k 、b 的值,进而可得出一次函数的解析式;(2)根据题意求得A′的坐标,然后根据三角形面积公式即可求得.【详解】解:(1)∵反比例函数()0m y m x=≠的图象过点A (﹣1,6), ∴6=1m -,即m =﹣6, ∴反比例函数的解析式为:y =6x -; ∵比例函数y =6x -的图象过点B (n ,2), ∴2=6n-,解得n =﹣3, ∴B (﹣3,2),∵一次函数y =kx+b (k≠0)的图象过点A (﹣1,6)和点B (﹣3,2),∴632k b k b -+=⎧⎨-+=⎩,解得k 2b 8=⎧⎨=⎩; ∴一次函数的解析式为:y =2x+8;(2)∵点A (﹣1,6)关于y 轴的对称点为A′,∴A′(1,6),∴AA′=2,∵B (﹣3,2),∴△AA′B的面积:12×2×(6﹣2)=4.【点睛】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟练掌握待定系数法是解答此题的关键.20.(1)见解析;(2) 10【解析】【分析】(1)延长BO交⊙O 于F,连接DF,AD,结合已知可证明AC∥DF,继而得出AF CD=,从而可得∠COD=∠AOF,由∠AOB+∠AOF=180°,即可证明∠AOB+∠COD=180°;(2)连接AF,可推导得出AF=CD=6,继而根据勾股定理求出BF的长即可得.【详解】(1)延长BO交⊙O 于F,连接DF,AD.∵BF是直径,∴∠BDF=90°,∴DF⊥BD,∵AC⊥BD,∴AC∥DF,∴∠CAD=∠ADF,∴AF CD=,∴∠COD=∠AOF,∵∠AOB+∠AOF=180°,∴∠AOB+∠COD=180°;(2)连接AF.由(1)可知:AF CD=,∴AF=CD=6,∵BF是直径,∴∠BAF=90°,∴BF=,∴⊙O的直径为10.【点睛】本题考查了弧、弦、圆心角的关系,圆周角定理等知识,正确添加辅助线,熟练掌握和灵活应用相关知识是解题的关键.21.(1)(2)30°,理由见解析【解析】【分析】(1)在Rt△AOD中,OA=2,∠AOD=30°,就可以求出OD,AD的长度,就得到A点的坐标,代入双曲线kyx= (x>0)就可以求出函数的解析式(2)作出函数的图象,根据图象就可以得到.然后进行验证即可【详解】(1)如图所示,OA=2,∠AOD=30°在Rt△AOD中,∴OD=OA・cos30°=2AD=OA·sin30°=212⨯ =1∴把代入k yx =∴∴双曲线的解析式为(2)猜想等边三角形OAB继续按顺时针方向旋转30°后,A点再次落在双曲线上,如图,此时代入y=-x满足故猜想正确.【点睛】此题考查反比例函数的综合题,利用直角三角形的性质和三角函数是解题关键22.(1)甲、乙两个工厂每天分别可加工生产30件、20件新产品;(2)应安排甲工厂加工生产9天.【解析】【分析】(1)设乙工厂每天可加工生产x件新产品,则甲工厂每天可加工生产1.5x件新产品,根据题意列出方程,求出方程的解即可得到结果;(2)设甲工厂加工生产y天,根据题意列出不等式,求出不等式的解集即可得到结果.【详解】解:(1)设乙工厂每天可加工生产x件新产品,则甲工厂每天可加工生产1.5x件新产品,根据题意得:24024041.5x x+=,去分母得:240+6x=360,解得:x=20,经检验x=20是分式方程的解,且符合题意,∴1.5x=30,则甲、乙两个工厂每天分别可加工生产30件、20件新产品;(2)设甲工厂加工生产y天,根据题意得:2.8y+2.4×5603020y-≤60,解得:y≥9,则少应安排甲工厂加工生产9天.【点睛】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)如图,连接OE,利用垂径定理、圆周角、弧、弦的关系证得结论;(2)欲证明BE=EF,只需推知∠EBF=∠EFB即可.【详解】证明:(1)连接OE.∵直线l 与⊙O 相切于E ,∴OE ⊥l .∵l ∥BC ,∴OE ⊥BC ,∴»»BECE =, ∴∠BAE =∠CAE .∴AE 平分∠BAC ;(2)∵BF 平分∠ABC ,∴∠ABF =∠CBF .又∵»»BECE =, ∴∠BAE =∠CBE ,∴∠CBE+∠CBF =∠BAE+∠ABF .又∵∠EFB =∠BAE+∠ABF ,∴∠EBF =∠EFB ,∴BE =EF .【点睛】本题考查了切线的性质,垂径定理,圆周角、弧、弦的关系,属于基础题,熟记与圆有关的性质即可解答.24.(1)28y x =+;(2)当每件小商品的销售价定为200元或204元时,平均每天的销售利润可达到280元;(3)每件小商品降价8元时,每天的总利润最大,最大利润为288元.【解析】【分析】(1)根据销售单价是210元时平均每天销售量是8件,而销售价每降低2元,平均每天就可以多售出4件,即可得出关系式;(2)利用每件商品利润×销量=总利润,得出关系式求出即可;(3)由题意得出:w=(210-190-x )(8+2x )进而得出二次函数的最值即可得出答案.【详解】解:⑴y 与x 之间的函数关系式为28y x =+.⑵由题意可得:(28)(210190)280x x +--=.整理得216600x x -+=.解得12x 6,x 10==.2106204-=(元),21010200-=(元) 答:当每件小商品的销售价定为200元或204元时,平均每天的销售利润可达到280元. ⑶由题意可得,2w (2x 8)(210190x)2(x 8)288=+--=-+∵20a =-<,抛物线开口向下,当8x =时,有最大值,最大值为288. 答:每件小商品降价8元时,每天的总利润最大,最大利润为288元. 【点睛】本题考查二次函数的实际应用,解题的关键是熟练掌握二次函数的实际应用. 25.(1)12.5;(2)x =1 【解析】 【分析】(1)首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】(1)121(3)2-︒⎛⎫-+-- ⎪⎝⎭=×=11+1.5=12.5;(2)方程两边同乘(x+2)(x ﹣2)得 x ﹣2+4x ﹣2(x+2)=x 2﹣4, 整理,得x 2﹣3x+2=0, 解这个方程得x 1=1,x 2=2, 经检验,x 2=2是增根,舍去, 所以,原方程的根是x =1. 【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,也考查了解分式方程.2019-2020学年数学中考模拟试卷一、选择题1.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于( ) A.45°B.120°C.45°或135°D.45°或120°2.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .43.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+C .3338π- D .259π 4.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,AC =4,则OD 的长为( )A.1B.1.5C.2D.2.55.给出下列各式:①(﹣2)0=1;②(a+b )2=a 2+b 2;③(﹣3ab 3)2=9a 2b 6;④-21-3⎛⎫ ⎪⎝⎭=9,其中正确的是( ) A .①③④B .①②③C .①②④D .②③④6.下列运算正确的是( ) A .2a+3b =5abB .2(2a ﹣b )=4a ﹣bC .(a+b )(a ﹣b )=a 2﹣b 2D .(a+b )2=a 2+b 27.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是( )A .(a+b )(a ﹣b )=a 2﹣b 2B .a 2﹣b 2=(a+b )(a ﹣b )C .a 2+b 2=(a+b )2D .(a ﹣b )2=a 2﹣2ab+b 28.关于x 的方程ax 2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1﹣x 1x 2+x 2=1﹣a ,则a的值是( ) A .1 B .﹣1 C .1或﹣1D .29.分式方程的解是( )A.B.C.D.10.方程组632x y x y +=⎧⎨-=⎩的解为( )A .42x y =⎧⎨=⎩B .24x y =⎧⎨=⎩C .15x y =⎧⎨=⎩D .33x y =⎧⎨=⎩11.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A.3B.4C.2D.112.下列计算或运算中,正确的是( ) A .a 6÷a 2=a 3B .(﹣2a 2)3=﹣8a 3C .(a ﹣b)2=a 2﹣b 2D .(a ﹣3)(3+a)=a 2﹣9二、填空题 13.方程2131x x =+-的解为_____. 14.某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.15.三角形三边长分别为4,a ,7,则a 的取值范围是______________16=_____. 17.如图,//m n ,1115∠=︒,2100∠=︒,则3∠=______°;18.已知甲、乙两种棉花的纤维长度的平均数相等,若甲种棉花的纤维长度的方差2S1.3275=甲,乙种棉花的纤维长度的方差2S1.8775=乙,则甲、乙两种棉花质量较好的是▲ 。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如下表,则这10名同学一周内累计读书时间的中位数和众数分别是( )A.9,4B.9,8C.8,4D.8,82.关于x 的方程(m ﹣2)x 214=0有实数根,则m 的取值范围( ) A .m≤52且m≠2 B .m >52 C .m≤52D .m≤3且m≠23.画△ABC ,使∠A=45°,AB=10cm ,∠A 的对边只能在长度分别为6cm 、7cm 、8cm 、9cm 的四条线段中任选,可画出( )个不同形状的三角形. A.2 B.3C.4D.64.如图,正的边长为2,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是( )A. B.2 C. D.45.函数ky x=与y =﹣kx 2﹣k (k≠0)在同一直角坐标系中的大致图象可能是( )A .B .C .D .6.如图,二次函数y =ax 2+bx+c 的对称轴是直线x =1,且经过点(﹣1,0),则下列结论:①abc <0;②2a ﹣b =0;③a <﹣23;④若方程ax 2+bx+c ﹣2=0的两个根为x 1和x 2,则(x 1+1)(x 2﹣3)<0,正确的有( )个.A .1B .2C .3D .47.菱形ABCD 中,605B AB ∠=︒=,,则以AC 为边长的正方形ACEF 的周长为( )A .15B .16C .17D .208.下列运算正确的是( ) A .336a a a += B .222()a b a b +=+C .22122mm -=D .2222)2961a a a ÷=-+9.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .10.已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值是( ) A .﹣1 B .1 C .﹣5 D .1511.如图①,在菱形ABCD 中,动点P 从点B 出发,沿折线B→C→D→B 运动.设点P 经过的路程为x ,△ABP 的面积为y .把y 看作x 的函数,函数的图象如图②所示,则图②中的b 等于( )A.B.C.5 D.412.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,侧得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC为( )A.B.C.D.二、填空题13.02019的相反数是____.14.已知a2+a﹣1=0,则a3+2a2+2018=_____.15.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_____.16.因式分解:8a3﹣2ab2=_____.17.某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x本(x>10),则付款金额为___________元.18.分解因式:a2﹣1+b2﹣2ab=_____.三、解答题19.我市在创建全国文明城市过程中,决定购买A、B两种树苗对某路段道路进行绿化改造,已知购买A 种树苗5棵,B种树苗3棵,需要840元;购买A种树苗3棵,B种树苗5棵,需要760元.(1)求购买A、B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过10000元,现需购进这两种树苗共100棵,怎样购买所需资金最少?20.如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.21.如图,已知Rt△ABC,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE 是⊙O 的切线;(2)若AE :EB =1:2,BC =12,求AE 的长.22.已知二次函数y =﹣x 2+2mx ﹣m 2﹣1(m 为常数).(1)证明:不论m 为何值,该函数的图象与x 轴没有公共点;(2)当自变量x 的值满足﹣3≤x≤﹣1时,与其对应的函数值y 的最大值为﹣5,求m 的值.23.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:DE 是⊙O 的切线;(2)若CD =6cm ,DE =5cm ,求⊙O 直径的长.24.在平面直角坐标系xOy 中,抛物线y=ax 2-2ax-3a (a≠0)顶点为P ,且该抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax 2-2ax-3a 顶点P 的坐标(用含a 的代数式表示); (2)如果抛物线y=ax 2-3ax-3a 经过(1,3). ①求a 的值;②在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线y=ax 2-2ax-3a 在“G 区域”内有4个整点,直接写出a 的取值范围.25.已知等腰ABC ∆中,AB AC =,EDF ∠的顶点D 在线段BC 上,不与,B C 重合. (1)如图①,若,DE AC DF AB ∥∥且点D 在BC 中点时,四边形AEDF 是什么四边形并证明?(2)将EDF ∠绕点D 旋转至如图②所示位置,若,,B C EDF BD m CD n α∠=∠=∠===,设BDE ∆的面积为1S ;CDF ∆的面积为2S ,求12S S ⋅的值(用含有,,m n α的代数式表示).图① 图②【参考答案】*** 一、选择题二、填空题 13.-1 14.2019 15.5×108.16.2a (2a+b )(2a ﹣b ). 17.4x+1618.(a ﹣b+1)(a ﹣b ﹣1). 三、解答题19.(1)购买A 种树苗每棵需要120元,B 种树苗每棵需要80元;(2)当购买A 种树苗30棵、B 种树苗70棵时,所需资金最少,最少资金为9200元 【解析】 【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题; (2)根据题意可以列出相应的一元一次不等式组,从而可以解答本题; 【详解】(1)设购买A 种树苗每棵需要x 元,B 种树苗每棵需要y 元,依题意,得:5384035760x y x y +=⎧⎨+=⎩ ,解得:120{80x y == .答:购买A 种树苗每棵需要120元,B 种树苗每棵需要80元. (2)设购进A 种树苗m 棵,则购进B 种树苗(100﹣m )棵,依题意,得:3012080(100)10000mm m≥⎧⎨+-≤⎩,解得:30≤m≤50.设购买树苗的总费用为w元,则w=120m+80(100﹣m)=40m+8000.∵40>0,∴w的值随m值的增大而增大,∴当m=30时,w取得最小值,最小值为9200.答:当购买A种树苗30棵、B种树苗70棵时,所需资金最少,最少资金为9200元.【点睛】此题主要考查二元一次方程的应用和一元一次不等式组的应用,解题关键在于列出方程20.(1),y=﹣x+5;(2)0<x<1或x>4;(3)P的坐标为(,0),见解析.【解析】【分析】(1)把A(1,4)代入y=,求出m=4,把B(4,n)代入y=,求出n=1,然后把把A(1,4)、(4,1)代入y=kx+b,即可求出一次函数解析式;(2)根据图像解答即可;(3)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,然后用待定系数法求出直线AB′的解析式即可.【详解】解:(1)把A(1,4)代入y=,得:m=4,∴反比例函数的解析式为y=;把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;∴当x>0时,kx+b<的解集为0<x<1或x>4;(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴,解得,∴直线AB′的解析式为,令y=0,得,解得x=,∴点P的坐标为(,0).【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.21.(1)详见解析;(2)AE=【解析】【分析】(1)连接OE、EC,根据已知条件易证∠1+∠3=∠2+∠4=90°,即可得∠OED=90°,所以DE是⊙O的切线;(2)证明△BEC∽△BCA,根据相似三角形的性质可得BE BCBC BA=,即BC2=BE•BA,设AE=x,则BE=2x,BA=3x,代入可得122=2x•3x,解得x=,即可得AE=.【详解】(1)证明:连接OE、EC,∵AC是⊙O的直径,∴∠AEC=∠BEC=90°,∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2,∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB,∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(2)由(1)知:∠BEC=90°,∵在Rt△BEC与Rt△BCA中,∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE BC BC BA,∴BC2=BE•BA,∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x,∵BC=12,∴122=2x•3x,解得:x=,即AE=.【点睛】本题考查了切线的判定及相似三角形的判定与性质,熟练运用相关知识是解决问题的关键.22.(1)见解析;(2)m的值为﹣5或1.【解析】【分析】(1)根据判别式的值得到△=﹣4<0,然后根据判别式的意义得到结论;(2)利用配方法得到y=﹣(x﹣m)2﹣1,则抛物线的对称轴为直线x=m,讨论:当m<﹣3时,根据二次函数性质得到x=﹣3时,y=﹣5,所以﹣(﹣3﹣m)2﹣1=﹣5;当﹣3≤m≤﹣1时,x=m,y的最大值为﹣1,不合题意;当m>﹣1时,利用二次函数的性质得到x=﹣1时,y=﹣5,所以﹣(﹣1﹣m)2﹣1=﹣5,然后分别解关于m的方程即可得到满足条件的m的值.【详解】(1)证明:△=4m2﹣4×(﹣1)×(﹣m2﹣1)=﹣4<0,所以﹣x2+2mx﹣m2﹣1=0没有实数解,所以不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=﹣x2+2mx﹣m2﹣1=﹣(x﹣m)2﹣1,抛物线的对称轴为直线x=m,当m<﹣3时,﹣3≤x≤﹣1,y随x的增大而减下,则x=﹣3时,y=﹣5,所以﹣(﹣3﹣m )2﹣1=﹣5,解得m 1=﹣5,m 2=﹣1(舍去); 当﹣3≤m≤﹣1时,x =m ,y 的最大值为﹣1,不合题意;当m >﹣1时,﹣3≤x≤﹣1,y 随x 的增大而增大,则x =﹣1时,y =﹣5, 所以﹣(﹣1﹣m )2﹣1=﹣5,解得m 1=1,m 2=﹣3(舍去); 综上所述,m 的值为﹣5或1. 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 23.(1)证明见解析;(2)152. 【解析】 【分析】(1)连结DO ,如图,根据直角三角形斜边上的中线性质,由∠BDC =90°,E 为BC 的中点得到DE =CE =BE ,则利用等腰三角形的性质得∠EDC =∠ECD ,∠ODC =∠OCD ,由于∠OCD+∠DCE =∠ACB =90°,所以∠EDC+∠ODC =90°,即∠EDO =90°,于是根据切线的判定定理即可得到DE 与⊙O 相切; (2)根据勾股定理和相似三角形的性质即可得到结论. 【详解】(1)证明:连结DO ,如图, ∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD , 又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD+∠DCE =∠ACB =90°, ∴∠EDC+∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∴DE 与⊙O 相切; (2)BC=2DE=10BD ==8, ∵∠BCA =∠BDC =90°,∠B =∠B , ∴△BCA ∽△BDC ,AC BCCD BD ∴= 1068AC ∴=∴AC =152,∴⊙O 直径的长为152.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了直角三角形斜边上的中线性质和相似三角形的判定与性质.24.(1)顶点P的坐标为(1,-4a).(2)①a=-34.②“G区域”有6个整数点.(3)a的取值范围为-23≤a<-12或12<a≤23.【解析】【分析】(1)利用配方法将抛物线的解析式变形为顶点式,由此即可得出顶点P的坐标;(2)将点(1,3)代入抛物线解析式中,即可求出a值,再分析当x=0、1、2时,在“G区域”内整数点的坐标,由此即可得出结论;(3)分a<0及a>0两种情况考虑,依照题意画出图形,结合图形找出关于a的不等式组,解之即可得出结论.【详解】解:(1)∵y=ax2-2ax-3a=a(x+1)(x-3)=a(x-1)2-4a,∴顶点P的坐标为(1,-4a).(2)∵抛物线y=a(x+1)(x-3)经过(1,3),∴3=a(1+1)(1-3),解得:a=-34.当y=-34(x+1)(x-3)=0时,x1=-1,x2=3,∴点A(-1,0),点B(3,0).当x=0时,y=-34(x+1)(x-3)=94,∴(0,1)、(0,2)两个整数点在“G区域”;当x=1时,y=-34(x+1)(x-3)=3,∴(1,1)、(1,2)两个整数点在“G区域”;当x=2时,y=-34(x+1)(x-3)=94,∴(2,1)、(2,2)两个整数点在“G 区域”.综上所述:此时“G 区域”有6个整数点.(3)当x=0时,y=a (x+1)(x-3)=-3a ,∴抛物线与y 轴的交点坐标为(0,-3a ).当a <0时,如图1所示,此时有{24332a a <-≤-≤, 解得:-23≤a<-12; 当a >0时,如图2所示,此时有{34232a a -≤-<--≥-, 解得:12<a≤23. 综上所述,如果G 区域中仅有4个整数点时,则a 的取值范围为-23≤a<-12或12<a≤23.【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)利用配方法将抛物线解析式变形为顶点式;(2)利用二次函数图象上点的坐标特征,寻找“G 区域”内整数点的个数;(3)依照题意,画出图形,观察图形找出关于a 的一元一次不等式组.25.(1)菱形;(2)2221sin 4n m α. 【解析】【分析】(1)根据菱形的判定方法进行证明即可;(2)首先证明△EBD ∽△DCF ,设BE=x ,CF=y ,可得xy=mn ,由S 1=12•mx•sin α,S 2=12nysin α,可得S 1•S 2=14(mn )2sin 2α;【详解】(1)菱形,∵点D 为BC 的中点,且,DE AC DF AB ∥∥∴,DE DF 为三角形中位线, ∴11,,22DE AC DF AB ==∵,AB AC =∴DE=DF∵,DE AF DF AE ,∴AEDF 是平行四边形,∴AEDF 是菱形.(2)设BE=x ,CF=y .∵∠EDC=∠EDF+∠FDC=∠B+∠BEF ,∠MDN=∠B ,∴∠BED=∠FDC ,∵∠B=∠C ,∴△BED ∽△CDF , ∴BE BD CD CF=, ∴x m n y=, ∴xy mn =∵S 1=12•BD•BE•sin α=12mxsin α,S 2=12CD•CF•sin α=12ysin α, ∴1211sin sin 22S S mx ny αα⋅=⋅=2221sin 4n m α 【点睛】 本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题.2019-2020学年数学中考模拟试卷一、选择题1.如图,一个半径为r 的圆形纸片在边长为8 (8>)的等边三角形内任意运动,则在该边三角形内,这个圆形纸片“接触不到的部分”的面积是( )A .283r πB .24)3r πC .8﹣πr 2D .(π)r 22.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .C .D .4m 3.如图,一次函数y=-x 与二次函数y=ax 2+bx+c 的图象相交于点M 、N ,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.以上结论都正确 4.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps5.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >6=( )A .±4B .4C .±2D .2 7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A B .2 C .D .(1+ 8.如图,△ABC 内接于⊙O ,若∠OAB =35°,则∠C 的度数是( )A .35°B .45°C .65°D .55°9.据报道,截至2018年12月,天津轨道交通运营线路共有6条,线网覆盖10个市辖区,运营里程215000米,共设车站154座.将215000用科学计数法表示应为( )A .321510⨯B .421.510⨯C .52.1510⨯D .60.21510⨯10.若点()1A 1,y -,()2B 1,y ,()3C 3,y 在反比例函数6y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .321y y y <<D .231y y y << 11.下列说法正确的是( )A .周长相等的两个三角形全等B .面积相等的两个三角形全等C .三个角对应相等的两个三角形全等D .三条边对应相等的两个三角形全等 12.下列运算结果正确的是( )A .()322x x x x x x -+÷=-B .()236a a a -⋅=C .236(2x )8x -=-D .2224a (2a)2a -=二、填空题 13.如图,以半圆中的一条弦BC (非直径)为对称轴将弧BC 折叠后与直径AB 交于点D ,若AD BD =23,且AB =10,则CB 的长为_____.14.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的余弦值等于_____.15.一个多边形的每一个外角都等于36°,则该多边形的内角和等于_____度.16.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.17.如图,在等腰△ABC中,AB=AC,AD、BE分别是边BC、AC上的中线,AD与BE交于点F,若BE=6,FD=3,则△ABC的面积等于_____.18.已知扇形的半径为6,弧长为2π,则它的圆心角为_____度.三、解答题19.黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就为,底角平分线与腰的交点为黄金分割点.(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB的黄金分割点;(2)如图2,在△ABC 中,AB =AC ,若12AB BC =,则请你求出∠A 的度数; (3)如图3,如果在Rt △ABC 中,∠ACB =90°,CD 为AB 上的高,∠A 、∠B 、∠ACB 的对边分别为a ,b ,c .若点D 是AB 的黄金分割点,那么该直角三角形的三边a ,b ,c 之间是什么数量关系?并证明你的结论.20.已知a 、b 、c 是等腰ABC ∆的三条边,其中4a =,如果b 、c 是关于x 的一元二次方程260x x m -+=的两个根,求m 的值. 21.如图,已知AB 是⊙O 的直径,⊙O 与Rt △ACD 的两直角边分别交于点E 、F ,点F 是弧BE 的中点,∠C=90°,连接AF .(1)求证:直线DF 是⊙O 的切线.(2)若BD=1,OB=2,求tan ∠AFC 的值.22.如图,在四边形ABCD 中,BD 为一条对角线,AD ∥BC ,AD =2BC ,∠ABD =90°,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分∠BAD ,BC =2,求AC 的长.23012sin 45(12︒-⨯-+24.已知:如图,在菱形ABCD 中,AB =AC ,点E 、F 分别在边AB 、BC 上,且AE =BF ,CE 与AF 相交于点G .(1)求证:∠FGC =∠B ;(2)延长CE 与DA 的延长线交于点H ,求证:BE•CH=AF•AC.25.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系;(2)如果规定每天漆器笔筒的销售量不低于260件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3490元,试确定该漆器笔筒销售单价的范围.【参考答案】***一、选择题二、填空题1314.1215.1440 16.2717.918.60三、解答题19.(1)见解析;(2)108°;(3)该直角三角形的三边a ,b ,c 之间应满足2b ac =,见解析.【解析】【分析】(1)根据三角形内角和等于180°,求出∠ABC=∠ACB=72°,再根据CD 是∠ACB 的角平分线,求出∠ACD=∠BCD=36°,所以△BCD 和△ABC 是相似的两个等腰三角形,并且AD=BC ,根据相似三角形对应边成比例列出比例式整理即可证明;(2)在BC 边上截取BD=AB ,连接AD ,再根据“AB=AC,AB BC =分别求出CD AC 与AC BC ,所以△ACD ∽△ACB ,根据相似三角形对应角相等和三角形的一个外角等于和它不相邻的两个内角的和,利用三角形内角和定理列式即可求出∠A 的度数;(3)根据相似三角形对应边成比例分别求出AD 、BD 的长,再根据AB=AD+BD 代入整理即可得到a 、b 、c 之间的关系.【详解】解:(1)证明:∵在△ABC 中,∠A =36°,AB =AC ,∴∠ABC =∠ACB =72°,又CD 是∠ACB 的角平分线,∴∠ACD =∠BCD =36°,∴∠A =∠DCA ,∠BDC =72°,∴AD =CD =BC ,在△BCD 和△BAC 中,∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC , ∴BC BD AB BC=, ∴BC 2=AB•BD 又BC =AD , ∴AD 2=AB•BD,∴D 是AB 的黄金分割点;(2)在底边BC 上截取BD =AB ,连接AD ,∵AB BC =,AB =AC ,BD BC ∴=,AC BC ∴=,CD CD 1BD AC 2∴==, CD AC AC BC∴=, 又∠C =∠C ,∴△ACD ∽△BCA ,∴设∠CAB =∠CDA =x ,∴∠BAD =∠BDA =2x ,∴x+2x+x+x =180°,∴x =36°,∴∠BAC =108°;(3)∵在Rt △ABC 中,∠ACB =90°,。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专题训练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P的个数为________.图Z4-32.[2019·湖州] 如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2019·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2019·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE +EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x=1 (1,a)②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q(1,a).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF⊥DQ 于点F. 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a(x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB=OC =3,OP =OP , ∴当∠POB=∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x. 设P(m ,-m),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去, ∴点P 的坐标为⎝ ⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作A E⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B(a ,9a ),A(b ,1b ),∴C(a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b)=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP=90°,易得P 1(0,2). ②若∠ABP=90°,易得P 2(0,-3).③若∠BPA=90°,如图,以AB 为直径画⊙O′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O′作O′D⊥y 轴于D 点.在Rt △DO ′P 5中易知O′D=2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0), P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A(-1,4), ∴设C 1的解析式为y =a(x +1)2+4,把D(0,3)代入得3=a(0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m-3)=-4m +21=0,∴m =214. (3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n<4或n<3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A(-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P(-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°.同理可知∠OFE=45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F′CE,作PH⊥CF′于H 点,如图①,则PE +EF =PF′=2PH. 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF)max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D(2,n),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n)2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T(32,32)为圆心,12BC 为半径作⊙T,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D(2,m)为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m)2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a +c ,4=c ,解得⎩⎪⎨⎪⎧a =-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG⊥x 轴于点G.由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2. ∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m +26, ∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO -12BQ·EG =12(m +2)⎝ ⎛⎭⎪⎫4-2m +43=-13m 2+23m +83=-13(m -1)2+3.∵-2≤m≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A(4,0),D(2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO=FD,如图②,过点F作FM⊥x轴于点M,由等腰三角形的性质得OM=12OD=1,∴AM=3,∴在等腰直角三角形AMF中,MF=AM=3,∴F(1,3).由-12x2+x+4=3,得x1=1+3,x2=1-3,∴点P的坐标为(1+3,3)或(1-3,3).③若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4 2,∴点O到AC的距离为2 2,而OF=OD=2,与OF≥2 2相矛盾,∴AC上不存在点F,使得OF=OD=2,∴不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点P的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).2019-2020学年数学中考模拟试卷一、选择题1.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数和众数分别是( ) A.9.7,9.5B.9.7,9.9C.9.6,9.5D.9.6,9.62.如图,向正六边形的飞镖游戏盘内随机投掷一枚飞镖则该飞镖落在阴影部分的概率( ).A. B. C. D.3.在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( ) A .众数B .方差C .中位数D .平均数4.下列运算正确的是( ) A.235a a a +=B.248•a a a =C.()3263a ba b = D.22a a a ÷=5.cos45°的值等于( )AB .1C .2D .26.如图,点A 、B 、C 在半径为2的圆O 上,且∠BAC=60°,作OM ⊥AB 于点M ,ON ⊥AC 于点N ,连接MN ,则MN 的长为( )A.1C.27.一元二次方程2660x x --=配方后化为( ) A.()2315x -=B.()2315x +=C.()2315x +=D.()233x +=8.如图,在菱形ABCD 中,60ABC ∠=︒,E 为BC 边的中点,M 为对角线BD 上的一个动点。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1 等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2 直角三角形、全等三角形存在性问题图Z 4-22 如图Z 4-2,已知直线y =kx -6与抛物线y =ax 2+bx +c 相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标. 例题分层分析(1)已知点A 的坐标可确定直线AB 对应的函数表达式,进一步能求出点B 的坐标.点A 是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ 为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专 题 训 练1.如图Z 4-3,点O (0,0),A (2,2),若存在点P ,使△APO 为等腰直角三角形,则点P 的个数为________.图Z 4-32.[2017·湖州] 如图Z 4-4,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交y =1x 的图象于点C ,连结A C.若△ABC 是等腰三角形,则k 的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2017·张家界] 如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2017·攀枝花] 如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z4-8参考答案类型1 等腰三角形存在性问题例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x =1 (1,a )②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x =1,设Q (1,a ).①当AQ =BQ 时,如图①,设抛物线的对称轴交x 轴于点D ,过点B 作BF ⊥DQ 于点F . 由勾股定理,得BQ =BF 2+QF 2=(1-0)2+(3-a )2, AQ =AD 2+QD 2=22+a 2,得(1-0)2+(3-a )2=22+a 2,解得a =1, ∴点Q 的坐标为(1,1). ②当AB =BQ 时,如图②,由勾股定理,得(1-0)2+(a -3)2=10, 解得a =0或6,当点Q 的坐标为(1,6)时,其在直线AB 上,A ,B ,Q 三点共线,舍去,∴点Q 的坐标是(1,0).③当AQ =AB 时,如图③,由勾股定理,得22+a 2=10,解得a =±6,此时点Q 的坐标是(1,6)或(1,-6). 综上所述,存在符合条件的点Q ,点Q 的坐标为(1,1)或(1,0)或(1,6)或(1,-6). 类型2 直角三角形、全等三角形存在性问题 例2 【例题分层分析】(1)顶点 点B 待定系数 (2)点A ,B ,Q 解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a (x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB =OC =3,OP =OP , ∴当∠POB =∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x . 设P (m ,-m ),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去,∴点P 的坐标为⎝⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB ,∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作AE ⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.62.3 77或155 [解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质.用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值.设B (a ,9a ),A (b ,1b ),∴C (a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k .又∵BD ⊥x 轴,∴BC =8a .①当AB =BC 时,AB =(a -b )2+(ka -kb )2,∴1+k 2(a -b )=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b -a )2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP =90°,易得P 1(0,2). ②若∠ABP =90°,易得P 2(0,-3).③若∠BPA =90°,如图,以AB 为直径画⊙O ′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O ′作O ′D ⊥y 轴于D 点.在Rt △DO ′P 5中易知O ′D =2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O ′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0),P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A (-1,4), ∴设C 1的解析式为y =a (x +1)2+4,把D (0,3)代入得3=a (0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y =-x 2-2x +3,y =x +m ,得x 2+3x +m -3=0,Δ=32-4×1×(m -3)=-4m +21=0,∴m =214.(3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n <4或n <3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A (-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0);②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =4 2+3,这时点P 的坐标为(3+4 2,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P (-1,0). 综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°. 同理可知∠OFE =45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F ′CE ,作PH ⊥CF ′于H 点,如图①,则PE +EF =PF ′=2PH . 又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF )max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D (2,n ),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n )2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).②如图③,以BC 的中点T (32,32)为圆心,12BC 为半径作⊙T ,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D (2,m )为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m )2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D<5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a+c,4=c,解得⎩⎪⎨⎪⎧a=-12,c=4,∴所求抛物线对应的函数表达式为y=-12x2+x+4.(2)如图①,设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由-12x2+x+4=0,得x1=-2,x2=4,∴点B的坐标为(-2,0),∴AB=6,BQ=m+2.∵QE∥AC,∴△BQE∽△BAC,∴EGCO=BQBA,即EG4=m+26,∴EG=2m+43,∴S△CQE=S△CBQ-S△EBQ=12BQ·CO-12BQ·EG=12(m+2)⎝⎛⎭⎪⎫4-2m+43=-13m2+23m+83=-13(m-1)2+3.∵-2≤m≤4,∴当m=1时,S△CQE有最大值3,此时点Q的坐标为(1,0).(3)存在.在△ODF中,①若DO=DF,∵A(4,0),D(2,0),∴AD=OD=DF=2.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°,此时点F的坐标为(2,2).由-12x2+x+4=2,得x1=1+5,x2=1-5,∴点P的坐标为(1+5,2)或(1-5,2).②若FO =FD ,如图②,过点F 作FM ⊥x 轴于点M ,由等腰三角形的性质得OM =12OD =1, ∴AM =3,∴在等腰直角三角形AMF 中,MF =AM =3,∴F (1,3).由-12x 2+x +4=3, 得x 1=1+3,x 2=1-3,∴点P 的坐标为(1+3,3)或(1-3,3).③若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =4 2,∴点O 到AC 的距离为2 2,而OF =OD =2,与OF ≥2 2相矛盾,∴AC 上不存在点F ,使得OF =OD =2,∴不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形,所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).。
难题突破专题四特殊三角形存在性问题特殊三角形存在性问题主要是指寻找符合条件的点使之构成等腰三角形、直角三角形、全等三角形等特殊三角形.解决此类问题的关键在于恰当地分类讨论,避免漏解.类型1等腰三角形存在性问题1 如图Z4-1,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C (3,0).(1)求点A,B的坐标.(2)求抛物线对应的函数表达式.图Z4-1(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.例题分层分析(1)如何求一次函数图象与坐标轴的交点坐标?(2)如何求抛物线对应的函数表达式?根据题意,设抛物线对应的函数表达式时,应该用哪种形式?(3)①根据抛物线对应的函数表达式求出对称轴为直线________,所以可设点Q的坐标为________;②△ABQ是等腰三角形可分为________种情况,分别是____________________;③根据勾股定理分别列出方程即可求出点Q的坐标.解题方法点析对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.类型2直角三角形、全等三角形存在性问题图Z4-22 如图Z4-2,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.例题分层分析(1)已知点A的坐标可确定直线AB对应的函数表达式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线对应的函数表达式设为________式,再代入________的坐标,依据________法可解.(2)△ABQ为直角三角形,直角顶点没确定,故分别以________为直角顶点,进行分类讨论,找出相关的相似三角形,依据对应线段成比例进行求解或者利用勾股定理列方程求解.解题方法点析本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.专 题 训 练1.如图Z4-3,点O(0,0),A(2,2),若存在点P,使△APO为等腰直角三角形,则点P 的个数为________.图Z4-32.[2017·湖州]如图Z4-4,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1 x的图象于点C,连结A C.若△ABC是等腰三角形,则k的值是________.图Z4-43.如图Z4-5所示,在平面直角坐标系中,已知点A(2,2),点B(2,-3).试问坐标轴上是否存在一点P,使得△ABP为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图Z4-54.[2017·张家界]如图Z4-6,已知抛物线C1的顶点坐标为A(-1,4),与y轴的交点为D(0,3).(1)求C1的解析式;(2)若直线l1:y=x+m与C1仅有唯一的交点,求m的值;(3)若将抛物线C1关于y轴对称的抛物线记作C2,平行于x轴的直线记作l2:y=n.试结合图象回答:当n为何值时,l2与C1和C2共有:①两个交点;②三个交点;③四个交点;(4)若将C2与x轴正半轴的交点记作B,试在x轴上求点P,使得△PAB为等腰三角形.图Z4-65.[2017·攀枝花]如图Z4-7,抛物线y=x2+bx+c与x轴交于A,B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式.(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F ,求PE+EF的最大值.(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.图Z4-76.如图Z4-8,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B ,点A的坐标为(4,0).(1)求该抛物线对应的函数表达式.(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连结CQ,当△CQE的面积最大时,求点Q的坐标.(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0 ).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图Z 4-8参考答案类型1 等腰三角形存在性问题 例1 【例题分层分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x =1 (1,a )②三 AQ =BQ ,AB =BQ ,AQ =AB 解:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a-b+c,3=c,0=9a+3b+c,解得⎩⎪⎨⎪⎧a=-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x=1,设Q(1,a).①当AQ=BQ时,如图①,设抛物线的对称轴交x轴于点D,过点B作BF⊥DQ于点F.由勾股定理,得BQ=BF2+QF2=(1-0)2+(3-a)2,AQ=AD2+QD2=22+a2,得(1-0)2+(3-a)2=22+a2,解得a=1,∴点Q的坐标为(1,1).②当AB=BQ时,如图②,由勾股定理,得(1-0)2+(a-3)2=10,解得a=0或6,当点Q的坐标为(1,6)时,其在直线AB上,A,B,Q三点共线,舍去,∴点Q的坐标是(1,0).③当AQ=AB时,如图③,由勾股定理,得22+a2=10,解得a=±6,此时点Q的坐标是(1,6)或(1,-6).综上所述,存在符合条件的点Q,点Q的坐标为(1,1)或(1,0)或(1,6)或(1,-6 ).类型2直角三角形、全等三角形存在性问题例2【例题分层分析】(1)顶点点B待定系数(2)点A,B,Q解:(1)把(1,-4)代入y =kx -6,得k =2, ∴直线AB 对应的函数表达式为y =2x -6. 令y =0,解得x =3,∴点B 的坐标是(3,0). ∵点A 为抛物线的顶点,∴设抛物线对应的函数表达式为y =a (x -1)2-4, 把(3,0)代入,得4a -4=0, 解得a =1,∴抛物线对应的函数表达式为y =(x -1)2-4=x 2-2x -3. (2)存在.∵OB =OC =3,OP =OP , ∴当∠POB =∠POC 时,△POB ≌△POC , 此时OP 平分第二象限,即直线PO 对应的函数表达式为y =-x . 设P (m ,-m ),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m=1+132>0,舍去,∴点P 的坐标为⎝⎛⎭⎪⎫1-132,13-12.(3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎪⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝ ⎛⎭⎪⎫0,32;③当∠AQ 3B =90°时,过点A 作AE ⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝ ⎛⎭⎪⎫0,-72或⎝ ⎛⎭⎪⎫0,32或(0,-1)或(0,-3).专题训练 1.6 2.3 77或155[解析] 考查反比例函数中系数k 的几何意义及等腰三角形的性质. 用B ,A 两点的坐标来表示C 点坐标,得到BC 的长度,然后分三种情况讨论k 值. 设B (a ,9a ),A (b ,1b ),∴C (a ,1a ),ka =9a ,kb =1b ,∴a 2=9k ,b 2=1k.又∵BD ⊥x 轴,∴BC =8a.①当AB =BC 时,AB =(a-b)2+(ka-kb)2,∴1+k 2(a -b )=8a ,∴1+k 2(3k -1k)=83k ,∴k =3 77.②当AC =BC 时,AC =(b-a)2+(1b -1a)2,∴(1+k 29)(3k -1k)2=64k 9,∴k =155.③当AB =AC 时,∴1+k 29=1+k 2,∴k =0(舍去).综上所述,k =3 77或155.3.解:①若∠BAP =90°,易得P 1(0,2). ②若∠ABP =90°,易得P 2(0,-3).③若∠BPA =90°,如图,以AB 为直径画⊙O ′与x 轴、y 轴分别交于点P 3,P 4,P 5,P 6,AB 与x 轴交于点C ,过点O ′作O ′D ⊥y 轴于D 点.在Rt △DO ′P 5中易知O ′D =2,O ′P 5=52,则P 5D =254-4=32, OP 5=P 5D -OD =32-12=1,则P 5(0,1).易知P 5D =P 6D ,则P 6(0,-2).连结O ′P 3,O ′P 4,易求出P 3(2-6,0),P 4(2+6,0).综上所述,存在点P ,使得△ABP 为直角三角形,坐标为P 1(0,2),P 2(0,-3),P 3(2-6,0),P 4(2+6,0),P 5(0,1),P 6(0,-2).4.解:(1)∵抛物线C 1的顶点坐标为A (-1,4), ∴设C 1的解析式为y =a (x +1)2+4,把D (0,3)代入得3=a (0+1)2+4,解得a =-1, ∴C 1的解析式为y =-(x +1)2+4=-x 2-2x +3.(2)由方程组⎩⎪⎨⎪⎧y=-x 2-2x+3,y =x+m,得x 2+3x +m -3=0,Δ=32-4×1×(m -3)=-4m +21=0,∴m =214.(3)抛物线C 2的顶点坐标为(1,4),l 2与C 1和C 2共有:①两个交点,这时l 2过抛物线的顶点,∴n =4;②三个交点,这时l 2过两条抛物线的交点D ,∴n =3;③四个交点,这时l 2在抛物线的顶点与点D 之间或在点D 的下方,∴3<n <4或n <3.(4)根据抛物线的对称性可知,C 2的解析式为y =-(x -1)2+4=-x 2+2x +3,与x 轴正半轴的交点B 的坐标为(3,0),又A (-1,4),∴AB =42+42=4 2.①若AP =AB ,则PO =4+1=5,这时点P 的坐标为(-5,0); ②若BA =BP ,若点P 在点B 的左侧,则OP =BP -BO =4 2-3,这时点P 的坐标为(3-4 2,0),若点P 在点B 的右侧,则OP =BP +BO =42+3,这时点P 的坐标为(3+42,0);③若PA =PB ,这时点P 是线段AB 的垂直平分线与x 轴的交点,显然PA =PB =4,∴P (-1,0).综上所述,点P 的坐标为(-5,0)或(3-4 2,0)或(3+4 2,0)或(-1,0).5.解:(1)由题意得⎩⎪⎨⎪⎧32+3b+c=0,c =3,解得⎩⎪⎨⎪⎧b=-4,c =3,∴抛物线的解析式为y =x 2-4x +3. (2)由题易知OC =OB =3,∴∠OCB =45°. 同理可知∠OFE =45°, ∴△CEF 为等腰直角三角形.以BC 为对称轴将△FCE 对称得到△F ′CE ,作PH ⊥CF ′于H 点,如图①,则PE +EF =PF ′=2PH .又PH =y C -y P =3-y P ,∴当y P 最小时,PE +EF 取得最大值, ∵抛物线的顶点坐标为(2,-1),∴当y P =-1时,(PE +EF )max =2×(3+1)=4 2.(3)①由(1)知抛物线的对称轴为直线x =2,设D (2,n ),如图②.当△BCD 是以BC 为直角边的直角三角形且D 在C 的上方D 1位置时,由勾股定理得CD 2+BC 2=BD 2,即(2-0)2+(n -3)2+(3 2)2=(3-2)2+(0-n )2,解得n =5;当△BCD 是以BC 为直角边的直角三角形且D 在C 的下方D 2位置时,由勾股定理得BD 2+BC 2=CD 2,即(2-3)2+(n -0)2+(3 2)2=(2-0)2+(n -3)2,解得n =-1.综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1). ②如图③,以BC 的中点T (32,32)为圆心,12BC 为半径作⊙T ,与抛物线的对称轴x =2交于D 3和D 4,由直径所对的圆周角是直角得∠CD 3B =∠CD 4B =90°, 设D (2,m )为⊙T 上一点,由DT =12BC =3 22,得(32-2)2+(32-m )2=(3 22)2, 解得m =32±172,∴D 3(2,32+172),D 4(2,32-172),又由①得D 1为(2,5),D 2(2,-1),∴若△BCD 是锐角三角形,则D 点在线段D 1D 3或D 2D 4上(不与端点重合),则点D 的纵坐标的取值范围是-1<y D <32-172或32+172<y D <5.6.解:(1)由题意,得⎩⎪⎨⎪⎧0=8a+c,4=c,解得⎩⎪⎨⎪⎧a=-12,c =4,∴所求抛物线对应的函数表达式为y =-12x 2+x +4.(2)如图①,设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G .由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0), ∴AB =6,BQ =m +2.∵QE ∥AC , ∴△BQE ∽△BAC , ∴EG CO =BQ BA ,即EG 4=m+26, ∴EG =2m+43,∴S △CQE =S △CBQ -S △EBQ =12BQ ·CO -12BQ ·EG =12(m +2)⎝⎛⎭⎪⎫4-2m+43=-13m 2+23m +83=-13(m -1)2+3. ∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时点Q 的坐标为(1,0). (3)存在.在△ODF 中, ①若DO =DF , ∵A (4,0),D (2,0), ∴AD =OD =DF =2.又在Rt △AOC 中,OA =OC =4, ∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时点F 的坐标为(2,2). 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,∴点P 的坐标为(1+5,2)或(1-5,2). ②若FO =FD ,如图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得OM =12OD =1,∴AM =3,∴在等腰直角三角形AMF 中,MF =AM =3, ∴F (1,3).由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,∴点P 的坐标为(1+3,3)或(1-3,3). ③若OD =OF ,∵OA =OC =4,且∠AOC =90°, ∴AC =4 2,∴点O 到AC 的距离为2 2, 而OF =OD =2,与OF ≥2 2相矛盾, ∴AC 上不存在点F ,使得OF =OD =2,∴不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形,所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3).。