潮汐发电进展
- 格式:pdf
- 大小:794.99 KB
- 文档页数:11
2024年潮汐发电市场环境分析1. 市场概述潮汐发电是一种利用潮水运动产生能量的可再生能源技术,具有广阔的发展前景。
本文将对全球潮汐发电市场的环境进行分析,以了解市场现状和发展趋势。
2. 全球潮汐发电市场规模根据国际能源署的数据,截至2020年,全球潮汐发电装机容量达到XX MW。
潮汐发电已在许多国家和地区得到广泛应用,如英国、法国、加拿大和中国等。
目前,英国是全球最大的潮汐发电市场,占据了全球市场份额的X%。
3. 政策和法规环境政府政策和法规对于潮汐发电市场的发展具有重要影响。
许多国家和地区已出台了鼓励可再生能源发展的政策,例如给予潮汐发电项目补贴和税收优惠。
此外,一些国家还制定了独立的潮汐能源法规,以确保潮汐发电项目的顺利推进。
4. 技术进展潮汐发电技术在过去几年取得了显著进展。
高效的潮汐涡轮机和先进的发电设备能够更有效地转换潮汐能为电能。
此外,一些新兴技术如潮汐流速发电和浮动式潮汐发电等也在研发阶段。
5. 竞争态势全球潮汐发电市场具有潜力吸引众多企业参与竞争。
目前,市场上存在多家潮汐发电技术公司,如Tidal Power Company、Ocean Energy和OpenHydro等。
这些公司致力于研发和部署更先进的潮汐发电技术。
6. 市场机会与挑战潮汐发电市场面临着一些机会和挑战。
一方面,潮汐能丰富且可预测,具有较高的可持续性和稳定性,这为潮汐发电提供了巨大的市场潜力。
另一方面,潮汐发电技术仍面临着高成本、设备耐久性、环境影响等挑战。
7. 市场发展趋势未来几年,全球潮汐发电市场将呈现出以下发展趋势: - 技术进一步成熟:通过技术创新和成本降低,潮汐发电技术将更加成熟和可靠。
- 市场规模扩大:随着潮汐发电技术的进步和市场需求的增加,全球潮汐发电市场规模将继续扩大。
- 政策支持持续增加:各国政府将进一步加大对潮汐发电项目的支持力度,为市场发展创造良好的政策环境。
8. 总结潮汐发电市场具有巨大的潜力和发展机会,但也面临着一些挑战。
潮汐能发电技术的现状与发展趋势潮汐能作为可再生能源中的一种,具有巨大的发展潜力和优势,一直备受关注。
通过利用海洋潮汐涨落产生的动能,可以实现对电力的高效产出。
本报告对潮汐能发电技术的现状进行了分析,并提出了存在的问题以及对策建议,以期推动潮汐能发电技术的进一步发展。
一、潮汐能发电技术的现状分析1.概述潮汐能发电技术是指利用潮汐能源,通过海水潮汐的周期性变化,将潮汐动能转化为电能的过程。
常见的潮汐能发电技术包括水轮发电、潮汐槽发电、压力差发电和潮汐涡轮发电等。
目前,世界各国对潮汐能发电技术的研究和应用都在不断深入。
2.发展现状在英国、法国、加拿大、挪威等国家,潮汐能发电技术已经得到广泛应用。
其中,英国的斯旺西湾潮汐能发电项目是目前全球最大的潮汐能发电项目之一,有效利用了潮汐涨落的动能,为当地提供清洁能源。
另外,法国的布列塔尼地区也是潮汐能发电技术的重要实践区域,多家公司在该地区展开了潮汐能发电项目。
3.发展趋势随着清洁能源的重要性日益凸显,潮汐能发电技术具有较大的发展潜力。
未来,潮汐能发电技术将逐步实现规模化生产,并在海洋工程领域发挥重要作用。
随着技术的不断创新和成熟,潮汐能发电技术的成本将逐渐下降,从而更好地满足能源需求。
二、存在的问题1.技术成熟度不高当前,潮汐能发电技术的技术成熟度相对较低,存在一定的技术难点和挑战。
例如,对潮汐资源的准确评估、材料的耐候性、装备的长期稳定性等问题尚待解决。
2.成本较高潮汐能发电技术的建设和运维成本相对较高,给实际应用带来一定压力。
尤其是在初期投资高、回收周期长的情况下,很多国家和地区在采用潮汐能发电技术时面临经济上的挑战。
3.环境影响难以评估潮汐能发电技术的应用会产生一定程度的环境影响,包括改变海洋生物栖息地、影响海底地形等。
如何准确评估潮汐能发电技术对环境的影响,以及如何有效降低环境风险,也是当前亟需解决的问题。
三、对策建议1.加强技术研究与创新针对潮汐能发电技术存在的技术难点,应加强技术研究与创新,提高技术成熟度。
潮汐能的利用现状及发展前景潮汐能是一种可再生的能源,利用潮汐水流的动能来发电。
潮汐能的利用具有以下几个方面的优势:可再生、稳定、无污染、节能和长寿命。
潮汐能的利用现状虽然还比较有限,但是它具有巨大的发展潜力和广阔的应用前景。
目前,潮汐能的利用现状主要集中在一些潮汐能资源丰富的地区,如英国、加拿大和法国等。
这些地区利用潮汐能建造了一些潮汐能发电厂,通过潮汐水流带动涡轮机转动进而发电。
这些潮汐能发电厂的发电效率相对较高,并且发电稳定可靠。
此外,一些国家还在开展潮汐能研究和试验项目,以探索更多潮汐能利用的可能性。
潮汐能的发展前景广阔。
首先,潮汐能是一种可再生能源,不会受到资源枯竭或供给不足的限制。
潮汐是地球运动的自然结果,每天都会周期性地发生,因此潮汐能源是可预测的。
这一特点使得潮汐能能够成为一种可靠的基础能源。
其次,潮汐能的利用是无污染的,不会产生二氧化碳、硫氧化物或氮氧化物等温室气体和有害物质的排放。
这与传统的化石燃料发电方式形成了鲜明的对比。
随着对环境问题的日益关注和全球温室气体减排目标的设定,潮汐能作为一种清洁能源将会得到更多的重视和支持。
此外,潮汐能的利用还可以带动相关的产业发展。
潮汐能发电需要涉及到涡轮机、发电机、输电线路等设备和技术,这将带动制造业和科技创新的发展。
同时,潮汐能的利用也可以为当地带来经济效益,创造就业机会,促进地方经济的繁荣。
然而,潮汐能的利用还面临一些挑战和限制。
首先,潮汐能的利用受到地理条件的限制。
只有在潮汐差较大的地区才能够进行潮汐能发电。
这就限制了潮汐能发电的地域范围。
其次,潮汐能发电成本较高。
目前的潮汐能发电设备和技术都还比较新颖和复杂,造价较高,导致潮汐能的利用成本相对较高。
此外,潮汐能的利用还面临一些环境和生态保护的问题。
潮汐能发电厂对于海洋生态环境会产生一定的影响,如鱼类迁移和海洋生态系统的平衡等问题。
总的来说,潮汐能作为一种可再生的能源,具有巨大的应用前景。
海洋潮汐能开发利用技术研究进展潮汐是地球上一种可再生的能源资源,具有巨大的潜力,可以为人类提供清洁、可持续的能源。
随着对传统能源的需求与环境问题的日益突出,海洋潮汐能成为了人们日益关注的研究领域。
在过去几十年中,对海洋潮汐能开发利用技术的研究不断取得进展。
本文将对海洋潮汐能开发利用技术的研究进展进行总结和概述。
在海洋潮汐能的开发利用过程中,最重要的技术之一是潮汐涡轮机技术。
潮汐涡轮机是一种通过潮汐水流驱动的装置,将水动能转化为机械能进而发电。
目前,潮汐涡轮机的设计和优化已经取得了一定的成果。
例如,通过改进涡轮机的涡轮叶片形状和材料,提高了潮汐涡轮机的效率和寿命,进一步降低了运营成本。
同时,研究人员还在开发新型的涡轮机,如垂直轴潮汐涡轮机,以提高潮汐能的开发利用效率。
与此同时,潮汐能海洋发电站技术也得到了显著的改进和发展。
传统的潮汐发电站主要是基于水坝和水轮发电机组成的。
但是,这种构造需要大量的土地和资金,并且对潮汐能的开发地点有一定的要求。
为了克服这些限制,研究人员提出了新型的技术解决方案。
一种新兴的技术是潮汐涡轮机一体化发电站,利用潮汐涡轮机和蓄能技术,将能量以电池的形式储存起来,解决了潮汐能的间歇性问题。
此外,还有一些采用浮筒和锚链结构的浮式潮汐发电站,可以随潮汐的变化漂浮。
除了涡轮机和发电站的技术改进,海洋潮汐能的海底线路与电缆技术也受到了关注。
潮汐电力产生后需要传输到陆地上,因此,在海洋环境中运输电力的可靠电缆技术至关重要。
近年来,采用新型材料和结构的海洋电缆研究取得了显著的进展,提高了电缆的传输效率和可靠性。
此外,在海洋电缆的铺设和维护方面也出现了一些创新的技术,例如自动化系统和机器人技术的应用,使得海洋潮汐能的利用更加便捷和高效。
值得一提的是,与海洋潮汐能技术相关的环境影响与生态保护也成为了研究的重点。
潮汐能的开发利用可能对海洋生态系统和水生生物造成一定的影响,因此在技术研究中要考虑生态保护的因素。
海洋能源开发的技术进展在当今全球能源需求不断增长,传统能源面临资源枯竭和环境压力的背景下,海洋能源作为一种潜力巨大、清洁可再生的能源形式,正日益受到人们的关注。
海洋能源主要包括潮汐能、波浪能、海流能、温差能和盐差能等,其开发利用不仅能够缓解能源危机,还有助于减少温室气体排放,保护生态环境。
近年来,随着科技的不断进步,海洋能源开发的技术取得了显著的进展。
潮汐能是海洋能源中最早被开发利用的形式之一。
潮汐发电的原理是利用潮汐的涨落产生的水位差来推动水轮机旋转,从而带动发电机发电。
目前,潮汐发电技术已经相对成熟,一些大型潮汐电站已经投入运行。
例如,法国的朗斯潮汐电站是世界上最大的潮汐电站之一,装机容量达到 240 兆瓦。
此外,我国也在浙江、福建等地建设了一些潮汐电站,为当地的电力供应做出了贡献。
然而,潮汐能开发也面临一些挑战。
潮汐电站的建设需要特定的地理条件,如海湾或河口,且工程规模较大,投资成本高。
此外,潮汐的周期性和不稳定性也给电力的稳定输出带来了一定的困难。
为了解决这些问题,科学家们正在不断探索新的技术和方法。
例如,采用新型的水轮机设计,提高能量转换效率;发展储能技术,以平衡潮汐能发电的不稳定性;利用智能化的控制系统,优化电站的运行和管理。
波浪能是另一种具有巨大潜力的海洋能源。
波浪能的获取方式多种多样,常见的有振荡水柱式、点头鸭式、筏式等。
振荡水柱式波浪能装置是通过波浪的上下运动推动空气在水柱内往复流动,从而驱动涡轮机发电。
点头鸭式装置则是利用装置在波浪作用下的俯仰运动来转化能量。
近年来,波浪能技术取得了不少突破。
一些新型的波浪能装置在能量转换效率和可靠性方面有了显著提高。
例如,英国的 Pelamis 波浪能装置采用了柔性的连接结构,能够更好地适应海洋环境,提高了发电效率。
然而,波浪能开发仍面临诸多难题。
波浪的能量分布不均匀,且受到海洋气候的影响较大,使得能量的收集和利用存在较大的不确定性。
此外,波浪能装置在恶劣的海洋环境中容易受到腐蚀和损坏,维护成本较高。
潮汐能利用技术创新有效利用潮汐动能潮汐能利用技术创新:有效利用潮汐动能潮汐是海洋中的一种自然现象,被广泛认为是清洁、可再生的能源来源。
潮汐动能的有效利用对于解决能源危机、减少环境污染具有重要意义。
随着技术创新的不断推进,潮汐能利用技术正逐步成为可行的能源选择。
本文将探讨目前潮汐能利用技术的创新进展,并介绍其对能源产业和环境的潜在影响。
一、潮汐能利用技术创新的背景潮汐能,指的是利用潮汐运动中的动能来发电。
相比于传统的化石燃料能源,潮汐能具有更低的碳排放量以及更持久的供应。
然而,长期以来,潮汐能的开发利用因技术上的限制而相对较少。
近年来,随着科技的进步,潮汐能利用技术开始取得突破,逐步成为一种可行的能源解决方案。
二、潮汐能利用技术的创新进展1. 潮汐能发电技术潮汐能发电技术主要分为潮汐水位发电和潮汐动能发电两种。
潮汐水位发电利用潮汐水位差来发电,常见的技术包括潮汐纲、潮汐圈等。
潮汐动能发电则是通过潮汐引起的水流来旋转涡轮机以产生电能,技术更为先进,如海底涡轮机、水下涡轮机等。
2. 材料和装置创新为了提高潮汐能利用效率,科学家们在材料和装置方面进行了大量的研究。
例如,研发新型的涡轮机材料,以提高转动效率和耐腐蚀性,同时减少维护成本。
此外,还有创新的装置设计,如具有较高容量的潮汐能转化器以及采用先进控制系统的设备,能够更好地适应潮汐能发电的需求。
3. 物联网技术的应用潮汐能利用技术的创新还包括物联网技术的应用。
通过潮汐能和物联网技术的结合,可以实现远程监控、智能控制和数据传输,提高潮汐能发电的控制和管理效率。
智能传感器的使用可以实时监测水流、潮汐变化等参数,从而优化发电效果,减少能源损耗。
三、潮汐能利用技术的潜在影响1. 能源产业潮汐能利用技术的创新对能源产业具有重要意义。
潮汐能作为一种可再生、可靠的能源,可以为能源供应带来可持续性。
其开发利用不仅可以弥补传统能源缺口,还可以减轻为能源而进行的环境破坏。
海流能发电技术的现状与发展趋势引言:随着对可再生能源的需求不断增长,海流能作为一种潜在的清洁能源资源吸引了广泛关注。
海流能发电技术以海洋中的潮汐、洋流和海浪等动能为源泉,转化为电能供应一直以来被视为一种具有巨大潜力的可再生能源技术。
本文将评估海流能发电技术的现状,探讨其发展趋势,并对其局限性和挑战进行分析。
一、海流能发电技术的现状1.海流能发电技术的概述海流能发电技术可以分为潮汐能发电、洋流能发电和波浪能发电。
潮汐能发电利用潮汐运动中的涨落差来转化为电能,洋流能发电通过利用洋流的动能将其转化为电能,波浪能发电则利用波浪的起伏运动来产生电能。
2.潮汐能发电技术的现状潮汐能发电技术是海流能发电技术中发展最为成熟的一种。
目前已经有多个国家采用了潮汐能发电技术,如法国的圣马洛海峡潮汐电站和加拿大的贝尔岛潮汐能发电站等。
这些项目利用海流的涨落差,在数百个涡轮机中产生电力。
然而,潮汐能发电技术的效率还有待提高,并且选址限制较多。
3.洋流能发电技术的现状洋流能发电技术利用洋流的运动动能转化为电能。
目前,洋流能发电技术仍处于早期阶段,研究和开发工作仍在进行中。
有一些试点项目已经开始尝试,如苏格兰南部的潮流能项目。
然而,由于海洋环境的复杂性,洋流能发电技术面临着许多挑战,如设备的耐久性和维护成本等。
4.波浪能发电技术的现状波浪能发电技术是海流能发电技术中相对较新的一种。
目前,波浪能发电技术还处于研究和实验阶段。
许多国家和地区正在探索波浪能发电技术的潜力,如葡萄牙和澳大利亚等。
波浪能发电技术的挑战主要包括海洋环境的压力和设备的稳定性。
二、海流能发电技术的发展趋势1.技术改进和成本降低随着对海流能发电技术的研究不断深入,技术改进将会带来效率的提高和成本的降低。
例如,利用先进的涡轮机设计来提高转化效率,采用先进材料和制造工艺来降低设备制造成本。
2.深水技术的发展海流能发电技术的研究正逐渐向深水区域扩展。
在深水区域,海流的速度更快,能量更丰富。
潮汐能发电的现状与未来发展潮汐能发电是一种清洁、可持续的能源形式,利用潮汐能转化为电能。
近年来,随着可再生能源的广泛关注和应用,潮汐能发电在全球范围内逐渐受到重视。
本文将对潮汐能发电的现状进行概述,并探讨其未来的发展前景。
一、潮汐能发电的现状潮汐能发电是通过利用海洋潮汐的周期性变化来产生能源的方法。
潮汐能是一种可预测、稳定的能源来源,相比其他可再生能源如风力、太阳能等,潮汐能发电更加稳定。
目前世界上有一些潮汐能发电项目正在进行中,为实现清洁能源转型做出了重要贡献。
潮汐能发电目前主要实施的两种方式是潮汐流能发电和潮汐潮汐能发电。
潮汐流能发电是通过利用潮汐时水流的动力来产生能源。
目前,世界上一些地区已经在海岸线或海峡地区建立了潮汐发电站,利用潮汐能将涌入或流出的水流转化为电能。
这些项目使用潮汐涌浪发电机、水轮机或潮汐涡轮机等设备来捕捉潮汐能。
潮汐流能发电技术已经初步成熟,实现了商业性运营。
潮汐潮汐能利用来自潮汐涨落的高度差来产生能源。
利用建筑物如堤防、潮闸等来捕捉潮汐能。
当潮水涨潮时,将水吸入通道或池塘中;当潮水退潮时,利用涨潮时储存的水流驱动涡轮机发电。
潮汐潮汐能方案目前仍处于研究和试验阶段,但已经显示出很大的潜力。
二、潮汐能发电的优势和挑战潮汐能发电相比传统能源具有一些显著的优势。
首先,潮汐能是一种清洁的能源形式,不会产生大气污染或温室气体排放。
它可以减少对传统能源如煤炭、石油等的依赖,有助于降低碳排放和缓解气候变化。
其次,潮汐能具有高度可预测性和稳定性。
由于潮汐的规律性和可预测性,潮汐能的发电效率更高,能够提供稳定的电力供应。
这对于能源供应的稳定性和网络平衡具有重要意义。
然而,潮汐能发电也面临一些挑战。
首先,潮汐能发电的建设成本较高。
由于需要建设海上设施,如大型涡轮机、浮标、电缆等,潮汐能发电的投资成本较高。
此外,维护和修复这些设施的费用也相当昂贵。
其次,潮汐能发电的地点选择限制较多。
为了获得良好的潮汐能资源,潮汐发电设施通常需要在海洋环境较为特殊的地区建设。
潮汐能发电的技术创新与突破潮汐能是一种可再生能源,通过利用海洋潮汐水流来产生电力。
这种能源在过去几十年中逐渐被人们重视,并且取得了一些突破性进展。
本文将探讨潮汐能发电的技术创新以及近年来的突破。
一、潮汐能发电技术的现状目前,潮汐能发电技术主要分为三种类型:潮汐水轮机、潮汐溢水发电以及潮汐能驱动的涡轮发电机。
潮汐水轮机是最常见的潮汐能发电技术。
它通过将潮汐水流经过水轮机来驱动发电机发电。
潮汐水轮机利用潮汐涨落的高低差来产生动力,因此需要选择合适的地理位置进行建设。
潮汐溢水发电是相对较新的技术。
它利用潮汐水流过程中产生的水位差来推动水流进入某个预定的区域,然后再通过水力涡轮发电机产生电力。
这种技术对地理位置的要求较低,可以应用于更广泛的海岸线。
另外,潮汐能驱动的涡轮发电机技术也在一些研究中取得了突破。
这种技术利用潮汐水流的流速和流量来驱动涡轮发电机,从而产生电能。
二、潮汐能发电技术的创新近年来,潮汐能发电技术在以下几个方面取得了创新和进展。
1. 高效能转化潮汐能转换效率的提高是技术创新的重点之一。
通过改进水轮机的设计和使用新材料,可以提高发电机的效率。
同时,利用先进的电力转换技术,如直线发电机和永磁发电机,可以进一步提高发电效率。
2. 智能监测系统为了更好地监测和控制潮汐能发电站的运行状态,智能监测系统的开发变得越来越重要。
这些系统可以实时监测发电机的性能和运行状况,并提供预警和故障检测功能,以及数据分析和远程控制等功能。
3. 群体集成和网络互连对于海上潮汐能发电站来说,群体集成和网络互连是技术创新的一个重要方向。
通过将多个潮汐能发电站集成为一个网络,可以实现能量的共享和优化,提高整体发电效率。
同时,网络互连还可以提高系统的可靠性和稳定性。
三、潮汐能发电技术的突破尽管潮汐能发电技术取得了一些创新,但仍然存在一些挑战和限制。
然而,近年来也出现了一些突破,为潮汐能发电开辟了更广阔的前景。
1. 新材料的应用新材料的应用为潮汐能发电技术带来了新的突破。
潮汐能发电技术的现状与发展趋势潮汐能作为一种可再生能源,具有稳定性高、可预测性强等优势,在能源领域受到越来越多的关注和重视。
本文将探讨潮汐能发电技术的现状以及未来的发展趋势。
一、潮汐能发电技术的现状1.1 原理与分类潮汐能发电是利用海洋潮汐运动所带来的潮汐能来进行发电的技术。
根据发电方式的不同,潮汐能发电可以分为潮流发电和潮池发电两种。
潮流发电利用潮汐能驱动涡轮机旋转发电,而潮池发电则是通过潮汐水位的升降驱动水流进出潮池产生电力。
1.2 现有技术与案例分析目前,潮汐能发电技术已经在世界各地得到了一定的应用和发展。
在潮流发电方面,常见的技术包括潮汐涡轮机、潮流涡轮机和潮汐水轮发电机等。
英国的斯旺西湾潮汐能发电站是目前最大的商业化潮汐能发电项目,利用潮汐涡轮机实现电力的生产。
在潮池发电方面,英国的利特莱亚潮池发电站是一个成功的案例,通过潮汐水位升降利用潮汐发电机产生电力。
1.3 存在的挑战与问题潮汐能发电技术尽管有许多潜在的应用前景,但目前仍然面临诸多挑战与问题。
首先,由于潮汐能发电的设备结构复杂,安装和维护成本较高,导致这一技术的经济性较差。
其次,潮汐能发电站的建设需要找到适合的潮汐能资源,而这样的资源并不是每个地区都能够轻易找到。
此外,潮汐能发电技术还需要解决对海洋生态环境的影响以及与渔业活动的冲突等问题。
二、潮汐能发电技术的发展趋势2.1 技术进步与成本降低随着科技的不断进步,潮汐能发电技术也在不断改进和创新。
新材料的应用、设备结构的优化以及工艺流程的改进等,都有助于提升潮汐能发电技术的效率和经济性。
预计随着关键技术的突破,潮汐能发电的成本将逐渐下降,更多地被应用于实际生产中。
2.2 多能源协同发展潮汐能作为清洁能源的一种,与其他可再生能源如风能、太阳能等相辅相成。
未来,将会出现风潮混合发电、海陆潮汐能混合发电等多能源协同发展的趋势,以优化能源结构和提高能源利用效率。
2.3 构筑海上综合利用平台随着资源的日益紧缺和环境保护意识的提高,未来的潮汐能发电将不仅仅局限于发电功能,还将构筑起海上综合利用的平台。
第2l卷第4期2007年12月
隶矛审泰坪套
DongfangElectricReview
V01.2lNo.4
Dec.2007。
19。
图2法国朗斯潮汐电站
计划一直持续到2004年。
朗斯机组为可逆式灯泡贯流发电机组,除正向发电、反向发电、正向泄水和反向泄水外,还能正向泵水和反向泵水。
朗斯电站10MW机组的剖面图见图3。
朗斯电站水轮机主要参数:
机组型式BRK
额定功率/MW10
设计水头/m5.6(正向)7.15(反向)最大水头/m11
最小水头/m5.5
/习蒯戚燃‘
弋图丁l雨鞫薇聊)竺
、l
、铡lIE
1.逊人jI珏道2.托_fl:3.难环4.导水机构5.转轮6.主轴7.与双向推力轴承组合征一起的导轴承8.发电电动机9.导轴承10.鼓风机
图3朗斯电站灯泡贯流式水轮发电机组
设计流量/m3・s一283
额定转速/r・min一193.75
比转速/mkW1030
转轮直径/m5.35
转轮叶片数量4
转轮叶片倾角范围/(o)一5一+35
导水机构固定导叶数量24
导叶开度范围/(o)0~95
机组轴线安装高度/m一5.75
转轮叶片为双面弯曲的叶型以适应水轮机和水泵两种运行方式。
12台机的水轮机叶片采用不锈钢制造,而另12台机水轮机叶片则采用铝青铜制造。
运行实践证明,采用阴极保护后,两种叶片在空化和腐蚀方面没有明显差异。
朗斯电站水轮发电机由法国原Alsthom公司(12台)、Jeumon公司(6)和SW公司(6台)分别供货,其主要参数如下:
额定容量/kVA10000
额定电压/V3500
额定频率/Hz50
额定功率因数1.0
额定转速/r・min~93.75
飞逸转速/r・min~379.5
推力轴承负荷
水轮机运行工况/kN2660
水泵运行工况/kN3080
机组转动惯量(GD2)/(t-m2)270
发电机定子铁心内径/m4.55
机组采用增压空气冷却方式,灯泡内气压为2kg/cm2。
3.4.3基斯洛潮汐电站水轮发电机组
电站装有一台法国奈尔皮克公司提供的400kW可逆式灯泡贯流式机组和一台前苏联仿制的400kW机组,第一台机组于1968年建成发电。
基斯洛潮汐电站可逆式灯泡贯流式机组剖面图见图4。
主要参数如下:
水轮机设计水头/m1.3
水轮机设计流量/m3・S一52
水轮机额定转速/r・min‘172
发电机额定功率/kW400
发电机额定转速/r・min一600
水轮机转轮为4叶片转桨式转轮,转轮直径3.3m,转轮体直径为0.43D1。
导水机构为锥形,
导叶数20。
座环有10个固定导叶,灯泡体的最大。