数形结合就是通过数与形的相互转化
- 格式:doc
- 大小:23.00 KB
- 文档页数:3
数形结合不仅是一种数学思想,也是一种很好的教学方法。
著名数学家华罗庚先生曾经说过:“数缺形时少直观,形少数时难入微”。
数形结合就是通过数与形的相互转化、相辅相成来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上掌握算法;可将复杂问题简单化,在解决问题的过程中,提高学生的思维能力和数学素养。
适时的渗透数形结合的思想,可达到事半功倍的效果。
一、渗透数形结合思想,把抽象的数学概念直观化,帮助学生形成概念,运用图形,建立表象,理解本质在低年级教学中学生都是从直观、形象的图形开始入门学习数学。
一年级的小学生学习数学,是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。
数学意义所指的“意义”是人们一致公认的事物的性质、规律以及事物之间的内在联系,是比较抽象的概念。
而“数形结合”能使比较抽象的概念转化为清晰、具体的事物,学生容易掌握和理解。
这方面的例子很多,如低年级开始学习认数、学习加减法、乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出数,算理等等。
在小学中高年级的教学中,我们要注重运用直观图形,巧妙地把数和形结合起来,把抽象的数学概念直观化,帮助学生形成概念。
例如:如,教学“体积”概念。
教师可以借助形象物体设问,引导学生分析比较。
首先观察物体,初步感知。
让学生观察一块橡皮和铅笔盒,提问:哪个大,哪个小?又出示一个魔方和一个骰子,提问:那个大,那个小?通过观察物体,让学生对物体的大小有个感性认识。
接着在一个盛有半杯水的玻璃杯里慢慢加入一块石头,学生可以观察到,随着石头的投入,杯中的水位不断上升。
问:玻璃杯里的水位为什么会上升?学生从这一具体事例中获得了物体占有空间的表象。
专题4 数形结合、分类讨论思想一.知识探究:1.数形结合作为一种重要的数学思想方法历年来一直是高考考察的重点之一。
数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
数形结合的途径:(1)通过坐标系形题数解(2)通过转化构造数题形解 数形结合的原则:(1)等价性原则;(2)双向性原则;(3)简单性原则2.分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级;二.命题趋势分类讨论思想是一种重要的数学思想,它在人的思维发展中有着重要的作用,因此在近几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测对本专题的考察为:将有一道中档或中档偏上的试题,其求解思路直接依赖于分类讨论,特别关注以下方面:涉及指数、对数底的讨论,含参数的一元二次不等式、等比数列求和,由n S 求n a 等。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
三.再现性题组1.集合A ={x||x|≤4,x ∈R},B ={x||x -3|≤a ,x ∈R},若A ⊇B ,那么a 的范围是( )。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<1 对参数a 分a>0、a =0、a<0三种情况讨论,选B ;2. 若θ∈(0, π2),则lim n →∞cos sin cos sin n n n n θθθ+θ-的值为( )。
数形结合思想方法一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.2230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。
分析:2()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需,(3)0f >,()()02bf f k a-=-<同时成立. 10(10)k k -<<∈-解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
“数形结合”培养学生数感摘要:数感是关于数概念的网络结构。
一个具有良好组织的数概念网格结构,能够使一个数概念和它相关的操作特性相关联,并且以灵活而有创造性的方式解决问题。
数形结合是建立这种网络结构的有效方法,也就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题。
在小学数学教学中,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。
使抽象的数概念形象化,学生输入的数学信息的映象就更加深刻,在学生的脑海中自然形成数学的模型,建构数学知识网链,发展数感。
关键词:小学数学;数形结合;数感中图分类号:G623.5 文献标识码:A 文章编号:1009-010X(2016)17-0056-04数感是关于对数概念理解以及与已有经验在人脑中形成的网络结构。
一个具有良好组织的数概念网格结构,它能够使一个数概念和它相关的操作特性相关联,并且以灵活而有创造性的方式解决数学问题。
数形结合就是建立这种网络结构的有效的方法。
数与形乃逻辑与形象,相辅相成。
有数就有形,有形就有数。
数形结合就是通过数与形的相互转化、互相利用来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维的结合。
著名数学家华罗庚说过,“数缺形时少直观、形少数时难入微。
”有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。
一、概念教学的数形结合以数形结合的思想展开数学概念的教学,运用图形提供一定的数学问题情境,通过对图形中的情景分析,抽象出数学概念的内涵和外延,帮助学生理解数学概念。
例如,学生建构5的概念:把抽象的数学符号5与图形圆点建立联系,同时也让学生通过图形的展示,明确5的组成不仅可以表示5个1,也可以表示4+1=5、3+2=5,还可以表示序数。
浅谈小学数学“数形结合”思想小学数学教学担负着培养小学生数学素养的特殊任务,而数学思想方法是数学的灵魂和精髓,是数学素养的本质所在,因此我们必须给予充分的重视和关注。
数学新课程标准也明确指出:“通过义务教育阶段的数学学习,学生应该获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能。
”数形结合思想是根据“数”与“形”之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法。
数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。
“数”和“形”是紧密联系的。
我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。
伟大的数学家华罗庚先生也曾这样形容过“数”与“形”的关系:“数形本是相倚依,焉能分作两边飞,数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
”利用数形结合能使“数”和“形”统一起来。
以形助数、以数辅形,可使计算中的算式形象化,帮助学生在理解算理的基础上掌握算法;可将复杂问题简单化,在解决问题的过程中,提高学生的思维能力和数学素养。
适时的渗透数形结合的思想,可达到事半功倍的效果。
一、数形结合,使概念掌握得更扎实。
对1~2年级的学生来说,许多数学概念比较抽象,很难理解,特别需要视觉的有效应用,因此有时教师可采用数形结合的思想展开概念的教学,运用图形提供一定的数学问题情境,通过对图形的分析,帮助学生理解数学概念。
例如,在教学100以内的数的认识时,学生大多对100以内的数顺背、倒背如流,看上去掌握得很不错。
于是我出示了这样一道题考考学生:66接近70还是60呢?结果却发觉好多学生都不会。
分析其原因主要是有些学生只是机械地会背这些数,关于数的顺序、大小等方面的知识其实掌握不佳,因而需要教师创设一定的情境让学生进一步感知和学习的。
于是我在黑板上画了一条数轴,称它是一条带箭头的线,在数轴上逐一标出60~70,将抽象的数在可看得见的线上形象、直观地表示出来,将数与位置建立一一对应关系,这样就有助于学生理解数的顺序、大小。
妙用“数形结合提高学生解题能力潘玉亭[摘要]数形结合是通过数与形的相互转化、相辅相成来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
在教学中渗透数形结合的思想,可把抽象的概念直观化,帮助学生形成概念:可使计算中的算式形象化,帮助学生理解算理;可将抽象的关系直观化、形象化,帮助学生理解数量关系;可将复杂问题简单化,在解决问题的过程中,激发学生兴趣,提高学生的思维能力。
适时的渗透数形结合的思想,可达到事半功倍的效果。
[关键词]学生;教学;数形结合;思想数学是一门逻辑性和抽象性较强的学科,而小学生的思维正处于由具体形象思维为主向抽象逻辑思维为主的过渡阶段,如何将抽象的数学知识转化成形象、易于学生理解和掌握的知识呢?这就需要教师在教学中充分挖掘教材中数形结合的素材,有意识地、持之以恒地渗透数形结合思想,搭起“数学”与“学生”之间的桥梁,引导学生理解和掌握好数学知识,提高学生思维水平,发展分析、解决问题的能力。
一、数形结合,激发学生兴趣画画是孩子的天性所在,在抽象的数学教学中,教师可以利用孩子爱画画这一特性,把“图”与数学学习有机结合起来,激发他们的学习数学的兴趣。
学生只要有了较浓厚的兴趣才有探究新知的欲望,才会有学习的动力。
所以教学中,我们可以创设直观的生活情境,利用生动形象的原生态图形,使数学与图形结合,以画促思,最终化复杂为简单,化抽象为直观,从而更好的获取新知,找到解决问题的方法,在这种愉悦的学习过程中,让每个孩子都能积极主动的参与,在尝试画图解决问题中获得成功的快乐,体验到画图法解题的成功感和价值感。
二、数形结合,提高学生思维(一)借“形”表“数”,建立概念概念教学一直是数学教学中的难点,因为数学概念通常都比较抽象。
如二年级《倍的认识》,学生理解“倍”的概念有一定的难度,因此教学中,教师要重视学生对“数”的敏感性的培养,努力将直观的形和抽象的数巧妙结合,让学生“心中有数”,正确“倍”的意义。
数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法。
数"和"形"是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状,大小,位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.作为最基本的数学思想之一的数形结合思想在新课程中又是怎样体现的呢?下面我结合它在以下几方面的运用浅谈一下。
一、数与代数中的数形结合这部分内容与原教学大纲比,数形结合的内容有很大改变和加强。
它重视渗透和揭示基本的数学思想方法,加强数学内部的联系及其相关学科的联系,如提前安排平面直角坐标系,用坐标的方法处理更多的内容包括二元一次方程组,平移变换,对称变换,函数等。
又如,它改变了“先集中出方程,后集中出函数”的做法,而是按照一次和二次的数量关系,使方程和函数交替出现,分层递进,螺旋上升。
在数与代数的教学里,我认为,应该抓住实数与树轴上的点一一对应的关系,有序实数对与坐标平面上的点的一一对应关系,从数形结合的角度出发,借助数轴处理好相反数和绝对值的意义,有理数大小的比较,有理数的分类,有理数的加法运算,不等式的解集在数轴上的表示等。
教师要赋予这些系统内容新的活力,采用符合课标理念的教法,在吃透新课程标准和教材的基础上,让学生经历试验、探索的过程,体验如何用数形结合思想分析和解决,培养学生学习和应用的能力,从而激发其学习数学的原动力。
浅谈数学教学中的数形结合思想的几点应用【摘要】数形结合就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要的思想方法。
数形结合思想是通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
【关键词】数学教学数形结合【中图分类号】 g42 【文献标识码】 a 【文章编号】 1006-5962(2012)11(a)-0154-02数形结合是一种极富数字特点的信息转换方法,数学上总是用数的抽象性质说明形的事实,同时又用图形的性质来说明数的事实。
应用数形结合思想,通过图形性质的的分析,使数学中的许多抽象的概念及定理直观化、形象化、简单化,并借助代数的计算和分析得以严谨化。
1 以“形”助“数”根据给出的“数”的结构特点,构造出与之相应的几何图形,或根据已给图形分析数的特点,从而化抽象为直观,使解题过程变得简捷直观。
教师在教学时要注意树立数形结合的思想,要按照把复杂问题化简单的原则培养学生的空间概念,提高学习兴趣。
例1、a. b. c.2 d.无最大值解:答案:d二、以“数”助“形”以“数”助“形”即有关“形”的问题可借助数式的推演,使之量化,从而准确揭示“形”的性质。
教师在具体教学中,必须有意识的去体现和解释数学知识中的抽象概念和形象事物之间的联系,提高学生的数学思维。
例2、在△abc中,ab>ac,cf、be分别是ab、ac边上的高。
试证:证法一:(三角法)因为,证法二:(代数法)由ab>ac>cf,ab>be及s△abc>>,=.综上:小结:几何中存在着这样一类问题,即几何图形中的某些点的位置或线段的长度或角度的大小不能依题意画出来,只有根据已知条件求出某一些量时,图形才能画出。
而求那些量的方法,常常是通过列方程(组),即转化为代数方程求解。
3 数形结合在函数中的应用函数是考查数形结合思想的良好载体,对函数的图象除了要求熟练掌握常见的函数图象外,还应加强对函数与方程、函数与曲线的区别与统一,善于发现条件的几何意义,刻画出相应的图形,还要根据图形的性质分析数学式的几何意义,这样才能巧妙地利用数形结合解决问题。
中学数学数形结合思想在解题中的应用一、学问整合1.数形结合是数学解题中常用的思想方法,运用数形结合的方法,许多问题能迎刃而解,且解法简捷。
所谓数形结合,就是依据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使困难问题简洁化,抽象问题详细化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与敏捷性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,奇妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是探讨“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发觉解题途径,而且能避开困难的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要留意培育这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
数形结合就是通过数与形的相互转化、相辅相成来解决数学问题的一种思想方法。
它既是一个重要的数学思想,又是一种常用的数学方法。
在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上掌握算法;可将复杂问题简单化,在解决问题的过程中,提高学生的思维能力和数学素养。
适时的渗透数形结合的思想,可达到事半功倍的效果。
(一)渗透数形结合思想,使计算中的算式形象化,帮助学生在理解算理
小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。
算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然,知其所以然。
数形结合,是帮助学生正确理解算理的一种很好的方式。
如,在教学“分数乘分数”时,课始创设情境:小区铺一块绿地,每小时铺这块地的1/2,照这样计算,1/4小时能铺这块地的几分之几?在引出算式1/2×1/4后,我采用三步走的策略:第一,学生独立思考后用图来表示出1/2×1/4这个算式。
第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领学困生。
学困生受到启发后修改自己的图形,更好地理解1/2×1/4这个算式所表示的意义。
第三,全班点评,展示、交流。
像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解了分数乘分数的算理。
(二)用图形的直观,帮助学生理解数量关系,提高教学效率
用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。
“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
它是小学数学教材的一个重要特点,更是解决问题时常用的方法。
众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。
例如:中年级学生学习“求比一个数的几倍还多几(少几)”的应用题时,学生对“几倍多几”或“几倍少几”较难理解,为突破这个教学难点,我设计了右面的图形:结合图形,让学生说:有6个□,△的个数比□的3倍还多4个;也可以说:有6个□,△的个数比□的4倍少2个;
接着,出示下面的问题:
(1)□有6个,△比□的3倍多4个,△有多少个?
算式:6? 4=22个
(2)□有6个,△比□的4倍少2个,△有多少个?
算式:6?-2=22个
比较两题的算法,都要分两步。
第一步先求整倍是多少;第二步再加上或减去跟整倍相差的数。
这一段教材,一般的教法是:先教求比一个数的几倍多几的数,再教求比一个数的几倍少几的数,最后综合练习。
我把这两个相关的内容结合起来一起教,并借助图形的帮助,学生容易理解,比分开教还理解得清楚,学生的思维也更灵活。
总之,学生符号意识的培养是一项长期而艰巨的工作,需要教师在教学工作中不断摸索和总结;需要教师从点滴做起,从具体工作做起;需要教师对学生在符号的表述、符号的书写上作严格要求;当然,更应该重视对数学符号涵义和实质的分析。
通过准确把握符号意识的内涵,帮助学生科学建立符号意识,使学生逐步形成使用符号的能力,发展学生的数学思维。