衰减器和移相器
- 格式:pdf
- 大小:899.23 KB
- 文档页数:15
RCS 测量中关于紧缩场的研究与设计摘要RCS 测量中,场地的质量对测量结果影响很大,随着技术发展,室内紧缩场成为主要的测试场地,因此加大对紧缩场的研究很有必要。
本文在介绍了RCS 测量相关概念的基础上,重点介绍了紧缩场的基本原理,在此基础上,根据圆对称条件,完成了前馈卡塞格伦紧缩场的设计,最后得到设计结果。
关键词:RCS 测量;圆对称条件;前馈卡塞格伦紧缩场第1章 引言随着我国科学技术的发展,RCS 测量中对测试场地的要求也越来越高,紧缩场有着保密性好、测试方便、测试时间短、不受环境影响等多种优点,因此受到更多的关注,增加对紧缩场的研究,对测量有着很大的意义。
第2章 RCS 测量概念电磁散射测量含义:它是电磁波在物体上产生的感应电流的再辐射。
物体被称为散射体,散射体和天线的区别仅仅是源点位置的不同。
RCS 测量即是电磁散射测量。
RCS 是指雷达散射截面。
它的定义为:2224lim iS R E ERπσ∞→= (2.1)表征雷达目标截获和散射信号功率的能力,它并不是实际面积,与距离R 无关。
目标雷达散射截面并不代表任何意义上的实际面积[1]。
同时,它要满足远场条件:单一平面波照射和单一平面波散射条件。
近场即是非单一平面波照射和非单一平面波散射。
没有近场散射的RCS 定义,但是有散射方向图。
矢量背景对消:利用衰减器和移相器,使接收机的接受信号最小,这样做是为了利用发射信号的一部分抵消天线之间的直漏信号及目标支架和背景的散射信号。
RCS测试系统:分为连续波测试体制和扫频波测试体制[2]。
分别如下图所示:图2.1连续波测试体制示意图图2.2扫频波测试体制示意图矢量网络分析仪:它在测量信号的完整性,参数测量,射频测量中有着很大的应用。
根据使用经验,总结了它的使用注意方面:1、测试前需进行校准;2、测试时设置的频点要将需测试的频点包含在内;3、中心频率时不能设太大,否则影响测试准确性;4、在进行测试时要尽量保证同轴线不弯曲。
功分器,移相器和衰减器主要参数的测量一、实验目的1、了解矢网校准的意义。
2、探究功分器衰减应用的特点。
3、理解移相器的工作原理。
4、观察衰减器的衰减范围。
二、实验准备1、实验仪器射频微波技术与天线综合实验系统(发射和接受系统)、两根SMA线、匹配电阻(1个)、开路电阻(1个)、短路电阻(1个)。
2、矢网校准先选择频率范围再进行校准,因本次实验需要改变三次频率,因此需要三次校准。
①短路校准:点击屏幕右侧calibration type中的SOLT(T/R)选项,将短路电阻连接到接收系统矢量网络分析仪DUT端口,点击右侧short选项,等待一会儿,按钮变为紫色即为校准完成。
②开路校准:将开路电阻连接到接收系统矢量网络分析仪DUT端口,点击右侧open选项,等待一会儿,按钮变为紫色即为校准完成。
③匹配校准:将匹配电阻连接到接收系统矢量网络分析仪DUT端口,点击右侧load选项,等待一会儿,按钮变为紫色即为校准完成。
④通路校准:用一根SMA线将DUT和DET连接,点击右侧Thru选项,等待一会儿,按钮变为紫色即为校准完成。
所有校准完成按下apply键可以开始测量。
三、实验步骤1、移相器(1)选择频率为2GHZ-3GHZ,频点设为500,校准完成后开始测试。
(2)用SMA线将移相器的输入G1连接到矢量分析仪的DET端口,输出G2连接到DUT。
(3)移相器中间有两个PN结,下方有一个按键,按下灯亮,PN结导通,两端有电压。
(4)在PN结不导通的时候记录下2.4GHZ和2GHZ的相位,按下按键再次记录,比较两次相位看是否发生变化。
2、电调衰减器(1)选择频率为200MHZ-100MHZ,频点设为500,校准完成后开始测试。
(2)用SMA线将衰减器的输入连接到矢量分析仪的DET端口,输出连接到DUT。
(3)衰减器主要是对于传输过程的衰减,因此测量的是mag(S21)。
旋转蓝色旋钮(电位器)改变电路电阻,观察图像记录200MHZ和1000MHZ下的衰减范围。
移相器的工作原理
移相器是一种用于光学成像的设备,它能够改变光线的相位,从而实现对焦和深度感知的功能。
在摄影和显微镜领域,移相器被广泛应用,它的工作原理是基于光的波动性和干涉现象的。
首先,我们来了解一下光的波动性。
光是一种电磁波,它具有波动性和粒子性。
在光学成像中,光的波动性起着决定性作用。
当光线通过不同介质或经过光学器件时,会发生折射、反射和干涉等现象,这些现象都与光的波动性密切相关。
移相器利用了光的波动性和干涉现象来实现对焦和深度感知。
它通常由两个或多个光学元件构成,其中包括透镜、衍射光栅等。
这些光学元件能够改变光线的相位,从而影响光的传播和成像。
在移相器的工作过程中,光线首先经过透镜聚焦,然后被衍射光栅或其他光学元件改变其相位。
通过调节衍射光栅的参数,如周期、方向等,可以实现对焦和深度感知的效果。
具体来说,当衍射光栅的参数发生变化时,光线的相位也会发生变化,从而影响成像的清晰度和深度信息。
除了衍射光栅,移相器还可以利用其他光学元件,如液晶透镜、声波透镜等,来实现对焦和深度感知的功能。
这些光学元件能够通
过电磁场、声波等外部信号来改变其光学特性,从而实现对焦和深
度感知的调节。
总的来说,移相器的工作原理是基于光的波动性和干涉现象的。
它利用光学元件改变光线的相位,从而实现对焦和深度感知的功能。
在摄影和显微镜领域,移相器的应用为成像技术带来了新的可能,
为人们观察微观世界和捕捉精彩瞬间提供了更多选择和便利。
希望
本文能够帮助读者更好地理解移相器的工作原理,进一步探索光学
成像技术的奥秘。
相控阵雷达TR 组件Thank you * 隔离器基本原理隔离器是一种采用线性光耦隔离原理,将输入信号进行转换输出。
输入,输出和工作电源三者相互隔离,特别适合与需要电隔离的设备仪表配用。
隔离器又名信号隔离器,是工业控制系统中重要组成部分。
隔离器主要技术参数 1.隔离强度:也叫隔离能力、耐压强度或测试耐压,这是衡量信号隔离器的主要参数之一。
单位:伏特@1分钟。
它指的是输入与输出,输入与电源,输出与电源之间的耐压能力。
它的数值越大说明耐压能力越好,隔离能力越强,滤波性能越高。
一般的,这种耐压测试是通过一次性样品的耐压检验来确定的。
2.精度:这是衡量一个信号隔离变送器质量的标尺。
业内一般能做到量程±0.2[%]。
个别品牌如M-SYSTEM 、ACI 等能做到±0.1[%]。
3温度系数:表示隔离器等仪表在环境温度发生变化时,精度的变化情况。
大多情况下用百分数表示(也有用单位250ppm/K表示的),如:M-SYSTEM温度系数±0.015[%]/℃(相当于150ppm/K)。
4.响应时间:表征信号隔离器的反应速度。
5.绝缘电阻:内部电源与外壳之间隔离直流作用的数值化表征。
6.负载电阻:反映了信号隔离器的带载能力。
开关电路一般称为天线收发模块应用在收发器,其功能是在发送状态将天线和发射器进行连接,而在接受状态时,将天线与接收器进行连接。
PIN二极管作为一个基本单元在这些开关中的使用时,他们就会比电子-机械开关提供更高的可靠性,更好的机械强度和更快的开关速度。
PIN二极管开关电路技术指标插入损耗和隔离度:PIN管实际存在一定数值的电抗和损耗电阻,因此开关在导通时衰减不为零,成为正向插入损耗,开关在断开时其衰减也非无穷大,成为隔离度。
二者时衡量开关的主要指标,一般希望插入损耗小,而隔离度大。
开关时间:由于电荷的存储效应,PIN管从截止转变为导通状态,以及从导通状态转变为截止状态都需要一个过程,这个过程所需要的时间成为开关时间。
移相器原理一、移相器的定义和作用移相器(Phase Shifter)是一种用于改变电路中信号的相位的装置或电路。
在电子学中,相位是指信号的偏移量或延迟,而移相器可以通过改变电路中的电流或电压来改变信号的相位。
移相器常用于无线通信、雷达系统、天线阵列等领域,用于调整信号的相位以实现特定的功能或性能优化。
二、移相器的基本原理移相器的基本原理是通过改变电路中的电感或电容来改变信号的相位。
根据电路中元件的不同,可以将移相器分为电感移相器和电容移相器。
2.1 电感移相器电感移相器是通过改变电路中的电感来改变信号的相位。
当电感移相器中的电感值发生变化时,信号通过电感时会发生相位的改变。
电感移相器常用于低频信号的移相。
2.2 电容移相器电容移相器是通过改变电路中的电容来改变信号的相位。
当电容移相器中的电容值发生变化时,信号通过电容时会发生相位的改变。
电容移相器常用于高频信号的移相。
三、电感移相器的工作原理电感移相器是通过改变电路中的电感来改变信号的相位。
主要有以下几种类型的电感移相器:串联电感移相器是将多个电感串联连接起来,通过改变串联电感的总电感值来改变信号的相位。
当串联电感的电感值增大时,信号的相位会发生正向移相;当串联电感的电感值减小时,信号的相位会发生反向移相。
3.2 并联电感移相器并联电感移相器是将多个电感并联连接起来,通过改变并联电感的总电感值来改变信号的相位。
当并联电感的电感值增大时,信号的相位会发生反向移相;当并联电感的电感值减小时,信号的相位会发生正向移相。
3.3 可变电感移相器可变电感移相器是通过改变电路中的可变电感器件来改变信号的相位。
可变电感器件可以是电感线圈的可调节端点,通过改变端点的位置来改变电感值,从而改变信号的相位。
四、电容移相器的工作原理电容移相器是通过改变电路中的电容来改变信号的相位。
主要有以下几种类型的电容移相器:4.1 串联电容移相器串联电容移相器是将多个电容串联连接起来,通过改变串联电容的总电容值来改变信号的相位。
Ku波段模拟预失真线性化器王博;刘强【摘要】提出了一种基于模拟预失真方法的线性化器设计.利用预失真技术设计行波管配用线性化器的数学模型,得出了预失真电路的功率转移特性曲线和相位特性曲线.预失真电路采用上下支路对消结构,通过二极管产生失真信号,并利用2个可调衰减器和可调移相器来调节其幅度和相位,以此补偿功率放大器的AM-AM,AM-PM失真特性,改善输出信号的线性度.此外通过改变二极管的偏压,线性化器能够提供不同种幅度和相位特性的组合方式,用于不同特性的功放.基于该模拟预失真方法设计了行波管线性化器,在给定的动态范围内幅度扩张5 dB,相位扩张40°.【期刊名称】《无线电工程》【年(卷),期】2011(041)002【总页数】4页(P47-50)【关键词】Ku波段;模拟预失真;线性化;行波管TWTA【作者】王博;刘强【作者单位】电子科技大学,空天科学技术研究院,四川,成都,611731;电子科技大学,空天科学技术研究院,四川,成都,611731【正文语种】中文【中图分类】TN713.50 引言近年来,随着无线电工程技术的发展,通信信道数量的增加、使用频带宽度的扩展以及更高效调制方式的采用,对发射末端的射频功率放大器的线性度提出越来越高的要求,使得高线性射频功率放大器成为当今通信新技术领域中的一个重要研究课题。
行波管放大器(TWTA)[1-4]和固态功率放大器得到了广泛应用,能够达到更高的功率输出要求的同时设计出很好的效率,但是线性度却不能达到很好的要求,因此对功放线性化技术的研究成为该领域的热点。
线性化的目的在于降低由于功放工作于饱和区而引起的幅度和相位失真 ,即减小交调分量。
无线系统中的线性化技术一般要求体积小、功耗低的电路特性,因此基于模拟预失真方法设计的线性化器得到了广泛应用。
据相关报道,基于二极管的预失真线性化器适用于行波管这样的幅度和相位非线性失真度很高的功放线性化电路中。
但是这些电路都相对比较复杂,并且二极管的温度敏感特性在偏置负载线的电路设计中增加了线性化器的设计难度[5]。
移相器的工作原理移相器是一种常见的光学器件,它可以改变光线的相位分布,从而实现对光的调制和控制。
在光学系统中,移相器的应用非常广泛,它可以用于干涉仪、激光器、光学通信、光学成像等领域。
那么,移相器的工作原理是怎样的呢?接下来,我们将对移相器的工作原理进行详细的介绍。
首先,我们来了解一下移相器的基本结构。
移相器通常由两部分组成,一部分是具有不同折射率的介质材料,另一部分是电光调制器或声光调制器。
在介质材料中,光的相位会发生变化,而电光调制器或声光调制器则可以通过外部电场或声波控制介质材料中的折射率,从而改变光的相位分布。
其次,移相器的工作原理可以通过以下几个步骤来解释。
首先,当光线通过移相器时,介质材料中的折射率会导致光的相位发生变化。
这种相位变化可以通过电光调制器或声光调制器进行调控,从而实现对光的相位分布的调制。
其次,通过调制光的相位分布,可以实现光的干涉、衍射、聚焦等功能。
最后,通过控制电光调制器或声光调制器的工作状态,可以实现对光的相位分布的实时调节,从而实现对光的实时控制。
在实际应用中,移相器可以用于干涉仪中的相位调制,可以用于激光器中的相位锁定,可以用于光学通信中的相位调制,还可以用于光学成像中的相位控制。
移相器的工作原理不仅可以用于传统的光学系统中,还可以用于新型的光学器件和光学技术中,具有非常广阔的应用前景。
总的来说,移相器是一种能够改变光的相位分布的光学器件,它的工作原理是通过介质材料和电光调制器或声光调制器共同作用来实现对光的相位分布的调制和控制。
移相器的工作原理在光学系统中有着重要的应用,可以实现光的干涉、衍射、聚焦等功能,具有非常广泛的应用前景。
希望本文对移相器的工作原理有所帮助,谢谢阅读!。