高中数学基本不等式的解法十例
- 格式:docx
- 大小:447.84 KB
- 文档页数:8
不等式解法15种典型例题典型例题一解15种典型例题的不等式,需要注意处理好有重根的情况。
例如,如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>(或f(x)<)可用“穿根法”求解。
对于偶次或奇次重根,可以转化为不含重根的不等式,也可直接用“穿根法”,但要注意“奇穿偶不穿”,其法如图。
下面分别解两个例题:例题一:解不等式2x-x²-15x>0;(x+4)(x+5)(2-x)<231)原不等式可化为x(2x+5)(x-3)>0.把方程x(2x+5)(x -3)=0的三个根5,-1,3顺次标上数轴。
然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分。
∴原不等式解集为{x|-5<x<0}∪{x|x>3}。
2)原不等式等价于(x+4)(x+5)(x-2)>23.用“穿根法”得到原不等式解集为{x|x<-5或-5<x<-4或x>2}。
典型例题二解分式不等式时,要注意它的等价变形。
当分式不等式化为f(x)/g(x)<(或≤)时,可以按如下方法解题。
1)解:原不等式等价于3(x+2)-x(x-2)-x²+5x+6/3x(x+2)<1-2x+2.化简后得到原不等式等价于(x-6)(x+1)(x-2)(x+2)≥0.用“穿根法”得到原不等式解集为{x|x<-2或-1≤x≤2或x≥6}。
2)解法一:原不等式等价于2x²-3x+1/2x²-9x+14>0.化简后得到原不等式等价于(x-1)(2x-1)(3x-7)<0.用“穿根法”得到原不等式解集为{x|x<1/2或7/3<x<1}。
解法二:原不等式等价于(2x-1)(x-1)<0.用“穿根法”得到原不等式解集为{x|x<1/2或x>1}。
例7解不等式2ax-a2>1-x(a>0)。
分析:将不等式移项整理得到2ax+x>a2+1,然后按照无理不等式的解法化为两个不等式组,再分类讨论求解。
解:原不等式等价于(1) 2ax-a2>1-x,或(2) 2ax-a2<1-x。
高次、无理、指数、对数不等式的解法及应用分析解不等式是中学数学解决问题的重要工具,在研究函数的性质、确立问题成立的条件等方面都有广泛的应用。
本阶段的重点是不等式的“等价转化”,将高次不等式低次化,无理不等式有理化、超越不等式代数化,最终回归到一元一次不等式(组)或一元二次不等式(组)来解。
难点是解含参数的不等式,对于如何选择参数分类的标准、如何把握分类的时机是有难度和深度的。
一、高次不等式1.概念:形如不等式(x-x1)(x-x2)……(x-x n)>0(其中x1, x2, ……,x n是互不相等的实常数)叫做一元n次不等式(n∈N)。
2.解题思路:作出相应函数的图象草图。
具体步骤如下:(a)明确标出曲线与x轴的交点,(b)分析在每一个开区间上函数的那段曲线是在x轴的上方还是下方(除此之外,对草图不必做更细致的要求)。
然后根据图象草图,写出满足不等式的解集。
3.例题:例1.解不等式:(1) (x-2)(x+2)(x-1)(x+1)>0;(2)(x2-5x-6)(1-x)>0。
解:(1)做出函数y=(x-2)(x+2)(x-1)(x+1)的图象的草图(图1)。
所以不等式的解集为(-∞,-2)(-1,1)(2,+∞)。
(2)先把原不等式化成与它等价的:(x+1)(x-6)(x-1)<0。
作出函数y=(x+1)(x-6)(x-1)的草图(图2),所以解集为(-∞,-1)(1,6)。
注意:(1)解题中首先观察关于x的最高次项的系数是否为正数,如果为正数,函数y在最右边的开区间上的函数值总为正数,因此曲线总在x轴的上方,这样作草图就可以一蹴而就了,如果不是正数,那么首先化为正数;(2)解高次不等式的步骤可以概括为:找零点、分区间、画草图、写解集。
例2.解不等式(x+2)(x+1)2(x-1)3(x-3)>0。
分析:此例中y=(x+2)(x+1)2(x-1)3(x-3)出现了重因式,当x值从大于-1变化到小于-1时(不含-1),y值符号没有发生变化,而x值从大于1到小于1时(不含1),y值符号发生了变化,如图3,故解集为(-2,-1)(-1,1)(3,+∞)。
高中数学中所有不等式解法汇总每题均含详细解析本文介绍了解简单不等式的几种方法,包括解二元一次不等式组、一元二次不等式、含绝对值的简单不等式、分式不等式和简单高次不等式。
其中,第一部分介绍了分数不等式的性质,包括两种情况下的大小关系。
第二部分介绍了“三个二次”的关系,即二次函数图象、一元二次方程的根和不等式的解集之间的关系。
第三部分介绍了解一元二次方程的三种方法,包括求根公式、因式分解法和配方法。
最后一部分介绍了解一元二次不等式的方法,包括统一处理二次项系数为正数,以及(x -a)(x-b)>0或(x-a)(x-b)<0型不等式的解法。
由y=x^2-3x-10的开口向上,可得x^2-3x-10>0的解集为(-∞,-2)∪(5,+∞)。
设集合M={x|x^2-3x-4<0},N={x|0≤x≤5},则M∩N等于[0,4)。
解析:因为M={x|x^2-3x-4<0}={x|-1<x<4},所以M∩N=[0,4)。
已知不等式ax^2-bx-1≥0的解集是(3/2,3],则不等式x^2-bx-a0,且Δ=b^2-4ac0,b<0,且0<b<3.综合可得x^2-bx-a<0的解集是(0,3)。
若关于x的不等式m(x-1)>x^2-x的解集为{x|1x^2-x的解集为{x|1<x<2},所以1和2一定是m(x-1)=x^2-x的解,因此m=2.若一元二次不等式2kx^2+kx-8<0对一切实数x都成立,则k的取值范围为(-3,0]。
解析:因为2kx^2+kx-8<0对一切实数x都成立,所以2k<0,解得k∈(-∞,0),又因为Δ=k^2-4×2k×(-8)<0,解得k∈(-3,0]。
设a为常数,∀x∈R,ax^2+ax+1>0,则a的取值范围是(0,4)。
解析:对于任意实数x,ax^2+ax+1>0,即Δ=a^2-4a<0,解得0<a<4.若不等式x^2-2x+5≥a^2-3a对任意实数x恒成立,则实数a的取值范围为(-∞,-1]∪[4,+∞)。
专题2.1 基本不等式的应用技巧 闯关技巧在解答基本不等式的问题时,常常会用加项、凑项、常数的代换、代换换元等技巧,而且在通常情况下往往会考查这些知识的嵌套使用.一、加项变换例1 已知关于x 的不等式x +1x -a≥7在x >a 上恒成立,则实数a 的最小值为________. 答案 5解析 ∵x >a ,∴x -a >0,∴x +1x -a =(x -a )+1x -a+a ≥2+a , 当且仅当x =a +1时,等号成立,∴2+a ≥7,即a ≥5.反思感悟 加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解.二、平方后使用基本不等式例2 若x >0,y >0,且2x 2+y 23=8,则x 6+2y 2的最大值为________. 答案 923 解析 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2⎝⎛⎭⎫1+y 23 ≤3·⎝ ⎛⎭⎪⎫2x 2+1+y 2322=3×⎝⎛⎭⎫922. 当且仅当2x 2=1+y 23,即x =32,y =422时,等号成立. 故x 6+2y 2的最大值为923. 三、展开后求最值例3 若a ,b 是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10答案 C解析 ∵a ,b 是正数,∴⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =1+4a b +b a +4=5+4a b +b a≥5+24a b ·b a=5+4=9, 当且仅当b =2a 时取“=”.四、常数代换法求最值例4 已知x ,y 是正数且x +y =1,则4x +2+1y +1的最小值为( ) A.1315 B.94C .2D .3 答案 B解析 由x +y =1得(x +2)+(y +1)=4,即14[(x +2)+(y +1)]=1, ∴4x +2+1y +1=⎝⎛⎭⎫4x +2+1y +1·14[(x +2)+(y +1)] =14⎣⎢⎡⎦⎥⎤4+1+4(y +1)x +2+x +2y +1 ≥14(5+4)=94, 当且仅当x =23,y =13时“=”成立,故选B. 反思感悟 通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的.五、代换减元求最值例5 若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3的最小值为________. 答案 8解析 ∵实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12, ∴x =3y +3,∴0<3y +3<12,解得y >3. 则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y =4,x =37时取等号.反思感悟 在解含有两个以上变元的最值问题时,通过代换的方法减少变元,把问题化为两个或一个变元的问题,再使用基本不等式求解.六、建立求解目标不等式求最值例6 已知a ,b 是正数,且(a +b )(a +2b )+a +b =9,则3a +4b 的最小值等于________. 答案 62-1解析 a ,b 是正数,且(a +b )(a +2b )+a +b =9,即有(a +b )(a +2b +1)=9,即(2a +2b )(a +2b +1)=18,可得3a +4b +1=(2a +2b )+(a +2b +1)≥2(2a +2b )(a +2b +1)=62,当且仅当2a +2b =a +2b +1时,上式取得等号,即有3a +4b 的最小值为62-1.例7 已知a >0,b >0,且a +b +1a +1b=5,则a +b 的取值范围是( ) A .1≤a +b ≤4B .a +b ≥2C .1<a +b <4D .a +b >4答案 A解析 ∵a +b +1a +1b=5, ∴a +b +a +b ab=5. ∵a >0,b >0,ab ≤⎝⎛⎭⎫a +b 22, ∴1ab ≥4(a +b )2, ∴a +b +a +b ab ≥a +b +4a +b, ∴a +b +4a +b≤5, 即(a +b )2-5(a +b )+4≤0,∴(a +b -4)(a +b -1)≤0,即1≤a +b ≤4,当a =b =12时,左边等号成立, 当a =b =2时,右边等号成立,故选A.反思感悟 利用基本不等式与已知条件建立求解目标的不等式,求出不等式的解集即得求解目标的最值. 闯关训练一、单选题1.已知实数a 、b 满足1)28()(a b ++=,有结论:①存在0a >,0b >,使得ab 取到最大值;②存在0a <,0b <,使得a+b 取到最小值;正确的判断是( )A .①成立,②成立B .①不成立,②不成立C .①成立,②不成立D .①不成立,②成立【答案】C【分析】 由已知结合基本不等式及其应用条件分别检验①②即可判断.【详解】解:因为1)28()(a b ++=,所以(2)6ab a b =-+,①0a >,0b >,22224()()44a b a b +=+++-≥=,当且22b =时取等号,所以64ab -≥,解得2ab ≤,即ab 取到最大值2;①正确;②0a <,0b <,当20a +>时,881233322a b a a a a +=+-=++-≥=++,当且仅当822a a +=+时取等号,此时2a =不符合0a <,不满足题意;当20a +<时,888123(2)33222a b a a a a a a ⎡⎤+=+-=++-=--+--≤--⎢⎥+++⎣⎦当且仅当()822a a -+=-+时取等号,此时2a =- 此时取得最大值,没有最小值,②错误.故选:C .【点睛】方法点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.2.已知1,0x y ,且1211x y +=-,则21x y +-的最小值为( )A .9B .10C .11D .7+【答案】A【分析】 利用“乘1法”将问题转化为求[]12(1)21x y x y ⎛⎫-++ ⎪-⎝⎭的最小值,然后展开利用基本不等式求解.【详解】1x >,10x ∴->,又0y >,且1211x y+=-,[]1222(1)21(1)25511y x x y x y x y x y ⎛⎫-∴+-=-++=++≥+ ⎪--⎝⎭9=, 当且仅当22(1)1y x x y-=-,解得4x =,3y =时等号成立, 故21x y +-的最小值为9.故选:A .【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.已知a ,b ∈R ,a +b =2.则221111a b +++的最大值为( )A .1B .65CD .2 【答案】C【分析】 化简配方可得211a ++211b +=242(1)(1)4ab ab ---+,令t =ab ﹣1=a (2﹣a )﹣1=﹣(a ﹣1)2≤0,则242(1)(1)4ab ab ---+=2424t t -+,令4﹣2t =s (s ≥4),即t =42s -,再由基本不等式计算可得最大值. 【详解】解:a ,b ∈R ,a +b =2. 则211a ++211b +=2222221()a b a b ab +++++ =222()221()2()a b ab a b ab ab +-+++-+=26252()ab ab ab --+=242(1)(1)4ab ab ---+, 令t =ab ﹣1=a (2﹣a )﹣1=﹣(a ﹣1)2≤0, 则242(1)(1)4ab ab ---+=2424t t -+, 令4﹣2t =s (s ≥4),即t =42s -,可得2424t t -+=2(4)44s s -+=4328s s +-, 由s +32s, 当且仅当s =t =2﹣可得4328s s+-≤12, 则211a ++211b +故选:C.【点睛】本题考查基本不等式的运用,注意化简变形和换元,以及等号成立的条件,考查运算能力,属于较难题.4.已知正实数,a b 满足1a b +=,则222124a b a b +++的最小值为( ) A .10B .11C .13D .21【答案】B【分析】利用“乘1法”与基本不等式的性质即可得出.【详解】解:正实数,a b 满足1a b +=, 则2221241422a b a b a b a b+++=+++, ()142a b a b ⎛⎫=+++ ⎪⎝⎭4777411b a a b =++≥++=, 即:22212411a b a b+++≥, 当且仅当4b a a b =且1a b +=,即21,33b a ==时取等号, 所以222124a b a b+++的最小值为11. 故选:B.【点睛】本题考查了“乘1法”与基本不等式的性质的应用,同时考查转化思想和计算能力. 5.已知ab 14=,a ,b ∈(0,1),则1211a b +--的最小值为 A .4B ..6 C.3D.4【答案】D【分析】 根据14b a =代入1211a b +--,变形为2244414a a ++--,等价处理成()()()2444123444121a a a a ⎛⎫+-+-+ ⎪--⎝⎭,利用基本不等式求最值. 【详解】由题:ab 14=,a ,b ∈(0,1),14b a=, 12121111114112482a b a a a aa +=+=+---+----212141a a =++-- 2424441a a =++-- ()()()2444123411442a a a a ⎛⎫=+-+-+ ⎪--⎝⎭ ()(412442212323444123a a a a ⎛⎫--=++++≥++ ⎪--⎝⎭, 当且仅当()414444124a a a a --=--时,取得最小值,解得当a =4+故选:D【点睛】 此题考查利用基本不等式求最小值,关键在于根据题目所给条件准确变形,根据积为定值求最值,注意考虑等号成立的条件.6.正数a ,b 满足9a b ab +=,若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是A .[)3,+∞B .(]3,-∞C .(],6-∞D .[)6,+∞【答案】A利用基本不等式求得a b +的最小值,把问题转化为()m f x ≥恒成立的类型,求解()f x 的最大值即可.【详解】9a b ab +=,191a b∴+=,且a ,b 为正数, 199()()1010216b a b a b a b a b a b a ∴+=++=+++, 当且仅当9b a a b=,即4,12a b ==时,()16min a b +=, 若不等式2218a b x x m +≥-++-对任意实数x 恒成立,则216218x x m ≥-++-对任意实数x 恒成立,即222m x x ≥-++对任意实数x 恒成立,2222(1)33x x x -++=--+,3m ∴≥,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.二、填空题 7.设1x >-则231x x y x ++=+的最小值为________【答案】1##【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值.【详解】由1x >-,可得10x +>.可令()10t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当t =,1x =时,等号成立.故答案为:1.8.若不等式()x a x y ++对一切正实数,x y 恒成立,则实数a 的最小值为______.【答案】2的最大值即可. 【详解】因,0x y >,则()x a x y a +≤+⇔,()222222x y x x y x yx y ++⋅+=≤==++,当且仅当2x y =时取“=”,则2a ≥, 所以实数a 的最小值为2.故答案为:2 9.,,a b c 是不同时为0的实数,则2222ab bc a b c +++的最大值为________. 【答案】12【分析】 先变形得22222222ab bc ab bc a b c a b b c ++=+++++,再利用重要不等式得到222a b ab +≥,222b c bc +≥,代入即可求解.【详解】22222222ab bc ab bc a b c a b b c ++=+++++, 222a b ab +≥,222b c bc +≥当且仅当a b c ==时取等号,所以222222212222ab bc ab bc ab bc a b c a b b c ab bc +++=≤=++++++ ∴2222ab bc a b c +++的最大值为12. 故答案为:12.10.已知1m ,0n >,且223m n m +=,则214m m n +-的最小值为_______. 【答案】94【分析】首先变量替换为223n m m =-,变形后得()22114123m m n m m +=+---,再利用换元,结合基本不等式求最值.【详解】因为223m n m +=,所以223n m m =-,因为0n >,1m ,所以2230n m m =->,得13m <<, 所以()()2222114112323m m m n m m m m m +=+=+-----, 记1,3a m b m =-=-,所以132a b m m +=-+-=, 所以12a b +=,且0,0a b >>, 所以()221215141232444m a b a b b a m n m m a b a b a b +++=+=+=+=++---5944≥+,当且仅当4a b b a =即24,33b a ==等号成立, 此时73m =,4977929n -==. 故答案为:9411.若0,0,2,a b a b >>+=则下列不等式对一切满足条件的a ,b 恒成立的是___________.(写出所有正确命题的序号)①1ab ≤;≤③222a b +≥;④333a b +≥;⑤112a b+≥. 【答案】①③⑤【分析】根据基本不等式逐序号分析即可.【详解】 ①212a b ab +⎛⎫≤= ⎪⎝⎭,取等号时1a b ==,故正确;②224a b =++=+,2≤,取等号时1a b ==,故错误;③()222242422a b a b ab ab +≥+-=-≥-=,取等号时1a b ==,故正确;④()()()()()23322232432432a b a b a b ab a b ab ab ⎡⎤+=++-=+-=-≥⨯-=⎣⎦,取等号时1a b ==,故错误; ⑤112221a b a b ab ab ++==≥=,取等号时1a b ==,故正确; 故答案为:①③⑤12.若,0x y >,24x y +=,则()()2112x y xy++的最小值为___________. 【答案】9【分析】将所求代数式展开,将24x y +=代入化简,由基本不等式求出xy 的最大值,即可求所求代数式的最小值. 【详解】 因为24x y +=, 所以()()()()21122122252104x y x y xy xy xy xy xy xy++++++===+,因为42x y =+≥≤=2xy ≤,当且仅当242x y x y +=⎧⎨=⎩即21x y =⎧⎨=⎩时等号成立,xy 取得最大值为2,所以()()211210104492x y xy xy ++=+≥+=,所以()()2112x y xy++的最小值为9,故答案为:9.13.若3a b +=,0b >,则13a a b+的最小值为__________. 【答案】59【分析】结合基本不等式的应用条件对a 进行讨论,利用基本不等式求最值,计算即可得结果. 【详解】 因为13a a b+有意义,所以0a ≠, 而3a b +=,0b >,因此3a <且0.a ≠ (1)当0<<3a 时,因此111173399999a a ab a b a a b a b a b a b ++=+=+=++≥+=, 当且仅当3b a =,即34a =,94b =时,等号成立, 所以13a a b +的最小值为79. (2)当0a <时,则0ab <,0b a<, 因此11133999a a a b a b a a b a b a b a b +⎛⎫+=--=--=-+-- ⎪⎝⎭1599≥-+=,当且仅当3b a =-,即32a =-,92b =时,等号成立,所以13a a b +的最小值为59. 综上所述,13a a b +的最小值为59. 故答案为:59.14.正数,a b 满足912a b+=,若22a b x x +≥+对任意正数,a b 恒成立,则实数x 的取值范围是___________【答案】{}42x x -≤≤ 【分析】先利用基本不等式求解出a b +的最小值,然后解一元二次不等式可求得结果. 【详解】因为()191191022b a a b a b a b a b ⎛⎫⎛⎫+=⋅+⋅+=++ ⎪ ⎪⎝⎭⎝⎭,所以()1110=106822a b ⎛+≥++= ⎝, 取等号时3912a ba b =⎧⎪⎨+=⎪⎩,即62a b =⎧⎨=⎩,所以228x x +≤,解得{}42x x -≤≤, 故答案为:{}42x x -≤≤.15.已知正实数a ,b 满足1a b +=,则11a ab+的最小值是______.【答案】3+【分析】利用“1”的代换,转化为()211a b a b a ab a ab+++=+23b a a b =++,利用基本不等式求解. 【详解】()2221121a b a b b a b ab a ab a ab a ab+++++=+=++,2333b a a b =++≥=+2a =1b =时取等号.所以则11a ab+的最小值是3+故答案为:3+16.若正实数x 、y 满足2610x y x y +++=,则52y x-的最大值是______. 【答案】4 【分析】分析可得出254110x y x y x y -=+++-,利用基本不等式可得出25x y-的最小值,即可得出52y x -的最大值. 【详解】 由题意可得26100x y x y+++-=,所以,254110104x y x y x y -=+++-≥=-,所以,524y x -≤,当且仅当21x y =⎧⎨=⎩时,等号成立,此时有524y x -=.因此,52y x-的最大值是4. 故答案为:4.17.已知0x >,0y >,22x y +=,则22524x y x yxy+++的最小值为___________.【答案】4 【分析】利用22x y +=代入,将式子进行齐次化处理,变为()22252x y x y xy+++,进一步使用均值不等式即可. 【详解】()222222222225252454544x y x y x y x y x y x y x xy y xy xy xy xy++++++++++++===2229294444x y x yxy y x+=+=++≥= 当且仅当222922x y x y ⎧=⎨+=⎩时,等号成立.所以22524x y x y xy+++的最小值为4.故答案为:4. 【点睛】易错点睛:值得注意的是,如果直接将式子拆分化简,变成两个式子分别求最值的话,会发现等号是取不到的,所以我们采用“齐次化”的方法,将()224x y +=代入处理.18.已知正实数,x y 满足()24,xy x y +=则2x y +的最小值为_______________.【答案】【分析】根据22340x y xy -=+,利用一元二次方程的解法结合0x >,0,y >得到2y x =-2x y +=. 【详解】因为正实数,x y 满足()24xy x y +=,所以22340x y xy -=+,解得2y x ==-±因为0x >,0,y >所以2y x =-所以2x y +=当且仅当12x y =-=,取等号,所以2x y +的最小值为故答案为:【点睛】关键点点睛:本题关键是利用方程思想,由条件解得x ,将问题转化为2x y +=决.三、解答题19.有一种变压器铁芯的截面是如图所示的正十字形,为保证磁通量的稳定性,要求十字形铁芯的面积为2.为节约成本,需使用来绕铁芯的铜线最省,即正十字形外接圆周长最短.问当正十字形的长()CD 和宽()AB 为多少厘米时,正十字形外接圆周长最短,最短是多少厘米?【答案】,宽为3cm时,正十字形外接圆周长最短,最短是.【分析】设AB a,CD b=,由十字形铁芯的面积22ab a-=b半径的平方可表示为22222a bR⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭,代入b化简可得22258116R aa⎛⎫=+⎪⎝⎭,利用均值不等式可得minR【详解】设正十字形的宽AB a厘米,长CD b=厘米,且0,0a b>>,则由题意得:十字形铁芯的面积22ab a-=所以2ab=,正十字形外接圆周长最短,则圆半径最短,圆半径()22222221224142a bR a baa⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎢⎥=+⎢⎥⎝⎭⎣⎦2258116aa⎛⎫=+⎪⎝⎭20,0a a>>,228118aa∴+≥2225815181616R aa⨯⎛⎫∴=+⎪⎝⎭当且仅当2281aa=时即3cma=时,2minR,此时,32b =,min R =,正十字形外接圆周长最短为:22l R ππ==.答:,宽为3cm 时,. 20.某天数学课上,老师介绍了基本不等式的推广:()12212,,0nn n a a a a a a a n+++≤≥.小明由此得到启发,在求33x x -,[)0,x ∈+∞的最小值时,小明给出的解法是:3331132323322x x x x x x x -=++--≥-=--=-,当且仅当1x =时,取到最小值-2.(1)请你模仿小明的解法,研究44x x -,[)0,x ∈+∞上的最小值; (2)求出当0a >时,3x ax -,[)0,x ∈+∞的最小值.【答案】(1)-3;(2)【分析】(1)根据小明解法44411143x x x x -=+++--,利用均值不等式求解;(2)转化条件33x ax x ax -=,应用均值不等式求解.【详解】(1)由0x ≥,知44411143434433x x x x x x x -=+++--≥-=--=-, 当且仅当1x =时,取到最小值-3; (2)由0a >,0x ≥,知33x ax x ax ax -=ax ax =-=当且仅当3x =21.生命在于运动,运动在于锻炼.其中,游泳就是一个非常好的锻炼方式.游泳有众多好处:强.身健体;保障生命安全;增强心肺功能;锻炼意志,培养勇敢顽强精神;休闲娱乐,促进身心健康.近几年,游泳池成了新小区建设的标配.家门口的“游泳池”,成了市民休闲娱乐的好去处.如图,某小区规划一个深度为2m ,底面积为21000m 的矩形游泳池,按规划要求:在游泳池的四周安排4m 宽的休闲区,休闲区造价为200元2/m ,游泳池的底面与墙面铺设瓷砖,瓷砖造价为100元2/m .其他设施等支出大约为1万元,设游泳池的长为m x .(1)试将总造价y (元)表示为长度x 的函数; (2)当x 取何值时,总造价最低,并求出最低总造价.【答案】(1)()100020001128000y x x x ⎛⎫=++> ⎪⎝⎭;(2)当x =时,总造价最低,且最低总造价为()112800元. 【分析】(1)求出游泳池的宽,分别计算出铺游泳池的花费和休闲区的花费,即可得出总造价y (元)关于x 的函数;(2)利用基本不等式可求得y 的最小值,利用等号成立可得出结论. 【详解】(1)因为游泳池的长为m x ,所以游泳池的宽为1000m x, 铺游泳池的花费为1000100010010002222400250x x x x ⎛⎫⎛⎫⨯+⨯+⨯⨯=++ ⎪ ⎪⎝⎭⎝⎭, 休闲区的花费为()1000100020088100016008x x x x ⎡⎤⎛⎫⎛⎫⨯++-=++⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以,总造价为100010001000400250160082000112800y x x x x x x ⎛⎫⎛⎫⎛⎫=+++++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中0x >;(2)由基本不等式可得100020001128002000112800112800y x x ⎛⎫=++≥⨯= ⎪⎝⎭(元),当且仅当x =.因此,当x =时,总造价最低,且最低总造价为()112800元.22.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.【答案】(1)最大值为16米;(2)最小值为(824+平方米. 【分析】(1)设草坪的宽为x 米,长为y 米,依题意列出不等关系,求解即可; (2)表示400(26)(4)(26)(4)S x y x x=++=++,利用均值不等式,即得最小值. 【详解】(1)设草坪的宽为x 米,长为y 米,由面积均为400平方米,得400y x=. 因为矩形草坪的长比宽至少大9米,所以4009x x+,所以294000x x +-,解得2516x -. 又0x >,所以016x <. 所以宽的最大值为16米.(2)记整个的绿化面积为S 平方米,由题意可得400300(26)(4)(26)(4)8248()(824S x y x x x x=++=++=+++(平方米)当且仅当x =.所以整个绿化面积的最小值为(824+平方米.23.一个圆心为O 的半圆形如图所示,C 、D 在半圆弧AB 上,AC BD =,AD 与BC 交于点P ,且10AC BC +=.(1)设AC x =,CP y =,求y 关于x 的函数关系式; (2)求APC △面积的最大值:【答案】(1)501010xy x-=-()05x <<;(2)最大值为75-【分析】(1)在直角 APC △中222AP AC CP =+,得501010xy x-=-,再由边长大于零得定义域可得解析式;(2)250575APC S t t ⎛⎫=-+- ⎪⎝⎭△,由基本不等式求最值可得答案. 【详解】(1)因为10AC BC +=,所以10BC x =-,又CP y =,AC BD =,所以AC BD =,90ACP BDP ∠=∠=, 又APC BPD ∠=∠,所以CAP DBP ∠=∠ 所以ACP BDP ≅, 所以10PB PA x y ==--. 依题意可得CA CB ⊥,在直角 APC △中,222AP AC CP =+, 即222(10)x y x y --=+,整理可得501010xy x-=-,由010********x x x x ⎧⎪>⎪->⎨⎪-⎪>-⎩得05x <<, 所以501010xy x-=-()05x <<.(2)115010(255)221010APC x x x S xy x x x--==⋅=--△, 令10x t -=,则10x t =-,因为05x <<,所以510t <<,所以(10)(255)25025057575275APC t t S t t t---⎛⎫==-+--=- ⎪⎝⎭△当且仅当2505t t=,即t =10x =-. 故APC △面积的最大值为75-24.如图所示,某市现有自市中心O 通往正西和东北方向的两条主要公路,为了解决该交通拥挤问题,市政府决定修建一条环城公路,分别在通往正西和东北方向的公路上选取A 、B 两点,使环城公路在A 、B 间为直线,要求AB 路段与市中心O 的距离为10km ,且使A 、B 间的距离||AB 最小,请你确定A 、B 两点的最佳位置(不要求作近似计算).【答案】A 、B 两点的最佳位置是离市中心O 均为处. 【分析】先以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立直角坐标系.设(,0)A a -、(,)B b b ,则可得直线AB 的方程,再根据点到直线的距离公式可得2222100(22)a b a b ab =++,进而求得ab 的范围,再根据两点间的距离求得10abAB =,进而可得||AB 的范围及最小值.当||AB 取最小值时可求得a ,b 的值,进而求出||OA 和||OB ,确定A ,B 的位置. 【详解】以O 为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,建立如下图所示的直角坐标系设(,0)A a -、(,)B b b (其中0a >,0)b >,则AB 的方程为b ab y x a b a b=⋅+++, 即()0bx a b y ab -++=.2222100(22)100(22)a b a b ab a ab ∴=++200(1ab =.0ab >,200(21)ab ∴+.当且仅当“222a b =”时等号成立,而10ab AB ==, 20(21)AB ∴+.当222a b =,ab =||AB 取最小值,即a =b =此时OA a ==,OB =A ∴、B 两点的最佳位置是离市中心O 均为处.25.全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.连云港市黄海路社区响应号召,在全面开展“创文”的基础上,对一块空闲地进行改造,计划建一面积为4000 m 2矩形市民休闲广场.全国文明城市是中国大陆所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具有价值的城市品牌.为此社区党委开会讨论确定方针:既要占地最少,又要美观实用.初步决定在休闲广场的东西边缘都留有宽为2m 的草坪,南北边缘都留有5m 的空地栽植花木.(1)设占用空地的面积为S (单位:m 2), 矩形休闲广场东西距离为x (单位:m ,0x >),试用x 表示为S 的函数;(2)当x 为多少时,用占用空地的面积最少?并求最小值.【答案】(1)()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)当休闲广场东西距离为40m 时,用地最小值为4880 m 2.【分析】(1)由广场面积可得矩形广场的南北距离为4000xm ,进而可求得结果;(2)根据基本不等式可求得结果.【详解】(1)因为广场面积须为40002m ,所以矩形广场的南北距离为4000xm , 所以()()40004100S x x x ⎛⎫=++> ⎪⎝⎭;(2)由(1)知1600040401040404040800=4840S x x =++≥++,当且仅当40x =时,等号成立.答:当休闲广场东西距离为40m 时,用地最小值为48802m .26.某旅游公司在相距为100km 的两个景点间开设了一个游船观光项目.已知游船最大时速为50/km h ,游船每小时使用的燃料费用与速度的平方成正比例,当游船速度为20/km h 时,燃料费用为每小时60元.其它费用为每小时240元,且单程的收入为6000元.(1)当游船以30/km h 航行时,旅游公司单程获得的利润是多少?(利润=收入-成本) (2)游船的航速为何值时,旅游公司单程获得的利润最大,最大利润是多少?【答案】(1)4750元;(2)游轮的航速应为40/km h ,最大利润是4800元.【分析】(1)设游船的速度为(/)v km h ,旅游公司单程获得的利润为y (元),根据利润=收入-成本建立函数关系式,所以24000600015(050)y v v v=--<,代入30/v km h =即可求得; (2)利用基本不等式求出最大利润即可.【详解】解:(1)设游船的速度为(/)v km h ,旅游公司单程获得的利润为y (元),因为游船的燃料费用为每小时2·k v 元,依题意2·2060k =,则320k =. 所以23100100240006000(?240?)600015(050)20y v v v v v v=-+=--<. 30/v km h =时,4750y =元;(2)2400060001560004800y v v =---=, 当且仅当2400015v v=,即40v =时,取等号. 所以,旅游公司获得最大利润,游轮的航速应为40/km h ,最大利润是4800元.27.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100km ,按交通法规定:这段公路车速限制在40~100(单位:km/h)之间.假设目前油价为7.2元/L ,汽车的耗油率为2(3)360x +L /h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资)【答案】租车的总费用最少是280元,车速为70km/h .【分析】设总费用为y 元,再根据题意求出y 与x 的关系式,再利用基本不等式求解即可【详解】解设总费用为y 元.由题意,得()2100100980076.47.23240100360x y x x x x x⎛⎫=⨯+⨯⨯+=+≤≤ ⎪⎝⎭.因为98002280y x x =+≥=. 当且仅当98002x x=,即x =70时取等号. 所以这次租车的总费用最少是280元,此时的车速为70km/h .28.为应对疫情需要,某医院需要临时搭建一处占地面积为2300m 的矩形隔离病区,拟划分6个工作区域,布局示意图如下.根据防疫要求,所有内部通道(示意图中细线部分)的宽度为2m ,整个隔离病区内部四周还要预留宽度为3m 的半污染缓冲区(示意图中粗线部分),设隔离病区南北长x m .(1)在满足防疫要求的前提下,将工作区域的面积表示为南北长x 的函数()f x ,并写出x 的取值范围;(2)应该如何设计该隔离病区的边长,才能使工作区域的总占地面积最大?(结果精确到0.1m )【答案】(1) ()f x =30003808x x ⎛⎫-+ ⎪⎝⎭,7562x ⎛⎫<< ⎪⎝⎭;(2) 隔离病区的边长为19.4m 时,工作区域的总占地面积最大值.【分析】(1)根据长方形面积计算公式,求出各边边长,然后用总面积减去内部通过到面积和半污染缓冲区面积即可;(2)根据第一问表达式,结合基本不等式求最值即可.【详解】(1)南北长x ,则东西长300x , 300300()300[32(6)32][(6)2822]f x x x x x ⎛⎫=-⨯+-⨯⨯--⨯+-⨯⨯ ⎪⎝⎭=30003808x x ⎛⎫-+ ⎪⎝⎭ ,7562x ⎛⎫<< ⎪⎝⎭ .(2)由(1)可得: 753000682x x x <<+≥, 当且仅当30008,x x x==.此时工作区域面积达到最大,故隔离病区的边长为19.4m 时,工作区域的总占地面积最大值.29.某水库堤坝因年久失修,发生了渗水现象,当发现时已有2200m 的坝面渗水.经测算知渗水现象正在以每天24m 的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积22m ,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水21m 的损失为250元.现在共派去x 名工人,抢修完成共用n 天. (1)写出n 关于x 的函数关系式;(2)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).【答案】(1)1002n x =-,3x ≥,x N +∈;(2)52名工人. 【分析】(1)根据已经渗水的面积和扩散的面积之和等于x 名维修工人抢修n 天所抢修的面积列方程即可;(2)设总损失为y ,则125502502y nx x nx =++⨯,将其整理为关于x 的函数,再利用基本不等式即可求最值.【详解】(1)由题意知:抢修n 天时,维修工人抢修的面积之和为2nx ,而渗水的面积为2004n + 所以有22004nx n =+,可得:1002n x =-,3x ≥,x N +∈. (2)设总损失为y ,则125502502y nx x nx =++⨯62550nx x =+100625502x x x =⋅+-()1250225001250505022x x x x x x -+⎛⎫⎛⎫=+=+ ⎪ ⎪--⎝⎭⎝⎭ 25005012502x x ⎛⎫=++ ⎪-⎝⎭250050212522x x ⎛⎫=+-+ ⎪-⎝⎭()50125250250125267600⎛⎫≥=⨯+= ⎪ ⎪⎝⎭,当且仅当250022x x =--时,即52x =时,等号成立. 所以应派52名工人去抢修,总损失最小.30.设002a b a b >>+=,,.(1)证明:(1)(1)4a b ab++≥; (2)证明:332a b +≥.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)把(1)(1)a b ab++展开化简,利用基本不等式即可得证;(2)结合已知条件,利用两数和的立方公式展开,再用基本不等式即可得证.【详解】(1)证明:因为0a >,0b >,2a b +=.()()13111ab a b ab a a bb ab +++++==+. 且()214a b ab +≤=(当且仅当a b =时取等号), 故331141ab +≥+=. 所以()()114a b ab++≥ (2)证明:()3322333a b a a b ab b +=+++()333a b ab a b =+++336a b ab =++()23333664a b a b a b +++⋅=++≤当且仅当1a b ==时取等号,又()3328a b +==,故332a b +≥.31.若实数x ,y ,m 满足||||x m y m -<-,则称x 比y 接近m ,(1)若231x +比3接近1,求x 的取值范围;(2)证明:“x 比y 接近m ”是“231x y m x y+-<--”的必要不充分条件; (3)证明:对于任意两个不相等的正数a 、b ,必有22a b ab +比33+a b接近2【答案】(1)x -<<(2)见解析;(3)见解析.【分析】(1)根据定义可得232x <,从而可求x 的取值范围.(2)通过反例可得“x 比y 接近m ”是“231x y m x y +-<--”不充分条件.利用不等式的性质可证明“x 比y 接近m ”是“231x y m x y+-<--”的必要条件,故可得所证结论. (3)利用基本不等式结合分析法可证结论成立.【详解】(1)因为231x +比3接近1,故231131x +-<-, 故232x <,故28x <,所以x -<(2)取1,2,02x y m =-==, 则1||2||2x m y m -=<=-,故x 比y 接近m . 但23120215922x y m x y +--++==->----, 故“x 比y 接近m ”推不出“231x y m x y +-<--”. 所以“x 比y 接近m ”是“231x y m x y +-<--”不充分条件. 若231x y m x y +-<--,则330x m x y-<-,故()()0x m x y --<, 所以00x m x y -<⎧⎨->⎩或00x m x y ->⎧⎨-<⎩, 若00x m x y -<⎧⎨->⎩,则y x <且x m <,故2x y m x m +<+<, 所以()()20x y m x y +--<, 故()()2220x m y m x y m x y ---=+--<,所以x m y m -<-,也就是“x 比y 接近m ”.若00x m x y ->⎧⎨-<⎩,则x y <且m x <,故2x y m x m +>+>, 所以()()20x y m x y +--<, 故()()2220x m y m x y m x y ---=+--<,所以x m y m -<-,故“x 比y 接近m ”是“31x y m x y+-<--”必要不充分条件.(3)对于任意两个不相等的正数a 、b ,要证22a b ab +比33+a b 接近2即证:223322-++<-a b ab a b ,即证:332ab a b a b -<+-+即证:22a b b aa b ++-<-,因为2222a b b a a b b a +++≥=+,因为a b ,故22a b a b b a +>+>220a b a b b a+-+-,所以22a b b aa b ++-<-成立,故22a b ab +比33+a b 接近2【点睛】关键点点睛:本题属于新定义背景下的不等式的求解与证明问题,其中必要不充分条件的证明应依据充分条件和必要条件的定义来展开,证明不等式恒成立要结合不等式的性质,也要结合基本不等式.32.若对任意的[]1,5x ∈,对任意的[)4,a ∈+∞,不等式2a x b x≤++恒成立,求-a b 的最大值.【答案】33【分析】设(),15a f x x b x x =++≤≤,对a 讨论,分45a ≤≤,525a <≤,25a >,判断()f x 的单调性,求得最值,由不等式的性质和不等式的解法,可得所求最大值.【详解】设()a f x x b x=++,当45a ≤≤时,()()15f f ≤,可得()f x 的最小值为f b = ,最大值为55a b ++,由题意可得2b ≥,即为2b ≥-23a b a -≤+≤+ ;当525a <≤时,()()15f f >,可得()f x 的最小值为f b =,最大值为1a b ++,由题意可得2b ≥,即为2b ≥-22510233a b a -≤+≤+-=.5>即25a >时,()f x 在[]1,5递减,可得()f x 的最大值为()11f a b =++,最小值为55a b ++, 由题意可得525a b ++≥,即为35a b ≥--,则63355a a a b a -≤++=+, 由25a >,可得-a b 无最大值.综上可得-a b 的最大值为33.【点睛】思路点睛:本题考查了对勾函数的单调性,利用单调性求函数的最值,考查了分类讨论的思想,属于难题。
第十讲一元二次不等式、基本不等式探究点一一元二次不等式的解法【例1】解下列不等式:(1)-x2+2x-2>0;(2)9x2-6x+1≥0.3规律方法解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax2+bx+c>0(a>0),ax2+bx+c<0(a>0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根;(4)根据对应二次函数的图象,写出不等式的解集.探究点二含参数的一元二次不等式的解法【例2】已知常数a∈R,解关于x的不等式ax2-2x+a<0.规律方法(1)含参数的一元二次不等式,若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易因式分解,则可对判别式进行分类讨论,分类要不重不漏.(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.(3)其次对方程的根进行讨论,比较大小,以便写出解集.探究点三一元二次不等式恒成立问题【例3】已知f(x)=x2-2ax+2 (a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.【例4】设函数f(x)=mx2-mx-1.(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;(2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.规律方法1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.探究点四 转化与化归思想与三个“二次”的关系【例5】已知不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.规律方法 由ax 2+bx +c >0的解集是一个开区间,结合不等式对应的函数图象知a <0,要求cx 2+bx +a <0的解集首先需要判断二次项系数c 的正负,由方程根与系数关系知c a=α·β>0,因a <0,所以c <0,从而知道cx 2+bx +a <0的解集是x 大于大根及小于小根对应的两个集合.要想求出解集,需用已知量α,β代替参数c 、b 、a ,需对不等式cx 2+bx +a <0两边同除c 或a ,用α、β代替后,就不难找到要求不等式对应方程的两根,从而求出不等式的解集.本题较好地体现了三个“二次”之间的相互转化.探究点五 利用基本不等式求最值【例6】 (1)已知x >0,y >0,且1x +9y=1,求x +y 的最小值;(2)已知x <54,求函数y =4x -2+14x -5的最大值;(3)若x ,y ∈(0,+∞)且2x +8y -xy =0,求x +y 的最小值.规律方法 (1)基本不等式的功能在于“和与积”的相互转化,使用基本不等式求最值时,给定的形式不一定能直接适合基本不等式,往往需要拆添项或配凑因式(一般是凑和或积为定值的形式),构造出基本不等式的形式再进行求解.(2)基本不等式成立的条件是“一正、二定、三相等”,“三相等”就是必须验证等号成立的条件.。
高中数学基本不等式的解法十例Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】高中数学基本不等式问题求解十例一、基本不等式的基础形式1.222a b ab +≥,其中,a b R ∈,当且仅当a b =时等号成立。
2.a b +≥[),0,a b ∈+∞,当且仅当a b =时等号成立。
3.常考不等式:22221122a b a b ab ++⎛⎫≥≥≥ ⎪⎝⎭+,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。
二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路:(1)积定和最小:若ab 是定值,那么当且仅当a b =时,()min a b +=。
其中[),0,a b ∈+∞(2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2max2a b ab +⎛⎫= ⎪⎝⎭,其中,a b R ∈。
例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:1a b ==-时取等号。
变式:函数1(0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1mx ny +=上,则mn 的最大值为______。
解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1mx ny +=中可得1m n +=,明显,和为定,根据和定积最大法则可得:12m n ==时取等号。
例题2:已知函数()2122xx f x +=+,则()f x 取最小值时对应的x 的值为__________.解析:21212x x x +=⇒=-时取等号。
变式:已知2x >-,则12x x ++的最小值为 。
解析:由题意可得()120,212x x x +>+⨯=+,明显,积为定,根据和定积最大法则可得:122112x x x x +=⇒+=⇒=-+时取等号,此 例题3:若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:分式形式的不等式,可以考虑采用常数分离的方法。
解法1:解法2:问题2:“1”的代换例题4:若两个正实数x 、y 满足141x y += ,且不等式234yx m m +-<有解,则实数m 的取值范围是 。
解析:由题意可得141x y +=,左边乘以141x y+=可得:14441y x x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭+=,化简可得:1441144y y x x x y x y ⎛⎫⎛⎫++=+++ ⎪⎪⎝⎭⎝⎭,很明显44y x x y +中积为定值,根据积定和最小的法则可得:424y x x y +≥=,当且仅当24184x y x y x y =⎧==⇒⎨=⎩时取等号。
故而可得1444y x x y ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭。
不等式234y x m m +-<有解,亦即2min 344y m m x ⎛⎫->+= ⎪⎝⎭,亦即2340m m -->,解得4m >或者1m <-,故而可得()(),14,m ∈-∞-⋃+∞。
变式:若0x ≥, 0y ≥,且1222x y x y+=++,则43x y +的最小值为__________. 解析:由()()2243x y x y x y +++=+,化简题干条件可得142222x y x y+=++乘以所求内容可得:()()1414432222222224322x y x y x y x y x y x y x y x y ⎛⎫⎛⎫++++++ ⎪ ⎪++++⎝⎭⎝⎭+==,化简后可得:()422241222432x y x y x y x yx y ++++++++=,很明显()4222222x y x y x y x y +++++中二者积为定值,根据积定和最小法则可得()42224222x y x y x y x y +++≥=++,当且仅当()42222222x y x y x y x y ++==++,亦即032x y =⎧⎪⎨=⎪⎩问题3:方程中的基本不等式解题思路:将需要利用不等式的项移到方程的一边,利用基本不等式求解即可。
例题5:(2015·湖南高考)若实数a,b满足1a+2b=ab,则ab的最小值为__________.解析:由题意可知可以利用基本不等式,根据基本不等式可得:12a b=+≥=,当且仅当122b aa b=⇒=时取等号,化简后可得:ab=145422ab⎧=⎪⎨⎪=⎩变式:若lg(3x)+lg y=lg(x+y+1),则xy的最小值为__________.解析:将题干条件化简可得:()()lg3lg131x y x y xy x y⋅=++⇒=++,由题意需要求解xy,故而可知利用不等式x y+≥31xy x y-=+≥当且仅当x y=时等号成立,化简上式可得()31011011xy xy--≥⇒+≥⇒≥⇒≥,此时1x y==问题4:含参基本不等式问题解题思路:利用含参不等式的解法求解即可。
例题6:已知222241a ax x x++≤+-对于任意的()1,x∈+∞恒成立,则()A.a的最小值为3- B.a的最小值为4-C.a的最大值为2 D.a的最大值为4解析:由题意可知参数为a,将自变量移项可得:2244221xa a x xx x x++≤+=+--,观察等式右侧,可知等式右侧经配凑可得积为定值,根据积定和最小可得:4141xx+-≥=-,当且仅当4131x xx=-=⇒=-时取等号,此时可得min451xx⎛⎫+=⎪-⎝⎭。
由24221a a xx++≤+-对于任意的()1,x∈+∞恒成立可得:2min42251a a xx⎛⎫++≤+=⎪-⎝⎭,化简可得()()310a a+-≤,解得31a-≤≤。
变式6:已知a >0,b >0,若不等式22182m ma b a b -+≥+恒成立,则m 的取值范围是 。
解析:由题意可知参数为m ,将双自变量a 、b 移项可得:()22182m m a b a b ⎛⎫-≤++ ⎪⎝⎭恒成立,故而可得()2min2182m m a b a b ⎡⎤⎛⎫-≤++ ⎪⎢⎥⎝⎭⎣⎦,将不等式右侧化简可得()212225b a a b a b a b ⎛⎫++=++ ⎪⎝⎭,很明显积为定值,根据积定和最小法则可得:224b a a b +≥=,当且仅当221b a a b a b=⇒==时取等号。
故而()min 2129a b a b ⎡⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦,代入不等式中可得289m m -≤化简为()()910m m -+≤解不等式可得19m -≤≤。
问题5:不等式与其他问题结合(向量与不等式)例题7:已知(0,0)OA aOB bOC a b =+>>,且,,A B C 三点在同一条直线上,则11a b+的最小值为_________. 解析:由三点共线可得1a b +=,观察形式采用“1”的代换,故而(不等式与解析几何)例题8:若直线20ax by -+=(0a >, 0b >)被圆222410x y x y ++-+=截得的弦长为4,则11a b+的最小值为 。
解析:将圆化为标准方程可得()()22124x y ++-=,根据弦长为4可得直线经过圆心。
将圆心()1,2-代入直线方程可得22a b +=。
观察求解形式可得采用“1”的代换方法,即()112112a b a b a b ⎛⎫++ ⎪⎝⎭+=,化简可得23112b a a b a b +++=很明显积为定,根据积定和最小法则可得:22222b a b a a b a b +≥⋅=,当且仅当222222a b a a b b ⎧=-⎪=⇒⎨=-⎪⎩时取等号,故而可得23113222b a a b a b++++=≥。
(基本不等式与线性规划)例题9:设,x y 满足条件360{200,0x y x y x y --≤-+≥≥≥,若目标函数z ax by=+(0,0a b >>)的最大值为12,则32a b+的最小值为 。
解析:作出可行域如图所示:故而可得+z ax by =在点()4,6H 取最大值,即4612236a b a b +=⇒+=,由题意可得采用“1”的代换求解。
即()329423123266b a a b a b a b a b ⎛⎫++++ ⎪⎝⎭+==,观察分子可得分子积为定值,根据积定和最小法则可得:9494212b a b a a b a b +≥⋅=,当且仅当39421a b a a b b ⎧=⎪=⇒⎨⎪=⎩时取等号,故而可得94123246b a a b a b+++=≥。
(不等式与解三角形)例题7:ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2−a 2+bc =0. (1)求角A 的大小; (2)若a =√3,求S ΔABC 的最大值.(3)求ABC ∆周长的最值。
.解析:(1)由题意与余弦定理可得222222cos a b c bc A b c bc =+-=+-,解得1cos 2A =,故而3A π=(2)由余弦定理可得2223a b c bc =+-=,故而223bc b c +=+,由基本不等式222a b ab +≥可得22323bc b c bc bc +=+≥⇒≤,当且仅当b c ==“=”号。
故而可得三角形的面积11sin 22ABC S bc A ∆=≤= (3)由余弦定理可得2223a b c bc =+-=,故而223bc b c =+-,由基本不等式22a b ab +⎛⎫≥ ⎪⎝⎭可得:()()22222233333324b c b c b c bc bc b c bc b c ++⎛⎫++-=⇒+-=≤⇒≤⇒+≤ ⎪⎝⎭,当且仅当b c ==“=”号。
故而可得三角形的周长ABC C a b c ∆=++≤。