弹簧设计计算
- 格式:xls
- 大小:365.00 KB
- 文档页数:3
弹簧设计计算弹簧在材料选定后,设计时需要计算出弹簧刚度F、中径D、钢丝直径d、有效圈数n、变形量f。
以下面弹簧设计为例;1.计算弹簧受力:假设弹簧端克服1个标准大气压,即推动钢球,则弹簧受力为:F=PA=1×105N/mm2×πd12 /4其中d1——钢球通道直径弹簧还须克服钢球下降重力:G=mρV=m×4ρπR3/3其中R——钢球半径弹簧受合力:F合=F+G考虑制造加工因素,增加1.2倍系数F′=1.2F合2.选材料:(一般选用碳素弹簧钢丝65Mn或琴钢丝)以65Mn为例,钢丝直径d=1.4mm3.查表计算许用应力:查弹簧手册8-10表中Ⅰ类载荷的弹簧考虑(根据阀弹簧受力情况而言) 材料的抗拉强度σb与钢丝直径d有关查表2-30(选用D组): σb=2150~2450Mpa安全系数K=1.1~1.3, 可取K=1.2, 则σb=1791.7~2041.7 Mpa因此σb=1791.7Mpa(下限值)查表2-103,取切变模量G=78.8×103Mpa查表8-10,取许用切应力τs==0.5σb=0.3×1791.7=537.51Mpa 4.选择弹簧旋绕比C:根据表8-4初步选取C=105.计算钢丝直径:d≥1.6√KFC/[τ]其中K——曲度系数,取K=1.1~1.3F——弹簧受力6.计算弹簧中径:D=C d7.计算弹簧有效圈数:n=Gd4f/8FD3则总圈数n总=n+n1(查表8-6)8.计算试验载荷:Fs=πd3τs/8D9.自由高度:H0=nt+1.5d其中:t——初步估计节距t=d+f/n+δ1(δ1=0.1d)查表8-7系列值H0取整数10.节距计算:t=(H0-1.5d)/n11.弹簧螺旋角:(此值一般符合=5°~9°)α=arctan(t/πD)12.弹簧的稳定性验算:(b<5.3,即可满足稳定性要求=b=H0/D13.展开长度:L=πDn1/cosα14.弹簧刚度:F′=Gd4/8D3n14.弹簧载荷:F= F′×f15.弹簧试验变形:fs= Fs/ F其中在绘制弹簧图纸时,压紧弹簧时的长度L1(即受装配积压时的长度) 下弹簧对应受力F1,在阀开启时弹簧压缩的长度L2=L1+f,对应弹簧受力F2 例如:ZYB-1416N15-306H0=68.5 mm,装配时弹簧被压缩至37mm,阀开启时再次压缩8mm则L1=37,L2=37+8=45F1=37×F′F2=45 F′验算比较L2与Fs/ F的大小:若L2>Fs/ F′重新设计刚度;反之设计合理。
弹簧设计的计算公式
常见的弹簧设计绝大部分是压缩螺旋弹簧或拉伸螺旋弹簧。
这两种弹簧设计,涉及下面的项目。
在这里将关于a),b),c)进行解说。
a)在使用范围内,弹簧负载和形变量:弹簧常数
b)安装弹簧的空间:长度x外形
c)弹簧的固定方法:弹簧的两端形状和固定方法
d)其他:弹簧刚度(永久变形),疲劳度
(1)弹簧常数和弹簧形状尺寸的关系式
弹簧的形变量和负载(力)的关系。
P =k x δ
P:弹簧负载
k:弹簧常数
δ:弹簧挠度(形变量)
(k:弹簧常数)用弹簧材料特性和弹簧形状可以用下述公式表达。
这个公式压缩螺旋弹簧和拉伸螺旋弹簧都适用。
k =P/δ=G x d4/8 x n x D3 ・・・(A)
G:横向弹性系数(杨氏模量)
d:线径
n:有效匝数
D:平均线圈直径
通过使公式(A)变形,暂时设定D(平均线圈直径),d(线径),
k(弹簧常数)来计算有效匝数:n,或者根据已知的P,D,d,n ,来计算形变量:δ。
(2)弹簧的长度、外形的设计
弹簧长度是根据(允许形变量)与弹簧载荷之间的关系来选择和设计的。
(允许形变量)是会使弹簧变形或损坏的最大变形量(参考图1)。
弹簧的k值计算公式(二)弹簧的k值计算公式弹簧的k值(弹性系数)是衡量弹簧强度和刚度的重要参数。
在弹簧的设计和应用过程中,计算k值是必不可少的步骤。
本文将列举几种常见的弹簧k值计算公式,并用例子进行说明。
1. 无扭转弹簧的k值计算公式线圈弹簧(拉伸弹簧)的k值计算公式:k = (G * d⁴) / (8 * D³ * n)其中:k:弹簧的k值(N/m)G:弹簧材料的剪切模量(N/m²)d:弹簧线径(m)D:弹簧直径(m)n:弹簧总匝数(个)例如,假设有一个线径为(5mm)、直径为(40mm)的线圈弹簧,弹簧材料的剪切模量为80 × 10^9 N/m²,总匝数为10个。
那么可以通过上述公式计算出该弹簧的k值:k = (80 × 10^9 * ()^4) / (8 * ()^3 * 10)≈ 15784 N/m因此,该线圈弹簧的k值约为15784 N/m。
扭转弹簧(扭簧)的k值计算公式:k = (G * d⁴) / (32 * D³ * n)其中的符号意义与线圈弹簧的公式相同。
2. 有扭转弹簧的k值计算公式杆弹簧(压簧)的k值计算公式:k = (E * d⁴) / (8 * D³ * n)其中:k:弹簧的k值(N/m)E:弹簧材料的弹性模量(N/m²)d:弹簧线径(m)D:弹簧直径(m)n:弹簧总匝数(个)例如,假设有一个线径为(5mm)、直径为(40mm)的杆弹簧,弹簧材料的弹性模量为200 × 10^9 N/m²,总匝数为20个。
那么可以通过上述公式计算出该弹簧的k值:k = (200 × 10^9 * ()^4) / (8 * ()^3 * 20)≈ 312500 N/m因此,该杆弹簧的k值约为312500 N/m。
总结弹簧的k值计算公式是根据弹簧的材料、几何尺寸和总匝数等参数进行推导的。
各种弹簧计算范文弹簧是一种常见的机械零件,具有储存和释放机械能的能力。
在工程设计和力学分析中,弹簧的计算是一个重要的问题。
本文将介绍各种弹簧计算的方法和技巧。
1.弹簧刚度计算:弹簧的刚度是指弹簧单位变形所产生的反作用力。
刚度可以用力学公式计算,公式为:k=F/x其中,k为弹簧刚度,单位为牛顿/米(N/m);F为施加在弹簧上的力,单位为牛顿(N);x为弹簧的变形量,单位为米(m)。
2.弹簧的长度计算:弹簧的长度可以通过材料弹性模量和簧片的几何尺寸计算。
通常采用钢材制作的弹簧,长度计算公式如下:L=(8*n*t*R)/(π*d³*E)+d其中,L为弹簧的总长度,单位为米(m);n为簧片的数量;t为簧片的厚度,单位为米(m);R为簧片弧度,单位为米(m);d为簧片的宽度,单位为米(m);E为材料的弹性模量,单位为帕斯卡(Pa)。
3.弹簧的应变能计算:弹簧的应变能是指弹簧储存的机械能。
弹簧的应变能可以通过弹簧刚度和变形量计算,公式为:U=(1/2)*k*x²其中,U为应变能,单位为焦耳(J);k为弹簧刚度,单位为牛顿/米(N/m);x为弹簧的变形量,单位为米(m)。
4.弹簧的最大变形量计算:弹簧的最大变形量是指弹簧在受到最大外力作用时的变形量。
最大变形量可以通过弹簧刚度和作用力的比较计算,公式为:x_max = F_max / k其中,x_max为弹簧的最大变形量,单位为米(m);F_max为施加在弹簧上的最大力,单位为牛顿(N);k为弹簧刚度,单位为牛顿/米(N/m)。
5.弹簧的材料选取:弹簧的材料选取需要考虑加载条件、工作环境和弹簧的工作寿命等因素。
一般情况下,选取材料时需要考虑弹簧的刚度、强度和耐磨性等性能指标,常用材料有高碳钢、合金钢和不锈钢等。
在选取材料时,还需要根据具体需求进行试验和验证。
综上所述,弹簧的计算涉及弹簧刚度、长度、应变能、最大变形量和材料选取等方面。
计算弹簧需要考虑材料的弹性模量、弹簧的几何尺寸和施加在弹簧上的外力。
压簧、拉簧、扭簧弹力计算公式压力弹簧压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);·弹簧常数公式(单位:kgf/mm):G=线材的钢性模数:琴钢丝G=8000,不锈钢丝G=7300,磷青铜线G=4500 ,黄铜线G=3500d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数Nc=有效圈数=N-2弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈 ,钢丝材质=琴钢丝拉力弹簧的 k值与压力弹簧的计算公式相同·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)·弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm).·弹簧常数公式(单位:kgf/mm):E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数R=负荷作用的力臂p=3.1416。
弹簧设计计算已知条件:最小工作压力:F1=15N最大工作压力:F2=210N工作行程:h=15.5mm弹簧外径:D=17mm弹簧直径:d=3mm计算步骤:1),弹簧中径: D2=D-d=17-3=14mm2),弹簧指数C : 214 4.73D C d === 3),弹簧工作圈数n :21321()7700015.5322.1(22)8()8(21015)G d n F F C λλ-⨯⨯===-⨯-取 (查表得 剪切弹性模数G=77000)4),修正变形量λ1和λ2(1)最小工作载荷F1 :2112315.5770003F =F 21014.1822 4.7N λλ-⨯⨯-=-=⨯⨯⨯⨯3()Gd 8n c (2)弹簧刚度j : 212101512.58/15.5F F j N mm h --=== (3)变形量λ1和λ21114.1 1.1212.58F mm j λ=== 2221016.6912.58F mm j λ=== 5),弹簧圈间隙δ:216.690.10.13 1.0622d mm n λδ=+=+⨯=(取1mm ) 6)弹簧节距P :P=δ+d=1+3=4mm 7)弹簧自由高度H 0:01(0.5)221(240.5)392.5H n n d mm δ=+-=⨯+-⨯= (总圈数 n 1=n+2=24)8)实际极限载荷F lim :lim 12.58221276.76F jn N δ==⨯⨯=弹簧的最大压缩量也就是最大工作负荷下的变形量F:F=Pn/P' 式中:Pn--最大工作负荷,N. Pn=πd^3/(3KD) [ τ ]式中:d--弹簧钢丝直径,mm. D--弹簧中径,mm. K--曲度系数,K=(4c-1)/(4c-4)+ 0.615/c c=D/d[ τ ]--弹簧的许用应力,MPa.P'--弹簧刚度,N/mm. P'=(Pn-P1)/h. 式中:P1--最小工作负荷,N。
弹簧计算公式范文弹簧是一种常用的机械弹性元件,主要用于储存能量、缓冲震动、调节压力和支撑重物等多种应用。
弹簧的计算公式主要包括弹性力、弹簧刚度、变形量和共振频率等。
1.弹性力的计算公式:弹簧的弹性力是指弹簧所受的恢复力,即外力消失后,弹簧产生的力。
弹性力与弹簧的变形量成正比。
F=k*x其中,F为弹性力,k为弹簧的刚度系数,x为弹簧的变形量。
2.弹簧刚度的计算公式:弹簧的刚度是指单位变形量产生的弹性力。
刚度系数越大,弹簧刚度越高。
k=(G*d^4)/(8*n*D^3)其中,k为弹簧刚度,G为弹簧材料的剪切模量,d为弹簧丝径,n为弹簧的圈数,D为弹簧的平均直径。
3.弹簧变形量的计算公式:弹簧的变形量是指弹簧在受力后的长度变化。
x=F/k其中,x为变形量,F为外力,k为弹簧刚度。
4.弹簧的共振频率计算公式:共振频率是指弹簧在一定条件下形成共振的频率。
f=1/(2*π)*√(k/m)其中,f为共振频率,k为弹簧刚度,m为弹簧的质量。
此外,还有一些特殊情况下的弹簧计算公式:5.扭簧的刚度计算公式:扭簧的刚度是指扭簧所受的力矩与其转角之间的比值。
k=(G*d^4)/(10.4*n*D^3)其中,k为扭簧刚度,G为扭簧材料的剪切模量,d为扭簧丝径,n为扭簧的圈数,D为扭簧的平均直径。
6.悬挂式弹簧的刚度计算公式:悬挂式弹簧是指一端固定,另一端受力,通常用于汽车悬挂系统等。
k=(G*d^4)/(8*n*D^3)其中,k为悬挂式弹簧刚度,G为弹簧材料的剪切模量,d为弹簧丝径,n为弹簧的圈数,D为弹簧的平均直径。
综上所述,弹簧的计算公式涵盖了弹性力、弹簧刚度、变形量和共振频率等多个方面,可根据实际需求选择相应的计算公式进行弹簧的设计和分析工作。
弹簧设计计算已知条件:弹簧自由长度H0=796.8mm弹簧安装长度L1=411mm 弹簧工作长度L2=227mm弹簧中径D=22.3mm弹簧直径d=3.2mm弹簧螺距P=12mm弹簧有效圈数n=66弹簧实际圈数n1=68计算步骤:(1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。
取b σ=1716MPa 。
(2)压缩弹簧许用切应力p τ=(0.4~0.47) b σ=(0.4~0.47)*1716MPa=686.4~806.52MPa取p τ=686.4MPa 。
(3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。
2.33.22==d D C =6.9688(计算值在5~8之间) 6.9688615.046.9688416.96884615.04414+-⨯-⨯=+--=C C C K =1.2139 弹簧的最大工作压缩量Fn=795-227=568mm由公式348DP F Gd n n n =可得最大工作载荷34343.226685682.3798⨯⨯⨯⨯==nD F Gd P n n = 803.5758N 弹簧刚度663.2282.37983434'⨯⨯⨯==n D Gd P =1.4147N/mm 节距t=662.35.1795)2~1(0⨯-=-n d H =11.9727≈12 计算出来的自由高度H0=nt+1.5d=66*12+1.5*3.2=796.8mm压并高度Hb=(n+1.5)d=(66+1.5)*3.2=216mm弹簧最小工作载荷时的压缩量F1=795-411=384mm 则最小工作载荷3431413.226683842.3798⨯⨯⨯⨯==nD F Gd P =543.2625N 螺旋角α=arctan(t/πD )=arctan(12/(3.14*22.3))= 0.1696弧度= 9.7174°弹簧展开长度L=1696.0cos 683.22cos 1⨯⨯=παπDn = 4833.3mm ≈4833mm 弹簧压并高度H b ≤n 1*d max =68*(3.2+0.03)=219.64,取值216mm弹簧压并时的变形量为796.8-216=580.8mm弹簧压并时的载荷为Fa=580.8*1.4147=821.6578N(4)螺旋弹簧的稳定性、强度和共振的验算高径比b=H0/D=796.8/22.3=35.7309>0.4n B c P H P C P >=0' 不稳定系数C B =0.02==0'H P C P B c 0.02*1.4147*796.8=22.5447N<n P =803.5758N 所以必须设置导杆。
弹簧设计基本公式
以下是一些常见的弹簧设计公式:
1.线材应力公式:弹簧的线材应力是弹簧所承受的力和弹簧线材的横截面积之比。
线材应力可以通过以下公式计算:
σ=F/A
其中,σ是弹簧线材的应力,F是弹簧所承受的力,A是弹簧线材的横截面积。
2.弹簧刚度公式:弹簧的刚度是用来描述弹簧对外力的抵抗能力。
弹簧刚度可以通过以下公式计算:
k=(Gd^4)/(8nD^3)
其中,k是弹簧的刚度,G是弹簧材料的剪切模量,d是弹簧线材的直径,n是弹簧的有效圈数,D是弹簧的平均直径。
3.弹簧的最大应力和最大变形公式:最大应力和最大变形是弹簧的两个重要性能指标。
最大应力可以通过以下公式计算:
σ_max = 16F / (πd^3)
最大变形可以通过以下公式计算:
δ_max = (8Fn) / (πd^3G)
其中,σ_max 是弹簧的最大应力,δ_max 是弹簧的最大变形。
4.弹簧的自由长度公式:弹簧的自由长度是指弹簧未受到外力时的长度。
自由长度可以通过以下公式计算:
L_free = (n + 2) * d
其中,L_free 是弹簧的自由长度, n 是弹簧的有效圈数, d 是弹簧线材的直径。
这些是弹簧设计中常见的基本公式,通过这些公式可以计算和预测弹簧的各种行为和性能。
然而,弹簧的设计仍然是一个复杂的过程,需要考虑许多其他因素,如应力集中、疲劳寿命等。
因此,在进行弹簧设计时,还需要综合考虑其他相关的因素,以确保弹簧的可靠性和性能。