对110kV及以上高压电缆线路的接地系统分析
- 格式:doc
- 大小:34.50 KB
- 文档页数:7
110kV及以上高压电缆线路的接地系统摘要:电力企业的发展为高压电缆线路接地系统的优化创造了有利条件,但不同接地系统其应用效果不一,因此需要进行更加深入的探讨,从而可有效保证社会用电安全。
对此,本文将对110kv及以上高压电缆线路的接地系统进行分析,并探讨其在应用过程中存在的一些问题及相关优化措施。
关键词:高压电缆;接地系统;应用;措施高压电缆线路接地系统可有效保证电路安全,具有较高的应用价值。
在此过程中,相关技术人员存在一些误区,如,部分技术人员认为在高压电力电缆的铜屏蔽与钢铠之间的接地没有区别,但实际工作过程中,其接地方式需结合具体情况进行具体分析。
此外,电网规模的扩大也要求高压电缆线路具有更高的可靠性。
接地系统可有效防止感应电压对人身安全产生威胁,因此,在电网建设过程中,应当注重接地系统应用的分析。
1高压电力电缆接地系统概述当电流通过导体时,导体周围会产生感应电压,这一感应电压会影响电路可靠性,因此,在搭建高压电力电缆时,会采取一定的屏蔽措施。
接地系统的应用原理为通过铜网或者钢铠等金属形成一个屏蔽系统,保护电缆运行。
但接地系统在安装及设计上需要注意一系列问题,才能保证其应用效果。
目前,高压电力电缆接地主要包括金属护套一点接地、金属护套两端接地、金属护套两端接地、敷设“三七开”回流线及电缆换位,金属护套交叉互联等五种方式,应用场景不同,接地施工方式也不同[1]。
因此,相关人员应当提升自身素质,为电网可靠性发展提供技术支撑。
2电缆接地系统应用特点2.1金属护套一点接地金属护套一点接地系统中感应电压会随着电缆长度的增长而增加,因而常用于短电缆线路,在应用过程中,基本上不产生环流。
此外,在安装过程中,在无安全措施的情况下,需保证其另一端感应电压小于50v,如超过50v,则需设置绝缘接头。
尤其是在电路短路时,过高的过电压会损坏护层绝缘,因此,为避免此类现象影响接地系统应用性能,需在未接地端安装保护器。
110kV及以上电压等级高压单芯交联聚乙烯电缆线路接地系统研究发布时间:2022-09-20T07:26:03.101Z 来源:《科学与技术》2022年5月第10期作者:孟高志[导读] 随着电网的快速发展,高压电缆在城郊电网中运用越来越广泛孟高志扬州浩辰电力设计有限公司江苏省扬州市 225000摘要:随着电网的快速发展,高压电缆在城郊电网中运用越来越广泛。
当单芯电缆通过电流时,在金属护套上会产生感应电压,如果护套接地,则形成电流通道,在金属护套上会产生环流。
如果金属护套中电流过大就会使金属护套发热,不仅浪费了大量电能,而且会降低电缆的载流量,长期运行可能伤及主绝缘或加快劣化。
在对电缆“导体芯-铝护套-石墨层-接地体”三级电容进行理论分析的基础上,单端接地系统和交叉互联接地系统两种工况,计算分析了由接地系统异常引起的电缆线路高悬浮电压,并通过案例进行实证,提出了解决电缆线路高悬浮电压的措施关键词:高压电缆;铝护套;悬浮电压;接地系统 0引言110kV及以上高压电缆均采用单芯结构,金属护套一方面起径向阻水和抗机械损伤的作用,另一方面在系统发生短路故障时为故障电流提供回流通路。
当单芯电缆线芯流过交变的电流时,在线芯的周围会产生交变的磁场,该交变磁场与金属护套相交联,在金属护套上将产生感应电动势。
感应电动势会在护套中产生环流,较大的环流会影响电缆的载流量,同时会产生附加损耗,并可能引起电缆发热。
在单芯电缆构成的交流传输系统中,金属护套处于导体电流的交变磁场中,在金属护套中产生一定的感应电动势,其大小与电缆线路的长度、截面及电压等级有关,长度愈长、截面愈大、电压等级愈高,其感应电动势愈高。
如果护套形成通路,金属护套中的感应电动势将在护套中形成金属护套感应电流Is。
单芯电缆的导体与金属护套之间形成以导体和金属护套为连接、绝缘材料为介质的电容器,在交流电压作用下,会产生电容电流Ic。
金属护套接地电流Id由金属护套感应电流Is和电缆电容电流Ic两部分构成,即Id=Is+Ic。
对110kV及以上高压电缆线路的接地系统分析摘要:本文作者通过实际工作中总结与积累经验,主要针对110kv及以上高压电缆的接地的重要性,并通过分析高压电缆接地的要求、方式和采取的措施等。
关键词:高压电缆接地电流电缆接地方式一、前言:经过十几年高压电力电缆施工我们积累了相当一部分的经验,本文综合各类文献并结合工程实际,意图对110kv及以上高压电缆的接地就重要性等方面进行探索。
二、高压电力电缆接地分析当导体内通过电流时会在其周围产生感应电压,对于在发电厂、变电所等用于低压及二次系统控制的电缆,为了防止继电保护装置误动以保证保护装置可靠性以外,也防止控制电缆屏蔽因感应电压而导致保护装置损坏,所以均采取带屏蔽铜网的电缆,并对屏蔽接地有着非常严格的规定;并且要求电缆支架等都要求接地以防止感应电压危及人身安全;而高压电力电缆同样存在这样的问题,本文将针对高压电力电缆在施工及运行中遇到的的一系列敷衍出的问题进行讨论:首先是敷设时的机械保护(电缆抗弯、防水、防火、腐蚀——采取铝、铜等金属外护套)→其次运行中线芯电流(在金属护套上形成1∶1的单匝变压器产生感应电动势——危害人身安全及电气设备运行经济性、可靠性等,采取外屏蔽接地)→接地电流或环流→各种接地方式的解决方法。
为了尽可能减少护套环流我们可以采取多种金属护套的连接与接地方式,这是我要着重讨论的问题。
高压电缆线路的接地方式有下列几种:.金属护套一点接地(一端或中点):无环流,感应电压与电缆长度成正比,短电缆线路常用;⑵. 金属护套两端接地:有环流,感应电压为零,但影响载流量,轻负荷电缆线路常用;⑶. 金属护套交叉换位连接:两端接地,中间用绝缘接头将护层交叉换位连接,无环流,感应电压与电缆长度成正比,但可以限制在允许的范围内,长电缆线路常用。
⑷.电缆换位,金属护套交叉互联:要求测得电缆金属感应电压必须是小于50v为前提,如果不是的话,必须进行相应的检查,是否是电缆的原因还是由于电缆的长度太长而造成的,还是其他原因造成的,如果是长度的原因(一般要求在500~800m的范围具体看测试结果),应相应调整其长度,比如说一组交叉互联加一组接地(一段接地)或其他方式。
高压电缆线路接地系统在线监测分析随着电力供应体系的不断扩大和电力设备的不断发展,高压电缆线路在输电中的作用日益重要。
高压电缆线路接地系统是保证电网安全运行的重要组成部分,其良好的接地系统能够确保电网设备正常运行、人身安全,以及保护电网免受雷击等电力故障的影响。
对高压电缆线路接地系统的在线监测分析具有重要的意义。
高压电缆线路接地系统在线监测分析主要包括接地电阻监测、接地电位监测和接地电流监测等。
接地电阻是衡量接地系统性能的重要指标,通过对接地电阻的在线监测可以及时判断接地系统是否出现故障,确保接地系统的可靠性。
接地电位是指接地点与地面之间的电位差,通过对接地电位的在线监测可以了解接地系统是否存在漏电现象,及时排除隐藏的安全隐患。
接地电流是指通过接地系统的电流,通过对接地电流的在线监测,可以判断接地系统是否存在漏电或者过载等问题,及时进行修复。
高压电缆线路接地系统在线监测分析的方法主要有传统的实时监测和新兴的无线传感器网络监测两种。
传统的实时监测方法通常通过安装感应电阻器、测量电压表等设备,对接地电阻、接地电位和接地电流进行监测,并通过采集数据进行分析评估接地系统的性能。
这种方法需要人工进行监测和数据分析,操作繁琐,成本较高。
而新兴的无线传感器网络监测方法则采用无线传感器网络技术,通过部署在电缆线路接地系统上的传感器节点,实时采集接地系统的信息,并通过网络传输到监测中心进行数据分析和处理。
这种方法不仅可以实现接地系统的在线监测,还可以实现自动化操作,减轻人工负担,提高监测效率。
高压电缆线路接地系统在线监测分析的关键技术主要包括传感器技术、数据传输技术和数据分析技术。
传感器技术主要涉及接地电阻传感器、接地电位传感器和接地电流传感器等,需要具备高精度、高可靠性和低功耗的特点,能够在恶劣的环境条件下工作。
数据传输技术主要包括有线传输和无线传输两种,有线传输主要通过电缆进行数据传输,无线传输则通过无线传感器网络进行数据传输。
110kv电缆线路护层接地方式及保护措施摘要:当前,110kv电缆线路已经逐渐成为城市中替代架空线路的关键输电环节,然而也存在不足之处,主要原因在于该输电系统的架设工作较为复杂,而且技术性要求相当高。
因此,现阶段我国供电企业需要重点探讨的问题是如何充分掌握110kv电缆线路护层接地方法,采取有效的保护措施,只有这样才可以促进企业持续健康发展。
基于此,本文首先介绍了110kv电缆线路的优势性能,然后分析了110kv电缆线路护层的常见接地方法,最后提出了110kv电缆线路护层的保护措施,以供大家学习和参考。
关键词:110kv电缆线路护层;接地方式;保护措施近年来,在社会经济日益发展的背景下,我国电力行业不仅迎来很多发展机遇,而且面临严峻的挑战,要想更好地满足社会对电能的需求,供电企业在发展中将电网建设规模不断扩大。
在该情况下,110kv电缆线路的投入使用可以使电网具有更强的供电能力,而为了提高电网运行的可靠性和稳定向,必须要不断完善且落实110kv电缆线路保护层接地方法,还要结合实际情况,合理制定有效的保护措施。
一、110kv电缆线路的优势性能就110kv电缆线路来讲,其内部是单芯结构形式,在具体应用中体现出多个优势特点,具体表现在以下几个方面:其一,可以使电缆的使用寿命得到延长,以显著减少电网运行过程中产生的总成本,为供电企业创造更多的经济效益。
其二,此电缆线路可以迅速适应自然气候带来的影响,在最大限度上减少网损,而且提升供电质量。
其三,利用电缆线路的保护层可以明显减少电缆线路受损的情况,以免投入大量的维修费用。
其四,该电缆线路是采用高空架网的形式来铺设,所以既安全又可靠。
二、110kv电缆线路护层的常见接地方法(一)单端接地电缆的线路长度不超过500米时,一般来说,终端部分运用电缆金属护套使其中的一端直接接地,而且将另一侧通过非线性的电阻保护器,以做好间接接地处理,让金属护套对地处在绝缘的状态中,以免出现有回路的问题。
110千伏配电线路单相接地故障及解决措施探究10kV配电线路的单相接地故障是最常见的故障类型,对用户供电和人身安全有较大的安全隐患,不仅供电企业需认真对待,各类工矿企业(存在大量的中压配电线路)更需要引起重视。
因此,必须加强对10kV配电线路的单相接地故障的分析和处理,尽量减少故障带来的影响,确保供电安全。
标签:10千伏配电线路;单相接地;故障引言:引起10kV配电线路单相接地故障的原因有很多,故障查找的工作也是比较困难的,因而需要对单相接地故障的原因继续详细的分析,并且实施有效的措施来进行防范,同时也需要运用先进的技术和设备来提高故障查找工作的效率。
一、单相接地故障的原因在10kv配电线路运行中,发生单相接地故障的原因主要有以下几个方面:一是导线在绝缘子上固定活绑扎不够牢固,导致线路脱落到地上或横担,进而造成了单相接地的故障。
二是有些部分的拉线线路被盗后,导致线路落到了导线上。
三是配电网变压器的高压接头断线,使其无法进行正常的导线连接。
四是配电网变压器的高压绕组的单相绝缘接地或击穿。
五是导线线路上的分支熔断器击穿或绝缘。
六是树木的短接,树木的短接问题是较为常见的造成配电线路单相接地的主要原因,主要就是由于这些外在的原因造成10kv配电线路单相接地。
根据近几年对发生单相接地故障的调查,大多的都是由于树木短接、绝缘子击穿、异物搭接、导线断线等主要原因。
二、单相接地故障的危害1、对变电设备的危害10kv配电线路发生单相接地的故障后,在变电站10kv的母线电压互感器的检测到达零序电流时,电压的互感器铁芯得到的饱和,如果这样的长时间运行下去,则会导致电压互感器被烧毁。
近些年来,在对配电网实际运行过程的调查,曾发生过配电网变电站的电压互感器被烧毁的情况,这不仅对设备造成了一定的损毁,还造成大面积的停电事故。
不仅如此,单相接地事故的发生,很有可能发生谐振过电压,如果产生了几倍于正常的电压的谐振过电压,那么,就会危及到变电设备的绝缘效果,甚至是可能会造成对变电设备绝缘击穿的情况,导致更大事故的发生,不利于电路的良好运行和安全使用。
110kV 配电线路单相接地故障分析摘要:110 kV配电线路在实际运行中,经常发生单相接地故障,若发生单相接地故障后电网长时间运行,会严重影响变电设备和配电网的安全经济运行。
本文就要针对110KV 配电线路单相接地故障进行了分析。
关键词:110KV;配电线路;单相接地;故障分析;预防措施110 kv distribution circuit single-phase grounding fault analysisLiMaoQiDongguan guangdong dongguan 523000 antai electric power engineering LTDPick to: 110 kV distribution circuit in actual operation, often single-phase grounding fault occurs, if the single-phase grounding fault occurs after the power grid operation for a long time, will seriously affect the power distribution equipment and the safe and economic operation of distribution network. This paper is aimed at 110 kv distribution circuit single-phase earth fault is analyzed.Key words: 110 kv; Distribution circuit; Single-phase grounding; Failure analysis; Preventive measures110kV配电网作为电力系统的重要组成部分,具有面广、线长等特点,造成其容易受到外力的破坏和天气的影响,给线路的维护和管理带来诸多的不便,特别是线路接地故障的时常发生,直接影响着所涉区域内人们的生产生活,因此,对10kV配电线路接地故障的研究具有重大的意义。
110kV及以上电力电缆设计相关要点分析摘要:目前,随着城市电网的快速发展,在城市电网建设工程中,高压电力电缆被广泛应用。
文章结合工作实践,主要针对110kv 及以上电力电缆的设计中相关要点进行了分析,旨在为类似的工程提供参考。
关键词 110kv;电缆;选择;敷设;接地中图分类号: f407.61文献标识码:a 文章编号:随着城市供电负荷的快速增长,110kv及以上室内变电站及地下变电站已经广泛采用。
相应配套的输电线路也全部采用电缆出线,因此大容量、长距离的电缆线路设计成为可能。
本文主要论述了110kv及以上电力电缆设计中相关要点。
一、电缆选择目前通常使用的高压电力电缆有充油(of)电缆和交联聚乙烯(xlpe)绝缘电力电缆(以下简称xlpe绝缘电缆)两种。
充油电缆具有可靠性高、通用率较高等优点,但充油电缆用的绝缘油具有可燃性,运行中的充油电缆由于外部原因或电缆头爆炸起火易酿成严重火灾,且其敷设施工难度和复杂性较大,平常的运行维护也比较繁重,目前新敷设的电缆已较少再使用这种类型。
xlpe 绝缘电缆具有较好的耐热和机械性能,且运输、施工以及运行维护都很方便等优点,但其作为制成品的电缆,其在生产过程中出现杂质、水分和微孔,产生的“电树”老化、扩张,会降低电缆整体绝缘,从而降低电缆的使用寿命。
但考虑运输、施工以及运行维护的方便,近年来,xlpe绝缘电力电缆在电力系统得到了广泛的使用。
二、电缆外护层的选择电缆的金属外护层根据电缆敷设环境有所不同,主要有pe(聚乙烯)外护层及pvc(聚氯乙烯)外护层两种。
pe外护层的机械性能及电气性能均好于pvc外护层,方便施工安装,但不具有阻燃性,主要适用于直埋和穿管敷设。
pvc护层则具有阻燃性,适用于空气中敷设,如电缆隧道、变电站站内敷设等。
为方便电缆的维护及试验,外护层外应有一层外电极。
外电极可以随外护套一起挤出,但大部分的电缆生产厂家都采用在外护套上涂一层石墨的办法。
论110kV电缆线路中的交叉互联接地系统设计摘要:基于110kV电缆线路中的交叉互联接地系统在电网线路的生产和运行中应用的广泛性,本文重点论述了此接地系统的设计原理和实际应用现状,并分析了常见的问题,提出了一些可行的措施,以期能够为相关的实践提供些许理论参考。
关键词:电缆线路交叉互联接地系统原理应用问题措施电缆线路中的交叉互联接地系统的设计原理是将电缆金属护套的一端直接接地,普遍用的是中间绝缘接头和交叉互联箱与三相电缆的金属护套调换位置以后进行重新连接,而另一端则通过保护接地,这样在完全换位的状况下,金属护套中就没有任何环流的通过,两端对地之间也就不会产生相应的感应电压,而是在每段的电缆线中间有一定的感应电压,并能保证换位处的感应电压幅度最高。
这种交叉互联方式的电缆线接地系统有其优势,也会存在着一定的缺陷和问题。
找到适当的方式就能化不利为有利。
一、110kV电缆线路中交叉互联接地系统的原理与应用就普遍情况来看,110kV 以上的高压电缆线路中使用的电缆很多都是单芯电缆,当有电流通过这种单芯电缆线时,便会产生磁力线交链的金属护套层,电缆线的两端面就会出现感应电压。
通过电缆线的电流越大,电缆线的长度越长,感应电压的幅度就越大,三者是呈正比的关系。
但是当电缆线路过长的时候,通过电缆护套上的感应电压相加起来的电压则会在一定程度上危胁到人们的生命安全。
所以当电缆线路发生短路的故障问题时候,或者电缆线路受到雷电的强烈冲击,或者操作不当导致电压过大,就容易形成强度很大的感应电压,有时候它能击破电缆线路的保护绝缘,所以单芯电缆线路的使用中一定要采取合适的接地方法,并按照科学的步骤进行操作,以达到保护人民的生命财产安全和电缆接地系统设备安全的双重目的。
电缆护套的接地方式有一端接地方式、两端接地方式以及交叉互联接地方式,选取那一种要看这种方式所带来的利弊是否平衡,是否能够承载高压电缆线路的正常负荷。
通常,较长的110kV电缆线路的金属护套的不能使用两端接地方式,例如当电缆线路的长度超过1500米时就不能进行两端接地,因为这样会导致金属护套中通过一定量的环流,从而降低了电缆线路的总载流量,而电缆线路中的交叉互联接地方式或者一端接地方式电缆通过的载流量均大于这种两端接地方式的电缆载流量,这样就不会造成资源的浪费,能源也不至于损失过多,由此看来较长的电缆线路一般可以采用护套一端接地方式,或者采用护套中点接地方式,还可以采用交叉互联接地。
关于110kV高压单芯电缆线路金属护套接地方式摘要:110kV高压电缆具有供电可靠性高、受外界因素影响小、占地少、对城市市容环境影响小等优点,在城市输配电网中得到了广泛的应用。
由于金属护套中存在感应电压,高压电缆通常通过金属护套的交叉连接来抑制感应电压。
但是,负载电流不平衡、电缆截面不均匀、电缆排列方式不同、电缆相间距离不同,都会引起金属护套感应电压不平衡,从而产生通过大地的地面环流。
当金属护套接地环大量流过时,会造成大量损耗,导致电缆温度升高,降低电缆的传输效率,缩短电缆的使用寿命。
鉴于此,文章结合笔者多年工作经验,对110kV高压单芯电缆线路金属护套接地方式提出了一些建议,仅供参考。
关键词:110kV高压;单芯电缆线路;金属护套;接地方式引言近年来,随着城市改造和建设的加快,大量的110kV高压电缆线路投入运营,大量的110kV高压电缆线路分布在人口密集地区,因此其运行安全更为重要。
当单芯电缆芯线通过电流时,会产生一个由磁力线构成的金属屏蔽层,这会在两端产生感应电压。
感应电压的大小与电缆的长度和流过导体的电流成正比。
当高压电缆很长时,护套上的感应电压会叠加,危及人身安全。
当发生短路故障、操作过电压或雷击时,会在屏蔽层上形成高感应电压,甚至可能击穿护套绝缘。
因此,加强110kV高压单芯电缆线路的金属护套接地方法十分重要。
1、高压输电线路接地故障定位原理当高压输电线路因为雷击?电容器?投切或断路器等原因产生接地故障时,在高压线路的接地故障点会形成折射行波和反射行波,两种行波会分别向输电线路的两端传播?高压输电线路接地故障点折射和反射行波传播原理图如图1所示?电压波在高压输电线路传播的过程中,如果输电线路突然发生接地故障,会使输电线路的波阻抗发生突变,变得不连续,从而使电压波在故障点处的能量发生改变?图1中A点为高压输电线路的接地故障点,Z1是接地故障点左侧的输电线路波阻抗,Z2是接地故障点右侧的输电线路波阻抗,u1q是高压输电线路未发生接地故障时的行波,u2q和u1f分别是发生接地故障后的折射波和反射波?本文中所采用的行波测距原理如图2所示,其中M点是检测端,从M点向高压输电线路接地故障处发射调制?2、110kV高压单芯电缆金属护套接地问题芯电缆通常用于满足当前电气工程规范的要求。
高压电力电缆接地线电流超标原因分析及处理摘要:本文介绍了一起典型的 110 kV 高压电缆金属护套接地电流超标的缺陷。
通过对电缆线路接地系统的原理分析和现场实际连接方式的对比分析,确认电流超标原因。
同时,提供了类似电流超标的预防措施及建议。
〔关键词〕高压电力电缆;接地线;电流超标;原因;处理随着社会经济的不断发展,城市用电量增长迅猛,城市输电线路越来越多地采用高压电缆。
但相较架空输电线路,电力电缆因其隐蔽性高,结构也较为复杂,一旦出现故障,往往很难在数小时内处理好。
因此如何将电缆故障消灭在萌芽状态,成为电缆管理部门最为关心的问题。
下面介绍了一起 110 kV 高压电缆金属护套接地电流过大的问题,通过对接地系统的分析,确定了缺陷原因,并针对性地提出了预防措施。
1 设备概况110 kV 甲乙线为一条纯电缆线路,线路走向为甲变向乙变,全长 2 100 m。
敷设方式为排管和电缆沟混合敷设,电缆型号为 YJLW03-64/110 kV-1×630 mm2 ,甲、乙变电站内均为电缆户外终端,电缆全线共计 4 组中间接头。
该电缆线路建设工程完成投运于 2007-12-21,后经一次线路迁改工程,投运于 2011-03-18。
电缆第一次工程 ( 建设工程 ) 时,共安装 2 组中间接头,电缆全长 2 010 m,如图 1 所示。
图1 110 kV 甲乙线第一次工程 ( 建设工程 ) 系统电缆第二次工程 ( 迁改 ) 工程时,将 1 号接头至 2 号接头及 2 号接头至乙变段的电缆进行部分更改,增加两组接头。
原 2 组接头保留,修改接头顺序编号,如图 2 所示。
图 2 110 kV甲乙线第二次工程 ( 迁改工程 ) 系统2电流超标情况某日班组人员对 110 kV 甲乙线的金属护层接地电流进行检测工作。
当日测量了甲、乙两变电站内尾管接地电流,并与当时的负荷电流进行计算、比较。
根据 Q/GDW 11223—2014《高压电缆状态检测技术规范》,正常运行电缆接地电流绝对值小于 50 A、接地电流与负荷比值小于 20 %、单相接地电流最大值 / 最小值小于 3。
110kV线路单相接地故障分析在供电系统中,110kV线路是非常常见的一种输电线路,是完成电力供应非常重要的一部分。
而110kV线路最为常见的故障就是单相接地故障,掌握110kV 线路单相接地故障的相关问题,可以更好地保证电力的供应。
本文通过实际故障案例分析结合理论探究的手段,了解了110kV线路单相接地故障的主要问题,并提出了相应的故障解决方案,为正常安全供电提供了可行性的建议。
关键字:110kV线路单相接地故障分析单相接地故障在110kV输电线路中非常常见,是阻碍供电系统正常工作的罪魁祸首之一。
而要解决单相接地故障,就需要从发生故障的机理开始分析,了解一般会引起故障的原因,并了解故障的危害,从而做出具有针对性的故障解决措施。
比如说在一段110kV线路中,如果发生了单相接地故障,那么将会对电网本身以及用户造成非常大的影响。
一、110kV线路单相接地故障主要危害单相接地故障对于人们的正常用电来说,影响无疑是非常巨大的,会严重阻碍人们的用电。
而故障的主要危害按照对象的不同可分为两个方面,一方面是故障对电网系统所产生的危害,另一方面是故障对用户的自身利益所造成的危害。
并且电网系统受到了影响之后,通常也会对用户的利益造成很大的影响。
(一)单相接地故障对电网系统的危害当线路发生单相接地故障时,首当其冲受到影响的就是电网系统,比如说变电设备、配电设备都会随之发生一系列的动作反应甚至出现设备故障。
当线路的单相接地时,线路中其他相的对地电容与电流都会发生非常大的变化,并且中性点的电压不再为零,直接导致了系统零序电压的升高。
其具体的故障情况如下图所示:从图中可以看出来,如果C相线路发生了单相接地故障,那么中性点的对地电压就会发生变化,从零变为相电压大小,而C相的对地电压则会变为原来的3倍,通过三相电压之间的关系分析可以得出,当任何一个单相接地时,接地电流都会变为原来的3倍,造成了供电系统的紊乱,从而烧毁电网系统中的设备。
110kV-330kV高压输电线路的接地方式分析及优化摘要:随着能源需求的增长,高压输电线路的建设和运营变得越来越重要。
在高压输电线路系统中,接地系统是确保系统安全性和可靠性的关键组成部分。
对高压输电线路的接地方式进行分析和优化,有助于提高系统的安全性、可靠性和稳定性,为高压输电线路的建设和运营提供重要的参考和指导。
因此,本文旨在对110kV-330kV高压输电线路的接地方式进行分析和优化,并提出相应的设计方法。
关键词:高压输电线路;接地方式;分析;优化1、高压输电线路接地系统的基本原理和功能高压输电线路接地系统是电力系统中的重要组成部分,高压输电线路接地系统在电力系统中具有重要的安全保护功能,合理设计和优化接地系统,对确保电力系统的安全稳定运行至关重要。
它的基本原理和功能主要包括以下几个方面:1.1安全保护:高压输电线路接地系统通过将电气设备与大地相连接,形成了一条最低电阻的回路,当线路发生电气故障时,电流会通过接地系统迅速流入大地,实现了对人身安全和设备设施的保护。
通过及时排除故障电流,减少了触电和火灾的风险。
1.2电位稳定:接地系统可以消除设备和系统之间的悬浮电位,确保设备的安全稳定运行。
通过将设备的中性点接地,可使设备与大地之间保持良好的电位关系,降低电气设备间的电位差,减少由于悬浮电位引起的设备损坏和系统干扰。
1.3防止雷击:高压输电线路在遭遇雷电冲击时极易遭受雷电的打击,接地系统可以通过提供低阻抗的雷电通路,将雷电电流迅速引导到大地,以保护线路和设备免受雷击的危害。
接地系统中合理的接地电阻和导体布置对于有效排除雷电电流至关重要。
1.4电气故障检测:接地系统还有助于检测电力系统中存在的故障。
当线路发生接地故障时,通过检测接地电流,可以及时发现故障点的位置,并进行及时的维修和修复。
2、接地系统在电力系统中的重要性接地系统在电力系统中起着至关重要的作用,它能够保障人员和设备的安全、减少电压冲击、检测和保护系统的故障、防止雷电和过电压影响,以及保证电力系统的稳定性。
高压电缆线路接地系统在线监测分析【摘要】本文探讨了高压电缆线路接地系统在线监测分析的方法及其重要性。
首先介绍了研究的背景、目的和意义,然后详细讨论了在线监测系统的构成和接地系统故障诊断分析方法。
接着对接地系统在线监测数据进行了详细分析,并给出了实验结果与讨论。
结论部分强调了高压电缆线路接地系统在线监测的重要性,并展望了未来的发展趋势。
总结指出,在线监测技术能够提高电缆线路的可靠性和安全性,为电力系统的运行和维护提供了有力支持。
通过本文的研究可以为高压电缆线路接地系统在线监测的实际应用提供参考和借鉴。
【关键词】高压电缆、线路、接地系统、在线监测、分析方法、构成、故障诊断、数据分析、实验结果、讨论、重要性、展望、结论1. 引言1.1 背景介绍高压电缆线路接地系统在输电过程中起着至关重要的作用,能够有效地保护电力设备和人员安全,减少因电力系统故障引起的损失。
传统的接地系统监测方法存在着监测不及时、监测精度低等问题,无法满足用户对于电力系统安全可靠性的需求。
开展高压电缆线路接地系统在线监测分析成为当前电力领域研究的热点之一。
随着电力系统的快速发展和技术的不断更新,传统的接地系统监测方式已不再适用于现代电力系统的运行需求。
提出一种高效、准确的在线监测分析方法,对于改善电力系统运行状态、提高故障诊断效率具有重要意义。
本文将围绕高压电缆线路接地系统在线监测分析展开研究,探讨其在电力系统安全运行中的重要作用,为提高电力系统的可靠性和稳定性提供理论支持和技术指导。
1.2 研究目的本研究的目的是对高压电缆线路接地系统进行在线监测分析,以提高接地系统的可靠性和安全性。
通过对接地系统进行实时监测,及时发现潜在故障或问题,可以有效预防接地系统故障的发生,减少停电次数,降低事故风险,保障电网运行的稳定性和可靠性。
本研究旨在深入探讨高压电缆线路接地系统在线监测方法与技术,为接地系统故障诊断和处理提供科学依据和技术支持。
通过对接地系统在线监测数据的分析和研究,可以为电力行业提供更加精准和有效的维修和管理策略,提高电力系统的运行效率和经济性。
高压电力电缆接地线电流超标原因分析及处理摘要:接地线电流超标是110kV高压电力电缆中少见的异常情况,出现接地线电流超标以后,一方面会降低电缆的输送容量,另一方面又会对电缆的安全产生不良影响。
鉴于此,本文将首先对高压电力电缆接地线电流超标的原因进行深入的研究和分析,然后在此基础上提出一些处理对策,以期为日后减少此类接地线电流超标的情况提供一些建议和理论参考。
关键词:110kV高压电力电缆;接地线;电流超标;原因;处理110kV高压电力电缆是许多发电厂的重要设备,其接地线电流超标是一种比较少见的异常情况。
当高压电力电缆的接地线电流超标时,铅包中的保护层就会被损耗并且伴随着散发热量,这样一来便直接降低了电力电缆的输送量。
如果另一处接地,则会导致出现大型的环流,并且加剧其损耗和热量发散,使电力电缆的温度不断升高,严重的话则会危及电缆的安全。
本次研究对象为一条长约100m的110kV高压电力电缆,经过一段时间的观察,发现其接地线电流超标现象比较频繁,已经严重超出了规定的最高电流,给日常的生产带来了巨大的安全隐患。
1 高壓电力电缆接地侧接地线电流超标情况本次研究对象为长约100米的110kV电力电缆,其主要分为导体、金属护套以及绝缘材料三部分。
导体部分的主要材料是退火的软铜线,是导电的主要部分;金属护套部分的主要材料是铜波纹护套,其主要发挥保护作用,防止电缆被周围环境影响而运行异常;绝缘部分的主要材料为交联聚乙烯,主要作用是使电缆中的导体与周围环境中的导体相互绝缘。
本次研究中的110kV高压电力电缆采用以下的接地方式:①出线窑洞的电缆底座接引接地线直到接地箱,在到达接地箱之后再通过过压保护器,最后将其与电缆的汇流箱相连;②高压配电装置的电缆底座接引接地线直到接地箱,到达接地箱之后从接地箱再引出一根接地线与电缆的回流线相连;③110kV高压电力电缆的底座引出一条接地线,并且将其与高压配电装置的外壳连接,一般情况下,整个系统中只会有一个点接地,而遭遇雷击等意外情况时才会出现两点接地。
对110kV及以上高压电缆线路的接地系统分析摘要:本文作者通过实际工作中总结与积累经验,主要针对110kv及以上高压电缆的接地的重要性,并通过分析高压电缆接地的要求、方式和采取的措施等。
关键词:高压电缆接地电流电缆接地方式
一、前言:
经过十几年高压电力电缆施工我们积累了相当一部分的经验,本文综合各类文献并结合工程实际,意图对110kv及以上高压电缆的接地就重要性等方面进行探索。
二、高压电力电缆接地分析
当导体内通过电流时会在其周围产生感应电压,对于在发电厂、变电所等用于低压及二次系统控制的电缆,为了防止继电保护装置误动以保证保护装置可靠性以外,也防止控制电缆屏蔽因感应电压而导致保护装置损坏,所以均采取带屏蔽铜网的电缆,并对屏蔽接地有着非常严格的规定;并且要求电缆支架等都要求接地以防止感应电压危及人身安全;
而高压电力电缆同样存在这样的问题,本文将针对高压电力电缆在施工及运行中遇到的的一系列敷衍出的问题进行讨论:首先是敷设时的机械保护(电缆抗弯、防水、防火、腐蚀——采取铝、铜等金属外护套)→其次运行中线芯电流(在金属护套上形成1∶1
的单匝变压器产生感应电动势——危害人身安全及电气设备运行
经济性、可靠性等,采取外屏蔽接地)→接地电流或环流→各种接地方式的解决方法。
为了尽可能减少护套环流我们可以采取多种金属护套的连接与接地方式,这是我要着重讨论的问题。
高压电缆线路的接地方式有下列几种:
.金属护套一点接地(一端或中点):无环流,感应电压与电缆长度成正比,短电缆线路常用;
⑵. 金属护套两端接地:有环流,感应电压为零,但影响载流量,轻负荷电缆线路常用;
⑶. 金属护套交叉换位连接:两端接地,中间用绝缘接头将护层交叉换位连接,无环流,感应电压与电缆长度成正比,但可以限制在允许的范围内,长电缆线路常用。
⑷.电缆换位,金属护套交叉互联:要求测得电缆金属感应电压必须是小于50v为前提,如果不是的话,必须进行相应的检查,是否是电缆的原因还是由于电缆的长度太长而造成的,还是其他原因造成的,如果是长度的原因(一般要求在500~800m的范围具体看测试结果),应相应调整其长度,比如说一组交叉互联加一组接地(一段接地)或其他方式。
⑸.敷设“三七开”回流线:回流线“三七开”敷设,即1.7s、
0.3s、0.7s敷设时效果最好。
下面我们通过对金属护套一点接地方式下线路稳态与短路情况下在金属护套产生感应电压的计算比较,了解高压电缆线路在正常
及故障情况下接地电流的分布状况;
三、金属护套一点接地方式下产生感应电压的计算
当电缆线路的长度大约在500m及以下时,电缆护套可以采用一端直接接地(通常在终端头位置接地),另一端经间隙或非线性电阻保护器接地。
护套的其它部位对地绝缘,这样护套没有构成回路,可以减少及消除护套上的环行电流,提高电缆的输送容量。
为了保障人身安全,非直接接地一端护套中的感应电压不应超过50v。
单相接地短路故障时,接地短路电流可以通过回流线流回系统的中性点,特别是当接地故障发生在回流线的接地网中时,接地电流的绝大部分通过回流线。
由于通过回流线的接地电流产生的磁通抵消了一部分电缆导线接地电流所产生的磁通(两者电流方向相反),因而装设回流线后可降低故障时护套的感应电压,同时也防止了电缆线路附近的二次信号和通信用的电缆产生很大的感应电压。
回流线的两端应可靠接地,截面积应满足短路电流热稳定的要求。
3.1金属护套稳态过电压计算
按照部颁《电力电缆运行规程》,单芯电缆护层单端接地时,在护套不接地端的正常感应电压一般不应超过65v,而按照《电力电缆设计规范》,该值为50v,制定该值的目的在于保护人身安全,故一旦超过该规定值,可视为过电压,而控制该值正是电缆分段的主
要依据之一。
3.1.1金属护套的感应电势
es=-ji*xs
式中,i—线芯电流;xs—单位长度金属屏蔽层的感抗,分段不均匀极限计算。
不考虑内感时金属护套的电感h/m (1)
式中s—电缆中心间的距离;ds—电缆金属护套的平均直径。
金属护套的感应电势v/m(2)
3.1.2排列敷设方式
工程实际中,三相电缆的排列敷设方式一般有等边三角形排列、水平排列、直角三角形排列。
①、三角形排列时的感应电势
这时三相电缆敷设在等边三角形三顶点上,有s1=s2= s3;所以:v/m(3)
②、水平排列时的感应电势
令电缆中心轴间距离为s,此时s1=s2=s,s3=2s,三相平衡电流i1=i<120°,i2=i<0°,i3=i<-120°,则感应电压分别为:(4)
us2=- jixs (5)
(6)
各相感应电压的有效值为:
边相:(v/m)(7)
中相:(v/m)(8)
③、直角三角形排列时的感应电势依水平排列时类似,同理可以推算。
3.2工频短路时感应过电压
电缆金属护套单端接地时护套的感应电压取决于以下三种可能计算条件:
⑴、接地电流全部以大地为回路;
⑵、接地电流以回流缆或金属护套为回路;
⑶、接地电流一部分以大地为回路,另一部分以回流缆或金属护套为回路。
从所周知,护套感应电压应该是以护套纵向感应电动势为主,但也要计及地电位升高的电压。
3.2.1接地电流以回流线或金属护套为回路
金属护套一点互联接地的电缆线路,为了降低电缆金属护套的感应电动势,通常可在电缆线路近旁平行敷设一根回流线(该线采用钢芯铝线或铜绞线均可,但两端要接地)。
当电缆出线端发生单相接地时,由于接地点正处于回流线连接接地网中,此时接地故障电流绝大部分通过回流线,入地部分故障电流可以忽略不计,如图所示。
当接地电流全部通过回流线时,电缆金属护套对回流线的感
应电动势为
(4.2.4)
式中da—回流线至发生接地故障相(a相)的间距,mm;
rs—电缆金属护套半径,mm
rp—大地电阻;rp—回流线的几何平均半径,mm
式(4.24)中的圆括号部分是接地电流在回流线上的压降,将式(4.24)简化可写为:
(4.2.5)
图4-2-2接地电流以回流线或金属护套为回路
如回流缆至b、c相的间距为db、dc,则b、c相的金属护套对回流缆的电动势为
(4.2.6)
(4.2.7)
通过计算可以看出,装设回流线可以降低电缆金属护套感应电动势。
四、在实际工作存在的一些误区
4.1 高压电力电缆的铜屏蔽和钢铠之间的接地没有区别
高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地是有区别的,制作电缆终端头时,钢铠和铜屏蔽层焊接在一块、制作电缆中间头时,钢铠和铜屏蔽层有时焊接在一块,有时分
开,这需要看具体情况和具体要求。
4.2实际应用注意的几个问题
在施工过程中,包括施工人员与技术管理人员来说,对于电缆终端与电缆中间接头附件安装都得到了足够的重视,而是着重针对历来高压电缆的故障情况和我们施工中一些错误观念和行为予以
阐述。
主要有以下几点:
⑴、重视电缆附件的安装,忽视金属护套等接地处理;
⑵、对于高压电缆故障的实质存在认识误区。
五、结束语
根据目前很多人对接地系统认识比较浅,随着电缆工程的增多,接地系统故障的增多,也随着技术的进步,电缆的设计会有什么样的变化,接地系统的功能渐趋完善,只要选择原理与系统相适应的设备,在工程中尽量减少接地方式的正确度,加强接地运行的可靠性。
在检修工作更加去注重检查接地系统的可靠运行,提高对接地系统的认识程度。
注:文章内的图表及公式请以pdf格式查看。