弹性力学
- 格式:docx
- 大小:20.96 KB
- 文档页数:2
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
弹性力学公式范文弹性力学是研究材料在外力作用下的变形和恢复能力的一门学科。
弹性力学公式描述了材料的弹性性质和力学行为。
以下是一些常用的弹性力学公式:1. Hooke定律:Hooke定律描述了线弹性材料在小变形范围内的应力-应变关系。
它可以表示为:σ=Eε其中σ是应力,E是弹性模量,ε是应变。
2.应变能密度:弹性体变形时,有一部分外力的功以弹性能量的形式储存。
应变能密度U可以通过以下公式计算:U=(1/2)σε其中σ是应力,ε是应变。
3.杨氏模量:杨氏模量是度量材料在受拉应力下的刚性程度的物理量。
它可以表示为:E=σ/ε其中E是杨氏模量,σ是应力,ε是应变。
4.剪切模量:剪切模量是度量材料在受剪应力下的变形程度的物理量。
它可以表示为:G=τ/ε其中G是剪切模量,τ是剪切应力,ε是应变。
5.泊松比:泊松比是表示材料在受拉应力下沿垂直方向收缩的程度的无量纲物理量。
它可以表示为:ν=-ε_t/ε_l其中ν是泊松比,ε_t是横向应变,ε_l是纵向应变。
6.拉伸应变:拉伸应变是材料在受拉应力下的线性变形程度的物理量。
它可以表示为:ε=(L-L_0)/L_0其中ε是拉伸应变,L是材料受拉时的长度,L_0是未受拉时的长度。
7.压缩应变:压缩应变是材料在受压应力下的线性变形程度的物理量。
它可以表示为:ε=(L_0-L)/L_0其中ε是压缩应变,L是材料受压时的长度,L_0是未受压时的长度。
8.杨氏弹性模量:杨氏弹性模量是一种描述材料刚性程度的物理量,它可以表示为:E=(σ_2-σ_1)/(ε_2-ε_1)其中E是杨氏弹性模量,σ_2和σ_1分别是应力的最大值和最小值,ε_2和ε_1分别是相应的应变的最大值和最小值。
9.线性弹性模量:线性弹性模量是材料在小应变范围内的弹性行为的物理量。
它可以表示为:E=σ/ε其中E是线性弹性模量,σ是应力,ε是应变。
10.应力张量:应力张量描述了材料中各个方向上的内部力状态。
它可以表示为:σ=[σ_11σ_12σ_13;σ_21σ_22σ_23;σ_31σ_32σ_33]其中σ是应力张量,σ_ij是各个分量。
2.1弹性力学理论基础弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。
在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。
材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。
弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
2.1.1弹性力学基本概念弹性力学问题的求解主要基于以下几个基础理论。
1.牛顿(Newton)定律弹性力学是一门力学,它服从Newton所提出的三大定律,即惯性定律﹑运动定律,以及作用与反作用定律。
质点力学和刚体力学是从Newton定律演绎出来的,而弹性力学不同于理论力学,它还有新假设和新定律。
2.连续性假设所谓连续性假设,就是认定弹性体连续分布于三维欧式空间的某个区域之内,与此相伴随的,还认定弹性体中的所有物理量都是连续的。
也就是说,我们将假定密度、位移、应变、应力等物理量都是空间点的连续变量,而且也将假定空间的点变形前与变形后应该是一一对应的。
3.广义虎克(Hooke)定律所谓广义Hooke定律,就是认为弹性体受外载后其内部所生成的应力和应变具有线性关系。
对于大多数真实材料和人造材料,在一定的条件下,都符合这个实验定律。
线性关系的Hooke定律是弹性力学特有的规律,是弹性力学区别于连续介质力学其他分支的标识。
Newton定律、连续性假设和广义Hooke定律,这三方面构成了弹性力学的理论基础。
弹性力学的研究方法主要有数学方法和实验方法,以及二者结合的方法。
数学方法基本上是根据弹性力学的基本方程,对在某种假设的前提下的物体进行弹性分析,从而得出物体的各种力学参数。
弹性力学原理引言:弹性力学原理是工程力学的一个重要分支,研究材料在外力作用下的弹性变形和应力分布规律。
本文将探讨弹性力学原理的基本概念、公式和应用,以及一些实际工程中常见的弹性力学问题。
1. 弹性力学基本概念1.1 应力和应变弹性力学研究的核心概念是应力和应变。
应力是单位面积上的内力,表示材料受力状态的强度和方向。
应变是单位长度上的变形量,表示材料受到外力作用后的形变程度。
1.2 弹性恢复弹性力学的基本原则是材料在外力作用下会发生弹性变形,即承受外力后会产生形变,但在作用力消失后会完全恢复到原来的状态。
这个特性使得弹性材料非常适合许多工程应用。
2. 弹性力学公式2.1 长度变化和应力关系弹性力学公式中最基本的是胡克定律,它描述了材料在拉伸等均匀变形情况下的应力和应变之间的关系。
胡克定律可以用公式表示为σ = Eε,其中σ是应力,E是弹性模量,ε是应变。
2.2 弯曲弹性力学在弯曲问题中,弹性力学公式需要考虑横截面的形状和材料的性质。
弯曲弹性力学在结构设计中起着重要的作用,可以用公式M = EIθ 表示,其中M是弯矩,E是弹性模量,I是截面惯性矩,θ是单位长度的转角。
3. 弹性力学应用3.1 结构设计弹性力学原理在结构设计中有广泛的应用,可以通过计算应力和应变来确定材料的安全强度和结构的合理性。
例如,根据桥梁的设计要求和材料的性质,可以计算出合适的截面尺寸和材料类型,以确保桥梁在负荷下不会发生过度的弯曲或破坏。
3.2 材料研究弹性力学原理在材料研究中也起着重要的作用。
通过测量材料的应变和应力,可以获得材料的弹性性质和力学特性。
这些信息可以用于开发新的材料或改进现有材料的性能。
3.3 软件模拟随着计算机技术的发展,弹性力学原理被应用于软件模拟和计算机辅助设计。
通过建立弹性力学模型,可以在计算机上模拟各种力学行为,并进行虚拟测试和分析。
这些技术在工程设计和产品开发中起到了关键作用。
结论:弹性力学原理是工程力学领域中的核心内容,研究材料在外力作用下的弹性变形和应力分布规律。
弹性力学弹性系数与弹性力的计算弹性力学是研究固体物体在外力作用下发生形变后能够恢复原状的力学学科。
其中,弹性系数是评价物体材料抵抗形变的特性参数,而弹性力则是在物体发生形变时产生的恢复力。
本文将介绍弹性力学中弹性系数与弹性力的计算方法。
I. 弹性系数的定义与计算弹性系数是衡量材料抵抗形变的能力的物理量,常用的弹性系数包括弹性模量、剪切模量、泊松比等。
以下将介绍常见的弹性系数及其计算方法。
1. 弹性模量(Young's modulus)弹性模量是衡量材料在拉伸或压缩过程中抵抗形变的能力。
通常用符号E表示,计量单位为帕斯卡(Pa)。
弹性模量的计算公式如下:E = (F/A) / (ΔL/L)其中,F为施加在物体上的拉力或压力,A为物体的横截面积,ΔL 为物体形变后的长度变化,L为物体原始长度。
2. 剪切模量(Shear modulus)剪切模量是衡量材料抵抗剪切形变的能力。
通常用符号G表示,计量单位也为帕斯卡(Pa)。
剪切模量的计算公式如下:G = (τ/A) / (Δx/h)其中,τ为施加在物体上的切应力,A为物体的截面积,Δx为物体形变产生的相对位移,h为物体原始长度。
3. 泊松比(Poisson's ratio)泊松比是衡量材料在拉伸或压缩过程中横向收缩或膨胀的程度。
通常用符号ν表示,是一个无单位的物理量。
泊松比的计算公式如下:ν = - (ΔW/W) / (ΔL/L)其中,ΔW为物体在拉伸或压缩过程中横向变形,W为物体的初始宽度,ΔL为物体的纵向变形,L为物体的初始长度。
II. 弹性力的计算在弹性力学中,弹性力指的是物体在发生形变后恢复原状时产生的力。
根据胡克定律,弹性力与物体的形变程度成正比。
以下分别介绍不同形变情况下的弹性力计算方法。
1. 拉伸或压缩情况下的弹性力计算物体在拉伸或压缩过程中,弹性力与形变程度呈线性关系。
根据胡克定律,弹性力(F)等于弹性模量(E)与形变量(ΔL)的乘积。
力学:研究弹性体由于受外力,边界约束或温度改变等作用而发生的应力、形变和位移。
弹性力学的研究对象:为一般及复杂形状的构件、实体结构、板、壳等。
(是各种弹性体,包括杆件,平面体、空间体、板和壳体等。
弹性力学研究的对象比较广泛,可以适用于土木、水利、机械等工程中各种结构的分析。
)弹性力学的任务在边界条件下,从平衡微分方程、几何方程和物理方程求解应力、应变和位移等未知函数研究方法已知条件:1物体的几何形状,即边界面方程2物体的材料参数3所受外力的情况4所受的约束情况。
求解的未知函数:应力、应变和位移。
解法:在弹性体区域内,根据微分体上力的平衡条件建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件建立物理方程弹性体边界上,根据面力条件,建立应力边界条件;根据约束条件建立位移边界条件然后在边界条件下,求解弹性体区域内的微分方程,得出应力、形变和位移弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的)(1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。
(用处:物体的弹性参数,如弹性模量E,不会随位置坐标的变化而变化)(2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。
(用处:弹性体的所用物理量均可用连续的函数去表示)(3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关系。
(用处:可以使用线性虎克定律来表示应力与应变的关系)(4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。
(用处:物体的弹性参数可以取为常数)(5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。
(用处:可以在某些方程的推导中略去位移和形变的高阶微量。
即简化几何方程,简化平衡微分方程)上述这些假定,确定了弹性力学的研究范畴:研究理想弹性体的小变形状态外力是其他物体作用于研究对象的力(分为体力和面力)体力是作用于物体体积内的外力(如重力和惯性力)面力是作用于物体表面上的外力(如液体压力和接触力)内力假想将物体截开,则截面两边有互相作用的力,称为内力切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的(大小等正负号相同)形变就是物体形状的改变。
弹性力学名词解释
弹性力学
弹性力学是研究物体变形和应力的科学领域。
它研究物体在受力下的变形行为以及变形产生的应力分布。
弹性力学研究的物体通常指刚体和弹性体。
变形
变形是指物体形状或尺寸的改变。
在弹性力学中,变形可以是弹性变形或塑性变形。
弹性变形
弹性变形是指物体在受力时,可以恢复到原始形状和尺寸的变形。
在弹性变形情况下,物体的应力-应变关系遵循胡克定律。
塑性变形
塑性变形是指物体在受力时不可以完全恢复到原始形状和尺寸的变形。
在塑性变形情况下,物体的应力-应变关系不遵循胡克定律。
应力
应力是物体受到的力与物体截面积的比值。
应力描述了物体内部分子间的相互作用力。
张应力
张应力是物体受到拉伸力作用时的应力。
张应力会导致物体的长度增加。
压应力
压应力是物体受到压缩力作用时的应力。
压应力会导致物体的长度减小。
应变
应变是物体变形程度的度量。
它描述了物体在受力下的相对变形量。
纵向应变
纵向应变是物体在受到拉伸或压缩力作用下沿着受力方向发生的变形。
横向应变
横向应变是物体在受到拉伸或压缩力作用下垂直于受力方向发生的变形。
胡克定律
胡克定律是描述物体在弹性变形时应力和应变之间的关系的定律。
根据胡克定律,弹性体的应力与应变之间成正比。
这个比例常常用弹性模量来表示。
以上是对弹性力学相关名词的简要解释。
弹性力学是一个重要的物理学分支,用于研究物体的变形和应力,对于工程和材料科学具有广泛的应用。
弹性力学的基本原理弹性力学是研究物体在受力后能够恢复原状的力学分支。
它的基本原理可以总结如下:背景介绍弹性力学是力学学科的一个重要分支,研究物体受力后能够恢复原状的性质和行为。
弹性力学的研究对象可以是实物材料,如金属、塑料等,也可以是抽象的理想模型。
本文主要内容本文将讨论弹性力学的基本原理,包括以下几个方面:1. 倍力定律:弹性力学的基本原理之一是倍力定律。
倍力定律指出,在弹性变形范围内,物体受力与其变形之间存在着线性关系。
换句话说,物体受力越大,变形也越大,且两者之间成正比。
2. 弹性恢复:另一个基本原理是弹性恢复。
当外力作用于物体时,物体会变形,但在外力消失后,物体会努力恢复到原来的形状和尺寸。
这种恢复性质是弹性力学的核心特征。
3. 施加力和变形的关系:弹性力学研究物体受力后的变形情况。
在弹性力学中,施加力的方式和大小与物体的变形密切相关。
不同的力学作用方式将导致不同类型的变形,如拉伸、压缩、弯曲等。
4. 弹性模量:弹性力学的另一个关键概念是弹性模量。
弹性模量是衡量物体对外力的抵抗程度的指标。
不同材料具有不同的弹性模量,例如金属具有较高的弹性模量,而橡胶具有较低的弹性模量。
结论弹性力学的基本原理包括倍力定律、弹性恢复、施加力和变形的关系以及弹性模量等重要概念。
理解这些原理可以帮助我们更好地理解物体的弹性行为和性质。
请注意,本文的内容仅为简要介绍弹性力学的基本原理,详细的数学理论和推导过程超出了本文的范围。
参考文献:。
1平面应变问题的无限长柱形体,以任一横截面为xy面,任
一纵向为z轴,试简述z面上的应力情况及原因。
Z面上由于z方向的伸缩杯阻止,所以所有一切应力分量,形变分量和位移分量都不沿z方向变化,所以σz不等于0,由于对称条件τzx=0,τzy=
0.
2、在什么条件下平面应力问题和平面应变问题的3个应力分
量σxσy和τxy与材料特性无关?并简述原因
当体力为常量事,在单连体的应力边界问题中,如果两个弹性体具有相同边界形状,收到同样的分布外力,那么句不管这两个弹性体的材料是否相同,在平面应力或平面应变情况下σxσy
和τxy的分布是相同的,因为在体力为常量的情况下,平衡微分方程,相容方程,和应力便捷条件中都不包含弹性常数
3、弹性力学平面问题的求解中,平面应力问题与平面应变问
题的三类基本方程(平衡方程、几何方程、物理方程)哪些相同,哪些不同?并简述原因
平衡方程,几何方程相同,物理方程不同。
在平面问题中,因为物体的搜有各点都不沿z方向移动即w=0,多亿z方向的线段都没有伸缩,即εz=0,
σz=μ(σx+σy)带入其中可得
4、在建立弹性力学平衡微分方程、几何方程、物理方程时分
别应用了哪些基本假定?
连续性、均匀性、完全弹性、各向同性、小变形
5、有限单元法中,位移模式应满足什么条件?下列位移函数
甜=aix+a2y+a3x2v=blx+b2y+b3y2能否作为三结点三角形单元
的位移模式?简要说明理由。
位移模式必须能反应单元的钢铁位移,
6弹性力学建立的基本方程多是偏微分方程,最后需结合(B.边界条件)求解这些微分方程,以求得具体问题的应力、
应变、位移。
7弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系(平衡方程、几何方程相同,物理方程不同)
8根据圣维南原理,作用在物体一小部分边界上的力系可以用下列(
A.静力上等效)的力系代替,则仅在近处应力分布有改变,
而在远处所受的影响可以不计
9三结点三角形单元中的位移分布为(
B.线性分布)。
10在什么条件下,平面应力问题的仃。
,仃,,T_与平面应变问题的仃。
,a,,T可是相同的?
边界相同,外力相同
11有限单元法中选取单元位移模式应满足什么条件?
反应刚体位移,反应应力常量,反应位移连续性。