全称量词消去
- 格式:ppt
- 大小:281.50 KB
- 文档页数:56
绪论单元测试1.A:错B:对答案:B2.Boole中的语句不能粘贴到Fitch中。
()A:对B:错答案:B第一章测试1.要打开Tarski’s World,点击文件Tarski’s World.exe。
A:对B:错答案:A2.在Tarski’s World中,要打开事先保存的世界文件和语句文件,可以点击File菜单中的Open命令。
A:对B:错答案:A3.在Tarski’s World中,要保存一份世界文件,最安全的命令是Save World 。
A:对B:错答案:B4.在棋盘上放置一个模块,点击工具栏中的()。
A:New按钮B:Play Game按钮C:Verify按钮D:打印按钮答案:A5.要删除一个世界文件的方法之一是()。
A:在File菜单中,点击Clear命令B:点击Play Game按钮C:Verify按钮D:点击New按钮答案:A6.当你在语句窗口中,输入的是一个合式公式时,靠近语句标号的左边显示()。
A:FB:+C:*D:T答案:B7.在Tarski’s World中,模块的大小有()这几种情况。
A:中B:大C:较小D:小答案:ABD8.在Tarski’s World中,模块的形状有()这几种情况。
A:立方体B:圆C:十二面球体D:锥体答案:ACD9.在Tarski’s World中,一个模块的名字可以有()。
A:三个B:一个C:四个D:两个答案:ABCD10.Tarski’s World不允许给一个模块命名多个名字。
A:对B:错答案:B第二章测试1.要打开Fitch,点击文件Fitch.exe.A:对B:错答案:A2.在Fitch中,要打开Fitch练习文件夹中的文件,可以使用File菜单中的Open命令。
A:错B:对答案:B3.在Fitch中,要保存一份已完成的证明,用Save As命令。
A:对B:错答案:A4.在Fitch的一个证明过程中,要在一行的前面增加一行,点击Proof菜单中的()。
第5章一阶逻辑等值演算与推理主要内容1. 等值式与基本的等值式①在有限个体域中消去量词等值式②量词否定等值式③量词辖域收缩与扩张等值式④量词分配等值式2. 基本规则①置换规则②换名规则③代替规则3. 前束范式4. 推理理论①推理的形式结构②推理正确③构造证明④新的推理规则全称量词消去规则,记为UI全称量词引入规则,记为UG存在量词消去规则,记为EI存在量词引入规则,记为EG学习要求1. 深刻理解重要的等值式,并能熟练地使用它们。
2. 熟练地使用置换规则、换名规则和代替规则。
3. 准确地求出给定公式的前束范式(形式可不唯一)。
4. 正确地使用UI、UG、EI、EG规则,特别地要注意它们之间的关系。
5. 对于给定的推理,正确地构造出它的证明。
5.1 一阶逻辑等值式与置换规则定义5.1设A,B是一阶逻辑中任意两个公式,若A B是永真式,则称A与B是等值的。
记做A B,称A B是等值式。
谓词逻辑中关于联结词的等值式与命题逻辑中相关等值式类似。
下面主要讨论关于量词的等值式。
一、基本等值式第一组代换实例由于命题逻辑中的重言式的代换实例都是一阶逻辑中的永真式,因而第二章的16组等值式给出的代换实例都是一阶逻辑的等值式的模式。
例如:xF(x)┐┐xF(x)x y(F(x,y)→G(x,y))┐┐x y(F(x,y)→G(x,y))等都是(2.1)式的代换实例。
又如:F(x)→G(y)┐F(x)∨G(y)x(F(x)→G(y))→zH(z)┐x(F(x)→G(y))∨zH(z))等都是(2.1)式的代换实例。
第二组消去量词等值式设个体域为有限域D={a1,a2,…,a n},则有(1)xA(x)A(a1)∧A(a2)∧…∧A(a n)(2)xA(x)A(a1)∨A(a2)∨…∨A(a n) (5.1)第三组量词否定等值式设A(x)是任意的含有自由出现个体变项x的公式,则(1)┐xA(x)x┐A(x)(2)┐xA(x)x┐A(x) (5.2)(5.2)式的直观解释是容易的。
数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),绝对值符号“| |”,微分(dx),积分(∫),曲线积分(∮)等。
关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆”是“包含”符号等。
“|”表示“能整除”(例如a|b 表示 a 能整除b),x可以代表未知数,y也可以代表未知数,任何字母都可以代表未知数。
结合符号如小括号“()”中括号“[ ]”,大括号“{ }”横线“—”,比如(2+1)+3=6,[2.5x(23+2)+1]=x,{3.5+[3+1]+1=y性质符号如正号“+”,负号“-”,正负号“±”省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住) (口诀:因为站不住,所以两个点)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列离散数学符号(未全)∀全称量词∃存在量词├ 断定符(公式在L中可证)╞ 满足符(公式在E上有效,公式在E上可满足)┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算→ 命题的“条件”运算↔命题的“双条件”运算的A<=>B 命题A 与B 等价关系A=>B 命题 A与 B的蕴涵关系A* 公式A 的对偶公式wff 合式公式iff 当且仅当↑ 命题的“与非” 运算(“与非门” )↓ 命题的“或非”运算(“或非门” )□ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于A∈B 则为A属于B(∉不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”א阿列夫⊆包含⊂(或下面加≠)真包含∪ 集合的并运算∩ 集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系 R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:X→Y f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称 f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴部分希腊字母数学符号字母古希腊语名称英语名称古希腊语发音现代希腊语发音中文注音数学意思Α α ?λφα Alpha [a],[a?] [a] 阿尔法角度;系数Β β β?τα Beta [b] [v] 贝塔角度;系数Δ δ δ?λτα Delta [d] [ð] 德尔塔变动;求根公式Ε ε ?ψιλον Epsilon [e] [e] 伊普西隆对数之基数Ζ ζ ζ?τα Zeta [zd] [z] 泽塔系数;Θθ θ?τα Theta [t?] [θ] 西塔温度;相位角Ι ι ι?τα Iota [i] [i] 约塔微小,一点儿Λ λ λ?μβδα(现为λ?μδα) Lambda [l] [l] 兰姆达波长(小写);体积Μ μ μυ(现为μι) Mu [m] [m] 谬微(千分之一);放大因数(小写)Ξ ξ ξι Xi [ks] [ks] 克西随机变量Π π πι Pi [p] [p] 派圆周率=圆周÷直径≈3.1416Σ σ σ?γμα Sigma [s] [s] 西格玛总和(大写)Τ τ ταυ Tau [t] [t] 陶时间常数Φ φ φι Phi [p?] [f] 弗爱辅助角Ω ω ωμ?γα Omega [??] [o] 欧米咖角编辑本段数学符号的意义符号(Symbol) 意义(Meaning)= 等于 is equal to≠ 不等于 is not equal to< 小于 is less than> 大于 is greater than|| 平行 is parallel to≥ 大于等于 is greater than or equal to≤ 小于等于 is less than or equal to≡恒等于或同余π 圆周率|x| 绝对值absolute value of X ∽ 相似 is similar to≌ 全等 is equal to(especially for triangle )>>远远大于号<< 远远小于号∪并集∩交集⊆包含于⊙ 圆\ 求商值β bet 磁通系数;角度;系数(数学中常用作表示未知角)φ f ai 磁通;角(数学中常用作表示未知角)∞无穷大ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数x - floor(x) 小数部分∫f(x)dx不定积分∫[a:b]f(x)dx a到b的定积分∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和评论(1) | 3202013-02-21 20:09 冰城雪翼 | 一级(1)╮ +-×÷±<>•∶∴∵∷⊙∫∮∝∞∧∨º¹²³ ½ ¾ ¼≠≤≥≈≡‖=≌∽≮≯∑∏∪∩∈⊿⌒√∟㏒㏑¢∠⊥%‰℅°℃℉′〒¤○µ㎎㎏㎜㎝㎞㎡㏄㏎㏒$£¥㏕♂♀ X¹ X² X³ 1°1′1〃特殊符号(1)↑ ↓ ← → ↖ ↗ ↙ ↘ ㊣◎ ⊕ ⊙ ○ ● △ ▲☆★◇◆□■▽▼§¥£※♀♂∵∴φω ░▒☻☺☼♠◈♤♦◊♨♣♧♥♡▦▩▣▧▨▤▥▪▫◘◙☏☎☜☞◑◐◦°☑₪特殊符号(2)╮ ,、~%#*‧;∶ … ¨ ,• ˙ ‘ ’〃′ εїз™✿。◕‿◕。◎☺☻►◄▧▨◐◑↔↕㊊㊋㊌㊍㊎㊏㊐▀▄█▌▬ (ε.メ)特殊符号(3)▣▤▥▦▩♭☀ஐ☈➽〠〄㍿㊚㊛㊙℗♯♩♫♬¤큐≡(2)1 几何符号⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △2 代数符号∝ ∧ ∨ ~∫ ≠≤ ≥ ≈ ∞ ∶3运算符号× ÷ √ ±4集合符号∪ ∩ ∈5特殊符号∑ π(圆周率)6推理符号|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨ ∥&; §① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖∧ ∨ ∩ ∪ ∫ ∮∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥⊿ ⌒ ℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
《人工智能》课程习题与部分解答第1章 绪论什么是人工智能 它的研究目标是什么什么是图灵测试简述图灵测试的基本过程及其重要特征. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用 在人工智能的发展过程中,有哪些思想和思潮起了重要作用人工智能的主要研究和应用领域是什么其中,哪些是新的研究热点第2章 知识表示方法什么是知识分类情况如何什么是知识表示不同的知识表示方法各有什么优缺点 人工智能对知识表示有什么要求 用谓词公式表示下列规则性知识:自然数都是大于零的整数。
任何人都会死的。
[解] 定义谓词如下:N(x): “x 是自然数”, I(x): “x 是整数”, L(x): “x 大于0”, D(x): “x 会死的”, M(x): “x 是人”,则上述知识可用谓词分别表示为: )]()()()[(x I x L x N x ∨→∀ )]()()[(x D x M x →∀用谓词公式表示下列事实性知识:小明是计算机系的学生,但他不喜欢编程。
李晓新比他父亲长得高。
产生式系统由哪几个部分组成 它们各自的作用是什么可以从哪些角度对产生式系统进行分类 阐述各类产生式系统的特点。
简述产生式系统的优缺点。
简述框架表示的基本构成,并给出框架的一般结构 框架表示法有什么特点试构造一个描述你的卧室的框架系统。
试描述一个具体的大学教师的框架系统。
[解] 一个具体大学教师的框架系统为: 框架名:<教师-1> 类属:<大学教师>姓名:张宇 性别:男年龄:32职业:<教师>职称:副教授部门:计算机系研究方向:计算机软件与理论工作:参加时间:2000年7月工龄:当前年份-2000工资:<工资单>把下列命题用一个语义网络表示出来(1)树和草都是植物;(2)树和草都是有根有叶的;(3)水草是草,且生长在水中;(4)果树是树,且会结果;(5)苹果树是果树的一种,它结苹果。
[解]在基于语义网络的推理系统中,一般有几种推理方法,简述它们的推理过程。
《人工智能》课程习题与部分解答第1章 绪论什么是人工智能? 它的研究目标是什么?什么是图灵测试?简述图灵测试的基本过程及其重要特征. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用? 在人工智能的发展过程中,有哪些思想和思潮起了重要作用? 人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?第2章 知识表示方法什么是知识?分类情况如何?什么是知识表示?不同的知识表示方法各有什么优缺点? 人工智能对知识表示有什么要求? 用谓词公式表示下列规则性知识:自然数都是大于零的整数。
任何人都会死的。
[解] 定义谓词如下:N(x): “x 是自然数”, I(x): “x 是整数”, L(x): “x 大于0”, D(x): “x 会死的”, M(x): “x 是人”,则上述知识可用谓词分别表示为: )]()()()[(x I x L x N x ∨→∀ )]()()[(x D x M x →∀用谓词公式表示下列事实性知识:小明是计算机系的学生,但他不喜欢编程。
李晓新比他父亲长得高。
产生式系统由哪几个部分组成? 它们各自的作用是什么?可以从哪些角度对产生式系统进行分类? 阐述各类产生式系统的特点。
简述产生式系统的优缺点。
简述框架表示的基本构成,并给出框架的一般结构框架表示法有什么特点?试构造一个描述你的卧室的框架系统。
试描述一个具体的大学教师的框架系统。
[解] 一个具体大学教师的框架系统为:框架名:<教师-1>类属:<大学教师>姓名:张宇性别:男年龄:32职业:<教师>职称:副教授部门:计算机系研究方向:计算机软件与理论工作:参加时间:2000年7月工龄:当前年份-2000工资:<工资单>把下列命题用一个语义网络表示出来(1)树和草都是植物;(2)树和草都是有根有叶的;(3)水草是草,且生长在水中;(4)果树是树,且会结果;(5)苹果树是果树的一种,它结苹果。
第三章搜索推理技术3-1什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?图搜索的一般过程如下:(1) 建立一个搜索图G(初始只含有起始节点S),把S放到未扩展节点表中(OPEN表)中。
(2) 建立一个已扩展节点表(CLOSED表),其初始为空表。
(3) LOOP:若OPEN表是空表,则失败退出。
(4) 选择OPEN表上的第一个节点,把它从OPEN表移出并放进CLOSED表中。
称此节点为节点n,它是CLOSED表中节点的编号(5) 若n为一目标节点,则有解并成功退出。
此解是追踪图G中沿着指针从n到S这条路径而得到的(指针将在第7步中设置)(6) 扩展节点n,生成不是n的祖先的那些后继节点的集合M。
将M添入图G中。
(7) 对那些未曾在G中出现过的(既未曾在OPEN表上或CLOSED表上出现过的)M成员设置一个通向n的指针,并将它们加进OPEN表。
对已经在OPEN或CLOSED表上的每个M成员,确定是否需要更改通到n的指针方向。
对已在CLOSED表上的每个M成员,确定是否需要更改图G中通向它的每个后裔节点的指针方向。
(8) 按某一任意方式或按某个探试值,重排OPEN表。
(9) GO LOOP。
重排OPEN表意味着,在第(6)步中,将优先扩展哪个节点,不同的排序标准对应着不同的搜索策略。
重排的原则当视具体需求而定,不同的原则对应着不同的搜索策略,如果想尽快地找到一个解,则应当将最有可能达到目标节点的那些节点排在OPEN表的前面部分,如果想找到代价最小的解,则应当按代价从小到大的顺序重排OPEN表。
3-2 试举例比较各种搜索方法的效率。
宽度优先搜索(1) 把起始节点放到OPEN表中(如果该起始节点为一目标节点,则求得一个解答)。
(2) 如果OPEN是个空表,则没有解,失败退出;否则继续。
(3) 把第一个节点(节点n)从OPEN表移出,并把它放入CLOSED扩展节点表中。
(4) 扩展节点n。
量词的辖域定义:量词的辖域是邻接量词之后的最小子公式,故除非辖域是个原子公式,否则应在该子公式的两端有括号。
例:∀XP(X)→Q(X)∀X的辖域是P(X)∃X(P(X,Y)→Q(X,Y) ) ∨ P(Y,Z)∃X的辖域是P(X,Y)→Q(X,Y)有限个体域上消去量词例15: 个体域D={a,b,c}, 则消去下面公式中的量词∃x∀yF(x,y)⇔∃x (F(x,a)∧F(x,b)∧F(x,c))⇔ (F(a,a)∧F(a,b)∧F(a,c))∨(F(b,a)∧F(b,b)∧F(b,c))∨(F(c,a)∧F(c,b)∧F(c,c)) 例16:设个体域D={a,b},消去下面各公式中的量词:(1) ∀x∃y(F(x) →G(y)) ⇔∀x(F(x)→∃y G(y))⇔∃xF(x)→∃y G(y) ⇔ (F(a)∨F(b))→(G(a)∨G(b))(2) ∀x∃y(F(x,y) →G(x,y))⇔∀x((F(x,a) →G(x,a))∨(F(x,b)→G(x,b))⇔((F(a,a) →G(a,a))∨(F(a,b)→G(a,b)))∧((F(b,a) →G(b,a))∨(F(b,b)→G(b,b)))注:(1)中量词辖域可以缩小,先缩小量词辖域,再消量词,演算简单;但在(2)中,因为全称量词和存在量词均约束F与G中个体变量,因而它们的辖域不能缩小,消去量词后的公式也不易化的更简单。
例17 将下面命题用两种形式符号化, 并证明两者等值:(1) 没有不犯错误的人解令F(x):x是人,G(x):x犯错误.⌝∃x(F(x)∧⌝G(x)) 或∀x(F(x)→G(x⌝∃x(F(x)∧⌝G(x))⇔∀x⌝(F(x)∧⌝G(x)) 量词否定等值式⇔∀x(⌝F(x)∨G(x)) 置换⇔∀x(F(x)→G(x)) 置换(2) 不是所有的人都爱看电影解令F(x):x是人,G(x):爱看电影.⌝∀x(F(x)→G(x)) 或∃x(F(x)∧⌝G(x))⌝∀x(F(x)→G(x))⇔∃x⌝(F(x)→G(x)) 量词否定等值式⇔∃x⌝(⌝F(x)∨G(x)) 置换⇔∃x(F(x)∧⌝G(x)) 置换例18 求下列公式的前束范式(1) ⌝∃x(M(x)∧F(x))解⌝∃x(M(x)∧F(x))⇔∀x(⌝M(x)∨⌝F(x)) (量词否定等值式)⇔∀x(M(x)→⌝F(x))后两步结果都是前束范式,说明公式的前束范式不惟一.(2) ∀xF(x)∧⌝∃xG(x)解∀xF(x)∧⌝∃xG(x)⇔∀xF(x)∧∀x⌝G(x) (量词否定等值式)⇔∀x(F(x)∧⌝G(x)) (量词分配等值式)或∀xF(x)∧⌝∃xG(x)⇔∀xF(x)∧∀x⌝G(x) 量词否定等值式⇔∀xF(x)∧∀y⌝G(y) 换名规则⇔∀x∀y(F(x)∧⌝G(y)) 辖域收缩扩张规则(3) ∀xF(x)→∃y(G(x,y)∧⌝H(y))解∀xF(x)→∃y(G(x,y)∧⌝H(y))⇔∀zF(z)→∃y(G(x,y)∧⌝H(y)) 换名规则⇔∃z∃y(F(z)→(G(x,y)∧⌝H(y))) 辖域收缩扩张规则或⇔∀xF(x)→∃y(G(z,y)∧⌝H(y)) 代替规则⇔∃x∃y(F(x)→(G(z,y)∧⌝H(y)))推理定理第一组命题逻辑推理定理的代换实例如, ∀xF(x)∧∃yG(y) ⇒∀xF(x)第二组基本等值式生成的推理定理如, ∀xF(x) ⇒⌝⌝∀xF(x), ⌝⌝∀xF(x) ⇒∀xF(x)⌝∀xF(x)⇒∃x⌝F(x), ∃x⌝F(x) ⇒⌝∀xF(x)第三组其他常用推理定律(1) ∀xA(x)∨∀xB(x) ⇒∀x(A(x)∨B(x))(2) ∃x(A(x)∧B(x))⇒∃xA(x)∧∃xB(x)(3) ∀x(A(x)→B(x)) ⇒∀xA(x)→∀xB(x)(4) ∃x(A(x)→B(x)) ⇒∃xA(x)→∃xB(x)一个公式如果它的所有量词均非否定的出现在公式的最前面,且它们的辖域一直延伸到公式的末尾,此种形式的公式就叫前束范式。
人工智能复习参考(2015工程硕士)1-1.什么是人工智能?它的研究目标是什么?人工智能(Artificial Intelligence),简称AI,又称机器智能(Machine Intelligence,MI),主要研究用人工的方法和技术开发智能机器或智能系统,以模仿、延伸和扩展人的智能、生物智能、自然智能,实现机器的智能行为。
近期目标:人工智能的近期目标是实现机器智能。
即先部分地或某种程度地实现机器智能,从而使现有的计算机更灵活好用和更聪明有用。
远期目标:人工智能的远期目标是要制造智能机器。
具体讲就是使计算机具有看、听、说、写等感知和交互能力,具有联想、学习、推理、理解、学习等高级思维能力,还要有分析问题解决问题和发明创造的能力。
1-2.人工智能有哪些研究方法和途径?简单描述它们的特点。
一、传统划分法1.符号主义:以人脑的心理模型为依据,将问题或知识表示成某种符号,采用符号推演的方法,宏观上模拟人脑的推理、联想、学习、计算等功能,实现人工智能。
2.连接主义:不仅要求机器产生的智能和人相同,产生的过程和机理也应该相同。
人或某些动物所具有的智能皆源自于大脑,通过对大脑微观结构的模拟达到对智能的模拟,这是一条很自然的研究人工智能的途径。
3.行为主义:模拟人在控制过程中的智能活动和行为特性,如自适应,自寻优、自学习、自组织等,以此来研究和实现人工智能。
二、现代划分法1.符号智能:是对智能和人工智能持狭义的观点,侧重于研究任何利用计算机软件来模拟人的抽象思维过程,并把思维过程看成是一个抽象的符号处理过程。
2.计算智能:计算机智能又重新回到依靠数值计算解决问题的轨道上来,它是对符号智能中符号推演的再次否定。
3.群体智能:它认同智能同样可以表现在群体的整体特性上,群体中每个个体的智能虽然很有限,但通过个体之间的分工协作和相互竞争,可以表现出很高的智能。
1-3.为什么能够用机器(计算机)模仿人的智能?假设:任何一个系统,如果它能够表现出智能,那么它就必定能够执行上述6种功能:输入符号;输出符号;存储符号;复制符号;建立符号结构;条件性迁移:反之,任何系统如果具有这6种功能,那么它就能够表现出智能,这种智能指的是人类所具有的那种智能。
离散数学精选笔记一、集合论基础。
1. 集合的定义与表示。
- 集合是由一些确定的、彼此不同的对象组成的整体。
通常用大写字母表示集合,如A、B、C等。
- 集合的表示方法有列举法和描述法。
- 列举法:把集合中的元素一一列举出来,例如A = {1,2,3}。
- 描述法:用谓词来描述集合中元素的性质,例如B={xx是偶数且x < 10}。
2. 集合间的关系。
- 包含关系:如果集合A的所有元素都是集合B的元素,则称A包含于B,记作A⊆ B。
当A⊆ B且A≠ B时,称A是B的真子集,记作A⊂ B。
- 相等关系:如果A⊆ B且B⊆ A,则A = B。
3. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设全集为U,A相对于U的补集¯A=U - A={xx∈ U且x∉ A}。
- 集合运算的性质:- 交换律:A∩ B = B∩ A,A∪ B=B∪ A。
- 结合律:(A∩ B)∩ C = A∩(B∩ C),(A∪ B)∪ C=A∪(B∪ C)。
- 分配律:A∩(B∪ C)=(A∩ B)∪(A∩ C),A∪(B∩ C)=(A∪ B)∩(A∪ C)。
二、命题逻辑。
1. 命题与命题联结词。
- 命题是能够判断真假的陈述句。
例如“今天是晴天”是一个命题。
- 命题联结词:- 否定¬:若P为命题,则¬ P表示“P不成立”。
- 合取wedge:Pwedge Q表示“P并且Q”,当P和Q都为真时,Pwedge Q为真。
- 析取vee:Pvee Q表示“P或者Q”,当P和Q至少有一个为真时,Pvee Q为真。
- 蕴涵to:Pto Q表示“如果P,那么Q”,当P为真Q为假时,Pto Q为假,其余情况为真。
- 等价↔:P↔ Q表示“P当且仅当Q”,当P和Q同真同假时,P↔ Q为真。
2. 命题公式及其分类。
- 命题公式是由命题变元(通常用P、Q、R等表示)和命题联结词按照一定规则组成的符号串。
消去量词和引入量词规则
消去量词和引入量词规则是指在逻辑学中对于量化符号的使用规则。
在逻辑学中,量词分为两种,一种是全称量词,另一种是存在量词。
全称量词表示某个条件对于所有的个体都成立,而存在量词则表示某个条件至少对于一个个体成立。
在使用量词时,需要遵循以下的规则:
1. 消去量词规则。
当一个量化公式中存在相同的量词时,可以将它们合并成一个量词。
例如,xyP(x,y)可以简化为xP(x,x),因为x和y都代表着任意的个体。
2. 引入量词规则。
当一个量化公式中不存在某个量词时,可以引入该量词。
例如,假设已知xP(x),则可以推断出存在量词的公式,即存在xP(x)。
遵循消去量词和引入量词规则可以帮助我们更加准确地分析和推导逻辑命题,从而达到正确地推断结论的目的。
- 1 -。