北京理工大学自动控制原理实验报告
- 格式:doc
- 大小:513.50 KB
- 文档页数:36
北理工自动控制理论实验报告摘要:本实验主要研究和探索自动控制理论在北理工的应用。
通过实验验证控制系统在不同环境下的稳定与准确性,并针对实验结果进行分析和总结。
引言:自动控制理论是近年来快速发展的学科之一,广泛应用于工业自动化系统、航空航天、交通运输等领域。
在北理工学习自动控制理论的过程中,本实验通过搭建实验系统,验证了自动控制理论的实际应用。
实验目的:1.验证控制系统的稳定性;2.检测不同环境下控制系统的输出准确性;3.分析控制系统参数的优化方法。
实验原理:本实验使用PID控制器来实现对控制系统的控制。
PID控制器是一种常见且广泛应用的控制方式,具有简单且高效的优点。
PID控制器的原理是根据系统测量值与期望值的误差计算出一个综合的控制值,通过反馈作用对系统进行调整。
其中,P项(比例项)、I项(积分项)和D项(微分项)表示了系统的偏差、系统稳定性和系统响应速度。
实验装置:实验所需的装置包括一台控制系统、传感器和执行器。
控制系统通过传感器获取反馈信号,将其与期望值进行比较,并通过执行器调节控制系统的输出。
实验步骤:1.搭建实验系统,包括控制器、传感器和执行器;2.设定期望值,将期望值输入控制系统;3.设置控制器参数,并将其与控制系统连接;4.开始实验,记录系统的输出值;5.对实验结果进行分析和总结。
实验结果:实验中记录了不同环境下控制系统的输出值,并与期望值进行比较。
结果表明,控制系统在不同环境下都能保持稳定,且输出值与期望值的误差在可接受范围内。
通过分析实验结果,总结出了一些优化控制系统参数的方法,如调整P、I、D参数的比例,根据实际需求对系统进行调整等。
结论:本实验通过对自动控制理论的实际应用进行研究和探索,验证了控制系统在不同环境下的稳定性和准确性。
实验结果表明,自动控制理论在北理工的应用具有较高的实效性和可行性。
本实验的结果对进一步优化控制系统参数和提高系统稳定性具有一定的指导意义。
[1]张三.自动控制理论与应用[M].北京:XXXX。
本科实验报告实验名称:控制理论基础实验实验时间:课程名称:控制理论基础任课教师:实验地点:实验教师:实验类型:□原理验证□综合设计学生姓名:□自主创新组号:学号/班级:学院:同组搭档:专业:成绩:实验1控制系统的模型建立一、实验目的1、掌握利用MATLAB建立控制系统模型的方法。
2、掌握系统的各种模型表述及相互之间的转换关系。
3、学习和掌握系统模型连接的等效变换。
二、实验原理1、系统模型的MATLAB描述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。
这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB描述方法。
1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB中,直接使用分子分母多项式的行向量表示系统,即num=[bm,bm-1,…b1,b0]den=[an,an-1,…a1,a0]调用tf函数可以建立传递函数TF对象模型,调用格式如下:Gtf=tf(num,den)Tfdata函数可以从TF对象模型中提取分子分母多项式,调用格式如下:[num,den]=tfdata(Gtf)返回cell类型的分子分母多项式系数[num,den]=tfdata(Gtf,'v')返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中,z1,z2,…,z m称为传递函数的零点,p1,p2,…,p n称为传递函数的极点,k为传递系数(系统增益)。
在MATLAB中,直接用[z,p,k]矢量组表示系统,其中z,p,k分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk函数可以创建ZPK对象模型,调用格式如下:Gzpk=zpk(z,p,k)同样,MATLAB提供了zpkdata命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k]=zpkdata(Gzpk)返回cell类型的零极点及增益[z,p,k]=zpkdata(Gzpk,’v’)返回向量形式的零极点及增益函数pzmap可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G)在复平面内绘出系统模型的零极点图。
自动控制理论实验报告(一)班级:姓名:学号:一、实验目的1、了解和掌握各典型环节以及二阶系统模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2、观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3、研究I型二阶闭环系统的结构参数——无阻尼振荡频率和阻尼比对过渡过程的影响。
4、观察和分析I型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线及在阶跃信号输入时的动态性能指标、值,并与理论计算值作对比。
二、实验内容1、比例环节的模拟电路比例环节的模拟电路:比例环节的阶跃响应曲线:2、惯性环节的模拟电路惯性环节的模拟电路:惯性环节的阶跃响应曲线:3、积分环节的模拟电路积分环节的模拟电路:积分环节的阶跃响应曲线:4、比例积分环节的模拟电路比例积分环节的模拟电路:比例积分环节的阶跃响应曲线:5、比例微分环节的模拟电路比例微分环节的模拟电路:比例微分环节的阶跃响应曲线:6、比例积分微分环节的模拟电路比例积分微分环节的模拟电路:比例积分微分环节的阶跃响应曲线:以下实验内容均在典型I 型二阶单位反馈闭环系统下进行。
该系统结构框图如图:该系统模拟电路如图:该二阶系统由积分环节和惯性环节构成,其积分时间常数为:111i T R C s=⨯=可变电阻惯性时间常数为:220.1T R C s=⨯=故,该系统的开环传递函数为:()(0.11)KG s s s =+其中,2100R K R R== 所以,该系统的闭环传递函数为:2()10()1()1010G s K s G s s s K φ==+++故,自然频率为:n ω=阻尼比为:ξ=7、4R k =Ω时的欠阻尼响应为实现欠阻尼响应,须有:01ξ<<,首先,电路参数选为:4R k =Ω。
此时, 增益:25K =; 传递函数:2()250()1()10250G s s G s s s φ==+++;自然频率:15.81n ω=;阻尼比:0.316ξ==。
自动控制原理实验实训报告 .docx【导言】自动控制原理实验实训是控制科学与工程专业的必修课程,是学生进行理论学习与实践操作结合的一个重要环节。
本次实训学习了控制系统的基本概念、控制器的类型以及控制系统的建模和分析方法,并通过实现传感器数据采集、信号控制和反馈调节等操作,掌握了控制系统的工作原理和实现方式。
本报告将对本次实训中的实验操作、实验结果和实验体会进行详细记录和总结。
【实验操作】1.传感器场景仿真实验本实验通过MATLAB仿真软件,实现了对不同场景下传感器采集数据的比较分析。
实验过程中需要设置不同的传感器样本数据和处理方式,并利用MATLAB的数据处理工具对数据进行处理分析,从而得出传感器对于不同场景下数据采集的适用性和准确性。
2.直流电动机速度调节实验本实验通过实现电动机的速度控制,实现对电动机的运行状态的控制调节。
实验需要完成对AC220V电源、TG-01速度控制器以及直流电动机的连接和调试,并通过电动机的运行状态和速度,实现对控制器的参数设置和调节操作。
4.磁悬浮控制实验本实验实现了对磁悬浮平台的控制和调节,并通过数据反馈实现了对磁悬浮平台的稳定运行。
通过对控制器的参数调节和磁悬浮平台的反馈数据分析,加深了对磁悬浮控制原理的理解和掌握程度。
本次实验操作中,通过对控制器的操作和数据反馈的分析,加深了对自动控制的认识和掌握程度,提高了对控制系统的工作原理和实现方式的理解。
同时,实验操作中也存在一些问题和不足,例如实验操作过程的不稳定性和实验数据分析的不准确性等问题。
需要在今后的学习和实践中,加强对理论知识和实验操作技能的学习和掌握,提高实验操作的准确性和稳定性,从而更好地掌握自动控制原理的知识和技能。
《自动控制原理》课程实验报告姓名: 班级: 学号: 实验时间: 实验成绩: 一、 实验目的:1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和ωn 对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、 实验要求:1.根据实验步骤,写出调试好的MATLAB 语言程序,及对应的MATLAB 运算结果。
2.记录各种输出波形,根据实验结果分析参数变化对系统的影响。
3.总结判断闭环系统稳定的方法,说明增益K 对系统稳定性的影响。
三、 实验步骤:1.观察函数step( )函数和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=s s s s s s s G ,可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。
2.对典型二阶系统2222)(nn ns s s G ωζωω++= 1)分别绘制出ωn =2(rad/s),ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响。
2)绘制出当ζ=0.25,ωn 分别取1,2,4,6时单位阶跃响应曲线,分析参数ωn 对系统的影响。
3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G ,试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围四、 实验结果与结论时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
1.用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
MATLAB软件工具在控制系统分析和综合中的应用实验班级:01811001学号:1120100209姓名:戚煜华一、试验目的:1.了解MATLAB 这种强大的数学软件的基本特点和语言特点。
2.掌握控制系统在MATLAB 中的描述。
3.学会用MATLAB 的Control 工具箱中提供的仿真函数,例如连续时间系统在阶跃输入激励下的仿真函数step (),脉冲激励下的仿真函数impulse ()等。
4掌握典型一阶、二阶系统中参数的变化对阶跃响应曲线的影响;5掌握使用MATLAB 绘制控制系统的根轨迹图,并了解附加开环零、极点对闭环根轨迹的影响。
6.学会使用MATLAB 绘制系统频率特性曲线—乃氏图和伯德图,并利用MATLAB 求出系统的稳定裕度。
7.掌握系统串联校正后,开环指标及时域响应指标的变化规律。
二、试验设备:一台装有MATLAB 软件的电脑三、试验内容:2.以传函11)(+=Ts s G 为例,令T=0.1,1,10,绘制其单位阶跃响应曲线,并总结给出惯性时间常数对阶跃响应影响的结论。
T=0.1时的单位阶跃响应曲线T=1时的单位阶跃响应曲线T=10时的单位阶跃响应曲线结论:惯性时间常数T越大,上升时间、调节时间和延迟时间越长。
3.以传函2222)(nn n s s s G ωξωω++=为对象,令n ω=1,ξ=0,0.2,0.5,1,1.5分别绘制阶跃响应曲线。
令ξ=0.7,n ω=0.1,1,10分别绘制阶跃响应曲线,进行ξ、n ω对二阶阶跃响应的影响分析。
n ω=1,ξ=0:分析:n ω=1时,ξ=0,零阻尼,响应为无阻尼等幅振荡;ξ=0.2和0.5,欠阻尼,随着ξ的增大,振荡幅值减小,响应速度变慢,超调量减小;ξ=1,临界阻尼,响应变慢,超调和振荡消失;ξ=1.5,过阻尼,系统没有超调,且过渡时间较长。
综上所述,ξ越大,振荡幅值越小,过渡时间越长;ξ>=1以后,系统没有了超调和振荡。
实验3 根轨迹分析一、实验目的1. 学习和掌握利用MATLAB 绘制根轨迹图的方法。
2. 学习和掌握利用系统根轨迹图分析系统的性能。
二、实验原理1. 根轨迹分析的 MATLAB 实现根轨迹是指系统某一参数变化时,闭环特征根在s 平面上运动的轨迹。
在MATLAB 中,提供了用于根轨迹分析的专门函数。
1)rlocus 函数该函数的使用方法如下:rlocus(sys) 绘制单输入单输出LTI 系统的根轨迹图。
rlocus(sys,k) 使用用户指定的根轨迹增益k 来绘制系统的根轨迹图。
[r,k] = rlocus(sys) 返回根轨迹增益值和闭环极点值,不绘制根轨迹图 2)rlocfind 函数该函数的使用方法如下:[k,poles]=rlocfind(sys) 计算鼠标选取点处的根轨迹增益值和闭环极点值,可在图形窗口根轨迹图中显示出十字光标,当用户选择其中一点时,相应的增益值和极点值记录在k 和poles 中。
[k,poles]=rlocfind(sys,p) 计算最靠近给定闭环极点p 处的根轨迹增益。
3)sgrid 函数该函数的使用方法如下:sgrid 可在连续系统根轨迹或零极点图上绘制出栅格线,栅格线由等阻尼系数和等自然频率线构成。
sgrid(’new’) 先清除当前的图形,然后绘制出栅格线,并将坐标轴属性设置成hold on 。
sgrid(z,Wn) 指定阻尼系数z 和自然频率Wn 。
sgrid(z,Wn,’new’) 指定阻尼系数z 和自然频率Wn ,在绘制栅格线之前清除当前的图形并将坐标轴属性设置成hold on 。
三、实验内容1. 已知系统开环传递函数为(s 5)(s)(s 1)(s 3)(s 12)K G +=+++(1)使用MATLAB 绘制系统的根轨迹图。
(2)求根轨迹的两条分支离开实轴时的K 值,并确定该K 值对应的所有闭环极点。
(3)以区间[-40,-5]之间的值替代s = −12处的极点,重新绘制根轨迹图,观察其对根轨迹图的影响。
自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。
通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。
引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。
自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。
本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。
实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。
实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。
通过控制器对执行器的控制,实现对输出信号的调节。
2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。
经过数据处理和分析,得到系统的传递函数表达式。
3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。
根据分析结果,判断系统的稳定性。
4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。
根据实际情况进行参数调节,使得系统的响应达到要求。
实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。
通过对PID控制器参数的调节,使系统的稳态误差达到了要求。
通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。
实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。
实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。
控制理论基础实验1.控制系统的模型建立2.控制系统的暂态特性分析3.根轨迹分析4.系统的频率特性分析一、实验目的实验一1.掌握利用MATLAB建立控制系统模型的方法。
2.掌握系统的各种模型表述及相互之间的转换关系。
3.学习和掌握系统模型连接的等效变化。
实验二1.学习和掌握利用MATLAB进行系统时域响应求解和仿真的方法。
2.考察二阶系统的时间响应,研究二阶系统参数对系统暂态特性的影响。
实验三1.学习和掌握利用MATLAB绘制根轨迹图的方法2.学习和掌握利用系统根轨迹图分析系统的性能。
实验四1.学习和掌握利用MATLAB绘制系统Nyquist图和Bode图的方法。
2.学习和掌握利用系统的频率特性分析系统的性能。
二、实验原理1)传递函数模型(TF)gtf=tf(num,den)2)零极点增益模型(ZPK)Gzpk=zpk(z,p,k)3)状态空间模型(SS)Gss=ss(a,b,c,d)4)三种模型之间的转换TF→ZPK:z pk(sys)TF→SS:ss(sys)ZPK→TF:t f(sys)ZPK→SS:s s(sys)SS→TF:tf(sys)SS→ZPK:z pk(sys)5)绘制系统零极点图Pzmap(gzpk);Grid on;6)系统模型的串联G(s)=G1(s)*G2(s)7)系统模型的并联G(s)=G1(s)+G2(s)8)系统模型的反馈连接T=feedback(G,H)T=feedback(G,H,sign)9)绘制阶跃响应step(sys)step(sys,T)10)线性时不变系统仿真工具ltiview11)绘制系统根轨迹图rlocus(sys)rlocus(sys,k)[r,k]=rlocus(sys)12)计算鼠标选择点处根轨迹增益值和闭环极点值[k,poles]=rlocfind(sys)13)在连续系统根轨迹或零极点图上绘制出栅格线sgrid(‘new’)sgrid(z,Wn)14)绘制系统的Nyquist图nyquist(SYS)nyquist(sys,w)15)绘制系统的Bode图bode(sys)bode(sys,w)16)从频率响应数据中计算幅度裕度,相位裕度及对应角频率margin(sys)[mag,phase]=bode(sys,w)三、实验结果实验一1)零极点图2)零极点图3)总串联函数Transfer function:10 s^6 + 170 s^5 + 1065 s^4 + 3150 s^3 + 4580 s^2 + 2980 s + 525---------------------------------------------------------------------------------------------------------------------- s^9 + 24 s^8 + 226 s^7 + 1084 s^6 + 2905 s^5 + 4516 s^4 + 4044 s^3 + 1936 s^2 + 384 s 4)闭环传递函数Transfer function:2.25 s^2 + 7.5 s + 6-------------------------------------------------------0.25 s^4 + 1.25 s^3 + 2 s^2 + 5.5 s + 65)闭环传递函数Transfer function:20 s^3 + 160 s^2 + 400 s + 320-------------------------------------------------------------------------s^6 + 10 s^5 + 35 s^4 + 44 s^3 + 82 s^2 + 116 s - 48%1num=[2 18 40]; den=[1 5 8 6]; gtf=tf(num,den) gzpk=zpk(gtf) gss=ss(gtf) pzmap(gzpk);grid on%2a=[0 1 0 00 0 1 00 0 0 1-1 -2 -3 -4];b=[0 0 0 0]’;c=[10 2 0 0];d=0;gss=ss(a,b,c,d); gtf=tf(gss); gzpk=zpk(gss); pzmap(gzpk)grid on%3g1a=[2 6 5]; g1b=[1 4 5 2];g2a=[1 4 1];g2b=[1 9 8 0];g3z=[-3 -7];g3p=[-1 -4 -6];g3k=5;g1tf=tf(g1a,g1b);g2tf=tf(g2a,g2b);g3zpk=zpk(g3z,g3p,g3k);g3tf=tf(g3zpk);g=g1tf*g2tf*g3tf%4g1=tf([1],[1 1]);g2=tf(1,[0.5 1]);g3=g2;g4=tf(3,[1 0]);g=feedback((g1+g2)*g4,g3)%5g1=tf(10,[1 1]);g2=tf(2,[1 1 0]);g3=tf([1 3],[1 2]);g4=tf([5 0],[1 6 8]);g=feedback(g1*(feedback(g2, g3,1)),g4)实验二12(1)t d=0.272 t r=0.371 t p=0.787 t s=1.19ϭ=9%(2)(3)(4)ξ变大,延迟时间,上升时间,峰值时间,调整时间均越来越长,超调量开始时减小,然后保持不变。
本科实验报告实验名称:控制理论基础实验课程名称:控制理论基础实验时间:任课教师:实验地点:实验教师:实验类型:□原理验证□综合设计□自主创新学生姓名:学号/班级:组号:学院:同组搭档:专业:成绩:实验1 控制系统的模型建立一、实验目的1、掌握利用MATLAB 建立控制系统模型的方法。
2、掌握系统的各种模型表述及相互之间的转换关系。
3、学习和掌握系统模型连接的等效变换。
二、实验原理1、系统模型的 MATLAB描述系统的模型描述了系统的输入、输出变量以及内部各变量之间的关系,表征一个系统的模型有很多种,如微分方程、传递函数模型、状态空间模型等。
这里主要介绍系统传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型的MATLAB 描述方法。
1)传递函数(TF)模型传递函数是描述线性定常系统输入-输出关系的一种最常用的数学模型,其表达式一般为在MATLAB 中,直接使用分子分母多项式的行向量表示系统,即num = [bm, bm-1, … b1, b0]den = [an, an-1, … a1, a0]调用tf 函数可以建立传递函数TF 对象模型,调用格式如下:Gtf = tf(num,den)Tfdata 函数可以从TF 对象模型中提取分子分母多项式,调用格式如下:[num,den] = tfdata(Gtf) 返回cell 类型的分子分母多项式系数[num,den] = tfdata(Gtf,'v') 返回向量形式的分子分母多项式系数2)零极点增益(ZPK)模型传递函数因式分解后可以写成式中, z1 , z2, …,z m称为传递函数的零点,p1,p2,…,p n称为传递函数的极点,k 为传递系数(系统增益)。
在MATLAB 中,直接用[z,p,k]矢量组表示系统,其中z,p,k 分别表示系统的零极点及其增益,即:z=[z1,z2,…,zm];p=[p1,p2,…,pn];k=[k];调用zpk 函数可以创建ZPK 对象模型,调用格式如下:Gzpk = zpk(z,p,k)同样,MATLAB 提供了zpkdata 命令用来提取系统的零极点及其增益,调用格式如下:[z,p,k] = zpkdata(Gzpk) 返回cell 类型的零极点及增益[z,p,k] = zpkdata (Gzpk,’v’) 返回向量形式的零极点及增益函数pzmap 可用于求取系统的零极点或绘制系统得零极点图,调用格式如下:pzmap(G) 在复平面内绘出系统模型的零极点图。
[p,z] = pzmap(G) 返回的系统零极点,不作图。
3)状态空间(SS)模型由状态变量描述的系统模型称为状态空间模型,由状态方程和输出方程组成:其中:x 为n 维状态向量;u 为r 维输入向量;y 为m 维输出向量;A 为n×n 方阵,称为系统矩阵;B 为n×r 矩阵,称为输入矩阵或控制矩阵;C 为m×n 矩阵,称为输出矩阵;D为m×r 矩阵,称为直接传输矩阵。
在MATLAB 中,直接用矩阵组[A,B,C,D]表示系统,调用ss 函数可以创建ZPK 对象模型,调用格式如下:Gss = ss(A,B,C,D)同样,MATLAB 提供了ssdata 命令用来提取系统的A、B、C、D 矩阵,调用格式如下:[A,B,C,D] = ssdata (Gss) 返回系统模型的A、B、C、D 矩阵4)三种模型之间的转换上述三种模型之间可以互相转换,MATLAB 实现方法如下TF 模型→ZPK 模型:zpk(SYS)或tf2zp(num,den)TF 模型→SS 模型:ss(SYS)或tf2ss(num,den)ZPK 模型→TF 模型:tf(SYS)或zp2tf(z,p,k)ZPK 模型→SS 模型:ss(SYS)或zp2ss(z,p,k)SS 模型→TF 模型:tf(SYS)或ss2tf(A,B,C,D)SS 模型→ZPK 模型:zpk(SYS)或ss2zp(A,B,C,D)2、系统模型的连接在实际应用中,整个控制系统是由多个单一的模型组合而成,基本的组合方式有串联连接、并联连接和反馈连接。
下图分别为串联连接、并联连接和反馈连接的结构框图和等效总传递函数。
在MATLAB 中可以直接使用“*”运算符实现串联连接,使用“+”运算符实现并联连接。
反馈系统传递函数求解可以通过命令feedback 实现,调用格式如下:T = feedback(G,H)T = feedback(G,H,sign)其中,G 为前向传递函数,H 为反馈传递函数;当sign = +1 时,GH 为正反馈系统传递函数;当sign = -1 时,GH 为负反馈系统传递函数;默认值是负反馈系统。
三、实验内容1、已知控制系统的传递函数如下试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
实验代码:num=[2 18 40];den=[1 5 8 6];Gtf=tf(num,den) Gzpk=zpk(Gtf) Gss=ss(Gtf) pzmap(Gzpk); grid on ; 实验结果:(1)首先建立系统的传递函数模型描述,上述程序的运行结果为: Gtf =2 s^2 + 18 s + 40 --------------------- s^3 + 5 s^2 + 8 s + 6 (2)零极点增益模型为: Gzpk =2 (s+5) (s+4) -------------------- (s+3) (s^2 + 2s + 2) 系统零极点图为:-5-4.5-4-3.5-3-2.5-2-1.5-1-0.5Pole-Zero MapReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)(3)状态空间方程模型:Gss =a =x1 x2 x3x1 -5 -2 -1.5x2 4 0 0x3 0 1 0b =u1x1 4x2 0x3 0c =x1 x2 x3y1 0.5 1.125 2.5d =u1y1 02、已知控制系统的状态空间方程如下试用MATLAB 建立系统的传递函数模型、零极点增益模型及系统的状态空间方程模型,并绘制系统零极点图。
实验代码:a=[0 1 0 0;0 0 1 0;0 0 0 1;-1 -2 -3 -4];b=[0;0;0;1];c=[10 2 0 0];d=[0];Gss=ss(a,b,c,d)Gtf=tf(Gss)Gzpk=(Gss)pzmap(Gzpk);grid on;实验结果:(1)系统矩阵a =x1 x2 x3 x4 x1 0 1 0 0x2 0 0 1 0x3 0 0 0 1x4 -1 -2 -3 -4b =u1x1 0x2 0x3 0x4 1c =x1 x2 x3 x4 y1 10 2 0 0d =u1y1 02)再创建ZPK对象模型:Gzpk =a =x1 x2 x3 x4 x1 0 1 0 0x2 0 0 1 0x3 0 0 0 1x4 -1 -2 -3 -4b = u1 x1 0 x2 0 x3 0 x4 1c =x1 x2 x3 x4 y1 10 2 0 0 d = u1 y1 0 (3)传递函数: Gtf =2 s + 10 ----------------------------- s^4 + 4 s^3 + 3 s^2 + 2 s + 1 (4)零极点图:Pole-Zero MapReal Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)-5-4.5-4-3.5-3-2.5-2-1.5-1-0.53、已知三个系统的传递函数分别为试用MATLAB 求上述三个系统串联后的总传递函数。
实验代码:num1=[2 6 5];den1=[1 4 5 2];G1=tf(num1,den1)num2=[1 4 1];den2=[1 9 8 0];G2=tf(num2,den2)z=[-3 -7];p=[-1 -4 -6];k=[5];G3=zpk(z,p,k)G=G1*G2*G3实验结果:G1 =2 s^2 + 6 s + 5---------------------s^3 + 4 s^2 + 5 s + 2G2 =s^2 + 4 s + 1-----------------s^3 + 9 s^2 + 8 sG3 =5 (s+3) (s+7)-----------------(s+1) (s+4) (s+6)G =10 (s+3.732) (s+3) (s+7) (s+0.2679) (s^2 + 3s + 2.5) ----------------------------------------------------s (s+8) (s+6) (s+4) (s+2) (s+1)^44、已知如图E2-1 所示的系统框图试用MATLAB 求该系统的闭环传递函数。
实验代码:num1=[1];den1=[1 1];G1=tf(num1,den1);num2=[1];den2=[0.5 1];G2=tf(num2,den2);num3=[3];den3=[1 0];G3=tf(num3,den3);H=G2;G=(G1+G2)*G3;Gtf=feedback(G,H,-1)实验结果:Gtf =2.25 s^2 + 7.5 s + 6---------------------------------------0.25 s^4 + 1.25 s^3 + 2 s^2 + 5.5 s + 65、已知如图E2-2 所示的系统框图试用MATLAB 求该系统的闭环传递函数。
实验代码:num1=[10];den1=[1 1];G1=tf(num1,den1)num2=[2];den2=[1 1 0];G2=tf(num2,den2);num3=[1 3];den3=[1 2];H2=tf(num3,den3);num4=[5 0];den4=[1 6 8];H1=tf(num4,den4);G=G1*feedback(G2,H2,+1);Gtf=feedback(G,H1,-1)实验结果:Gtf =20 s^3 + 160 s^2 + 400 s + 320----------------------------------------------------s^6 + 10 s^5 + 35 s^4 + 44 s^3 + 82 s^2 + 116 s - 48四、体会和建议本次实验比较基础,学习如何创建传递函数模型,并得到对应的零极点模型和状态空间方程。