机组振动基础知识的讲解
- 格式:pdf
- 大小:371.34 KB
- 文档页数:9
机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。
2.振幅:振动的最大偏离量,表示振动的幅度大小。
3.周期:振动完成一次往复运动所经历的时间。
4.频率:单位时间内振动的循环次数。
5.角频率:单位时间内振动的循环角度。
6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。
7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。
二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。
2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。
3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。
三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。
2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。
3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。
4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。
四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。
2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。
3.机械波分为横波和纵波。
横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。
五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。
2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。
3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。
六、机械波的特性1.超前传播:波的传播速度比振动速度快。
2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。
3.波的衍射:波通过孔隙或物体边缘时发生的现象。
4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。
振动的基本概念及刚性转子找平衡振动水平是衡量设备安全可靠运行的重要指标。
剧烈的振动容易导致零部件的疲劳损坏,一些重大的设备损害直接或间接地与振动有关。
所以,在设备运行时需对设备进行振动监测,其目的在于:(1):监测振动的大小,了解其是否在规定的范围内;(2):当机组异常时,进行测量和处理故障(不仅需测量振动的大小,还需测量频率、相位)。
一:振动的表示:振动的三要素:振幅、频率、以及相位。
振幅表示机组振动严重程度或剧烈程度的重要指标。
1:振幅:其表示方法有:(1):位移表示方法:振幅表示机组振动严重程度或剧烈程度的重要指标。
Ap单峰值就是振动的最大点到平衡位置之间的距离。
App峰峰值实际上就是振动的波峰与波谷的距离。
振动测量仪器输出的位移振动振幅通常都是峰峰值。
(2):加速度、速度表示方法:用速度均方根表示,又称为“烈度”,单位:mm/s用加速度表示时,单位为mm2 /s当速度为单一频率时,与速度之间的关系为注:•振动位移、速度和加速度•y =A sin(ωt+ ϕ)•v=d y/dt=ωA sin(ωt+ ϕ+π/2)•a= d 2y/dt2=ω2A sin(ωt+ ϕ+π)•(1)振动位移、速度和加速度信号的频率相同。
•(2)在相同位移幅值下,频率越高,交变应力越大,对设备危害也越大。
•(3)振动速度/加速度是振动位移和频率/频率平方的乘积,幅值中同时反映了振动频率和位移幅值的影响,较单纯的振动位移幅值更全面•(4)采用不同表示方式,必须考虑相互之间的相位差。
•(5)同一种故障在振动位移、速度和加速度频谱中表现出来的故障特征不完全相同。
•(6)振动位移、速度和加速度之间可以相互转换。
2:相位:(1)作用:相位就是转动部件参考一个固定位置得到的瞬时位置信息,相位告诉我们振动的方向。
相位在振动测量中主要应用于确定不平衡量的角度,由基频振动的相位和转子的机械滞后角可以知道不平衡的角度。
(2)概念:从广义上讲:相位可以理解为两个事件之间的时间。
引言概述:汽机振动问题是工程领域中一个重要的技术难题。
振动问题会导致设备寿命降低、能效下降、工作环境恶化等一系列负面影响。
因此,对汽机振动进行深入了解和培训显得尤为重要。
本文将围绕汽机振动问题展开,从多个角度对其进行详细阐述和讲解。
正文内容:一、振动基础知识1.振动的定义和分类2.振动的原因与机理3.汽机振动的特点和表现形式4.汽机振动与设备健康状态的关系5.汽机振动的评估标准和参数二、汽机振动的影响因素1.设备结构和设计对振动的影响2.运行工况对振动的影响3.设备材料对振动的影响4.润滑与冷却对振动的影响5.操作和维护对振动的影响三、振动监测与测试技术1.振动监测的目的和方法2.振动传感器的选择和安装3.振动测试数据的分析和解读4.振动信号处理与分析技术5.振动监测系统的建立与维护四、振动控制与调试技术1.汽机振动控制方法的分类和选择2.结构振动控制技术3.润滑和冷却系统对振动的控制4.主动振动控制技术5.振动调试的方法和注意事项五、振动故障诊断与预测1.振动故障的常见类型和特征2.振动故障的诊断方法和步骤3.振动故障预测与预防措施4.振动故障诊断与预测的案例分享5.振动故障诊断与预测技术的发展趋势总结:通过本文对汽机振动进行详细的介绍和讲解,我们可以了解到振动问题的重要性以及其对设备运行和安全的影响。
同时,本文还对汽机振动的基础知识、影响因素、监测和调试技术、故障诊断与预测等方面进行了深入阐述。
通过对振动问题的深入了解和培训,我们可以有效地控制振动问题,提高设备的运行效率和可靠性,从而实现更好的工程效果。
物理机器振动知识点总结引言机器振动是指机器在工作过程中产生的一种周期性的运动或者水平或者垂直方向的来回运动。
机器振动不仅会影响设备的性能和寿命,还可能对周围的环境和人体造成危害。
因此,对机器振动的研究和控制是非常重要的。
本文将从机器振动的基本概念、振动的原理、振动的表征和测量、振动的控制和减震技术等几个方面进行介绍和总结。
一、振动的基本概念1.1 机器振动的定义机器振动是机器在工作时由于不平衡、松动、偏心、传动系统不稳定等因素引起的周期性运动。
机器振动不仅包括自然振动,还包括激振动和强迫振动。
1.2 机器振动的分类根据振动的性质和表现形式,机器振动可以分为自由振动、强迫振动、共振和阻尼振动等几种类型。
1.3 机器振动的产生原因机器振动的产生原因主要包括不平衡、柔性连接件、不精确的加工和装配、传动系统不稳定等。
这些因素都会导致机器在工作时产生不规则的运动,使得机器发生振动。
二、振动的原理2.1 振动的基本原理振动是物体相对于平衡位置的周期性运动。
当物体受到外力作用时,会产生振动。
振动的基本特征包括振幅、频率、周期和相位等。
2.2 振动的传播振动可以通过介质传播,振动的传播速度与介质的性质有关。
通常介质中的振动传播速度越快,介质越硬,振动衰减越小。
2.3 振动的耦合振动的耦合是指不同振动系统之间相互影响和作用。
当多个振动系统同时作用时,它们之间可能产生相互影响和共振现象,从而产生复杂的振动现象。
三、振动的表征和测量3.1 振动的表征指标振动的表征指标包括加速度、速度和位移等。
这些指标可以用于描述振动的不同特性,如振动的幅度、频率和相位等。
3.2 振动的测量方法振动的测量方法主要包括接触式和非接触式两种。
接触式振动测量通常使用加速度计、速度计和位移计等传感器进行测量,而非接触式振动测量则主要依靠激光测距仪、红外测温仪和摄像机等设备进行测量。
3.3 振动的分析与诊断振动的分析与诊断是指利用测量数据对机器振动进行分析和判断。
机械振动知识点总结机械振动的研究旨在分析和控制系统的振动特性,以提高系统的性能、减少系统的动态负荷、延长系统的使用寿命,并确保系统在工作过程中的稳定性和安全性。
本文将对机械振动的基本知识点进行总结,包括机械振动的分类、振动系统的建模分析、振动的控制和减振、以及振动的监测与诊断等内容。
一、机械振动的分类1. 根据振动形式的不同,机械振动可分为以下几类:(1)自由振动:系统在没有外部激励的情况下发生的振动,系统内部能量交换导致振幅逐渐减小直至停止,如钟摆的摆动。
(2)受迫振动:系统受到外部激励作用而发生的振动,外部激励可以是周期性的或非周期性的,如机械系统受到周期性力的作用而发生的振动。
(3)共振:当受迫振动的频率与系统的固有频率相近或一致时,系统的振幅将迅速增大,甚至造成系统破坏的现象。
2. 根据振动的传播方式,机械振动可分为以下几类:(1)固体振动:振动是在固体介质中传播的,如机械结构的振动。
(2)流体振动:振动是通过流体介质(如液体或气体)传播的,如管道中的水波振动。
(3)弹性振动:振动是由于材料的弹性变形而产生的,如弹簧振子的振动。
二、振动系统的建模分析1. 振动系统的建模方法(1)单自由度振动系统的建模:利用牛顿第二定律,可以建立单自由度振动系统的等效质点模型,然后通过能量方法或拉氏方程等方法,可以求解系统的振动特性。
(2)多自由度振动系统的建模:对于多自由度振动系统,可以利用连续系统的离散化方法,将系统离散化为多个质点的集合,并建立相应的动力学模型,然后求解系统的振动特性。
2. 振动系统的分析方法(1)频域分析:通过对系统的动力学方程进行傅里叶变换,可以将系统的运动响应转换到频域中进行分析,得到系统的频率响应特性。
(2)时域分析:通过对系统的动力学方程进行积分,可以得到系统的时域响应,包括系统的位移、速度、加速度等随时间的变化规律。
(3)模态分析:通过对系统的模态方程进行求解,可以得到系统的固有频率和振型,以及相应的阻尼比和阻尼比比例。
旋转机械振动分析基础汽轮机、发电机、燃气轮机、压缩机、风机、泵等都属于旋转机械,是电力、石化和冶金等行业的关键设备。
这些设备出现故障后,大多会带来严重的经济损失。
振动在设备故障中占了很大比重,是影响设备安全、稳定运行的重要因素。
振动又是设备的“体温计”,直接反映了设备健康状况,是设备安全评估的重要指标。
一台机组正常运行时,其振动值和振动变化值都应该比较小。
一旦机组振动值变大,或振动变得不稳定,都说明设备出现了一定程度的故障。
振动对机组安全、稳定运行的危害主要表现在:(1)振动过大将会导致轴承乌金疲劳损坏。
(2)过大振动将会造成通流部分磨损,严重时将会导致大轴弯曲。
统计数据表明,汽轮发电机组60%以上的大轴弯曲事故就是由于摩擦引起的。
(3)振动过大还将使部件承受大幅交变应力,容易造成转子、联结螺栓、管道、地基等的损坏。
正因为振动对设备安全运行相当重要,人们对振动问题都很重视。
目前大型机组上普遍安装了振动监测系统,并将振动信号投了保护。
振动超标时,保护动作,机组自动停机,从而保证设备的绝对安全。
一、振动分析基本概念振动是一个动态量。
图所示是一种简单的振动形式-简谐振动,即振动量按余弦(或正弦)函数规律周期性地变化,幅值反映了振动大小;频率反映了振动量动态变化的快慢程度;相位反映了信号在t=0时刻的初始状态。
可见,为了完全描述一个振动信号,必须同时知道幅值、频率和相位这三个参数,人们称之为振动分析的三要素。
振动是一个动态变化量。
为了突出反映交变量的影响,振动监测时常取波形中正、负峰值的差值作为振动幅值,又称为峰峰值。
简谐振动是一种简单的振动形式,实际机组上发生的振动比简谐振动要复杂得多。
不管振动多么复杂,由信号分析理论可知,都可以将其分解为若干具有不同频率、幅值和相位的简谐分量的合成。
旋转机械振动分析离不开转速,为了方便和直观起见,常以1x 表示与转动频率相等的频率,又称为工(基)频;以0.5x、2x、3x 等表示与转动频率的0.5 倍、2 倍和3 倍等相等的频率,又称为半频、二倍频、三倍频。
机械振动学基础知识振动系统的模型建立与求解机械振动学是研究物体在受到外界激励或自身激励作用下所发生的振动现象和规律的学科。
在实际工程问题中,振动系统的模型建立与求解是振动学研究的重要内容,也是解决实际振动问题的有效手段。
本文将介绍机械振动学的基础知识,包括振动系统的模型建立和求解方法。
**1. 振动系统的表示方法**振动系统可以通过其质点的位移、速度和加速度等参数来描述。
通常情况下,振动系统可以用一个或多个自由度来描述。
例如,单自由度振动系统是指只有一个质点可以沿一条直线运动的系统,多自由度振动系统是指含有多个质点可以相互作用的系统。
在建立振动系统的数学模型时,需要考虑系统的质点、弹簧、阻尼器等元件之间的相互作用关系。
通过采用牛顿第二定律和动力学理论,可以得到振动系统的运动方程。
根据不同的振动系统类型和具体问题,可以选择不同的模型形式,如单自由度弹簧质点振子模型、单自由度阻尼振动系统模型等。
**2. 模型建立与求解**2.1 单自由度弹簧质点振动系统考虑一个单自由度的弹簧质点振动系统,其质点的位移可以用函数$q(t)$表示。
根据牛顿第二定律和哈克定律,可以得到系统的运动方程:$$m\frac{d^2q}{dt^2} + c\frac{dq}{dt} + kq = F(t)$$其中,$m$为质量,$c$为阻尼系数,$k$为弹簧刚度,$F(t)$为外力。
这是一个二阶常系数线性微分方程,可以通过合适的边界条件和初值条件求解得到系统的位移响应$q(t)$。
2.2 多自由度振动系统对于含有多个自由度的振动系统,可以通过构建每个质点的运动方程,并通过约束等条件得到系统的多自由度振动方程。
通常情况下,可以采用拉格朗日方程或哈密顿原理来描述多自由度振动系统的运动规律,并通过数值方法或解析方法来求解系统的动力学性质。
在实际工程问题中,振动系统的模型建立与求解是解决振动问题的关键步骤。
通过建立准确的振动系统模型,可以有效地预测和分析系统的振动特性,为工程设计和振动控制提供依据。
飞机振动相关知识点总结一、飞机振动的类型飞机振动主要可分为以下几种类型:1.结构振动:包括飞机机身、机翼、机尾等部件在飞行过程中因受到气流、重力和发动机振动等外部力的作用而产生的振动。
2.发动机振动:指飞机发动机在运转时产生的振动,包括旋转部件、振动吸振器、点火系统等部件的振动。
3.空气动力学振动:即因气流对飞机表面、机身等部件的作用而产生的振动,包括颤振、隔音板振动等。
4.舒适性振动:指乘客在飞机内感受到的各种振动,包括起降时的颠簸感、巡航时的轻微震动等。
二、飞机振动的原因1.气动力原因:当飞机在空气中飞行时,会受到气流的作用,从而产生空气动力学振动。
2.发动机原因:飞机发动机在工作过程中会产生振动,这些振动会通过飞机结构传递到整个飞机上。
3.机械原因:飞机的各个部件在运行过程中可能会由于失调、磨损、腐蚀等原因而产生振动。
4.外部环境原因:例如飞机起降时受到的颠簸、气流等外部环境原因也会引起飞机振动。
三、飞机振动的影响飞机振动会对飞机和乘客产生以下影响:1.对飞机结构的影响:过大的振动会使飞机的结构产生疲劳、裂纹等损伤,甚至影响飞机的安全性。
2.对飞机性能的影响:飞机振动会影响飞机的稳定性和操纵性能,降低飞行的舒适性和效率。
3.对乘客的影响:飞机振动会使乘客感到不适或恐慌,影响他们在飞行过程中的体验。
4.对飞机设备的影响:飞机设备在振动环境下容易受到磨损,影响设备的寿命和性能。
四、飞机振动的控制为了有效控制飞机振动,以下几个方面需要重点考虑:1.飞机设计优化:通过在飞机设计阶段对结构、发动机和机翼等部件进行加强和改进,以降低飞机振动的发生和传递。
2.振动监测与诊断:采用数据采集和分析技术,对飞机振动进行实时监测和诊断,及时发现和解决振动问题。
3.飞机维护与保养:定期对飞机进行维护保养,包括各种部件的紧固、温度和振动监测,确保飞机在良好的状态下飞行。
4.振动阻尼和隔振技术:采用振动阻尼装置和隔振技术,将振动能量有效地消耗或隔离,减小飞机振动的传递和影响。
机组振动一、基本概念1.振动:物体偏离平衡位臵,出现动能和位能的连续相互转换的往复运动形式称振动。
受一次冲击力产生的振动——自由振动:受周期性的变化力产生的振动——受迫振动。
2.振动的描述:振幅;频率;相位;方向。
3.振幅:单向振幅——振动极限位臵与平衡位臵之间的距离;双向振幅——振动两极限位臵之间的距离,也称峰—峰值;4.频率:每一秒钟振动的次数;通频——最大振幅的振动频率;基频——振幅最大的正弦振动频率;分频——某一振动中各种正弦振动的频率5.相位:振动信号最大值与转子谋一点的相对位臵;6.方向:横向;轴向;扭转。
二、机组产生振动的原因机组转子受周期性的不平衡力产生受迫振动,产生不平衡力的原因很多,按力的性质可分为:1.不平衡离心力——转子的质量中心与回转中心不重合产生的不平衡离心力或不平衡力矩,周期性变化;2.发电机不平衡的电磁力——转子磁场与静子磁场间不平衡作用力;3.轴承油膜不平衡的作用力4.蒸汽对转子作用的不平衡周向力受迫振动的特点是:振幅大小与激振力成正比;振动频率等于激振力的频率;振动相位于激振力的相位有关;作用在转子上的不平衡力或力矩,不可能完全消除,只能设法减小。
因此,机组的振动不可避免,只要振幅不超过允许值,不影响安全运行。
但轴承支撑刚度不足,可能使振幅放大,原来合格的振动变为不合格。
一般厂家保证:额定转速稳定运行时,轴承座的双振幅值不大于0.025mm,轴颈相对振动的双振幅值不大于0.076mm;在通过临界转速时,各轴承座双振幅值不大于0.08mm,各轴颈相对振动双振幅值不大于0.24mm。
若出现异常振动,表明存在机械故障,影响安全运行。
三、机组振动的危害1.动静部分摩擦、转子弯曲;2.轴承磨损,轴承脱胎;轴承座紧固螺钉松动;3.凝汽器管束和主油泵零件损坏。
4.发电机振动过大,滑环和电刷磨损加剧,静子槽楔松动、绝缘磨损。
四、机组振动的测量——无法测量直接转子的最大振幅过去测量轴承座的振动振幅。