组胚名词解释及答案
- 格式:doc
- 大小:18.00 KB
- 文档页数:3
组胚名词解释组胚是一个生物学术语,也称为伞胚、干细胞胚体或原胚。
它是指一种早期的胚胎状态,即在受精卵经过一系列细胞分裂形成的一团细胞,它并没有具体的组织或器官结构。
组胚通常是一个球形,由约10-32个细胞组成,这些细胞总称为胚细胞。
组胚是多个生物领域中的一个重要概念,在发育生物学、胚胎学和生殖医学等方面都有广泛应用。
在人类的胚胎发育过程中,组胚的形成是在受精卵被放置在子宫之前的早期阶段。
在受精卵内部,卵细胞和精子结合后形成的一维六细胞组胚。
这个早期的胚胎经过继续的细胞分裂,快速地形成一个球形的组胚。
组胚内的细胞可以分化为不同的胚胎细胞系,即胚胎干细胞。
这些胚胎干细胞具有多能性,可以进一步分化为各种器官和组织的细胞,因此被广泛应用于再生医学和干细胞研究领域。
组胚的形成对于生物体的发育至关重要。
它标志着一个生物结构的开始,通过后续的细胞增殖和分化,最终形成了生物体的大小和形状。
在多细胞生物中,组胚是不同类型细胞的前体,并且这些细胞通过相互作用和通信来生成和组织。
通过细胞分裂和细胞移植等技术,科学家可以对组胚进行操作,以研究生物发育的机制和治疗疾病的方法。
组胚是生殖医学中的一个重要概念。
在试管受孕中,医生通常会从女性体内提取卵子并与精子结合,在体外形成组胚。
然后,最健康的组胚将被选择并被植入女性子宫,以促进受孕和胎儿的发育。
通过使用组胚选择和胚胎植入技术,可以帮助那些无法自然受孕的夫妇实现生育。
总之,组胚是一个生物学术语,用来描述在生物发育过程中早期胚胎形成的一团细胞。
它是胚胎的起始阶段,并且在不同的生物学和医学领域中都有广泛应用。
通过研究组胚的形成和发育,我们可以更好地理解生物的生命过程,并且可以应用于生物医学领域的进一步研究和治疗。
闰盘的名词解释组胚一、引言在生物学中,胚胎是指由受精卵一分为二,然后继续分裂和发育而成的早期生物结构。
而组胚则是胚胎发育的一个阶段,它是胚胎由一细胞的受精卵进化为一个多细胞结构的过程。
本文的主要内容将围绕着”闰盘的名词解释组胚”这个任务展开。
首先,我们将对组胚的定义进行详细解释,并介绍组胚的形成过程和相关的分子调控机制。
接着,我们将探讨组胚在生物学研究中的重要意义,并引用一些实际应用的例子。
最后,我们将总结本文的内容。
二、组胚的定义组胚(blastula)是胚胎发育过程中的一个阶段,它是由受精卵经过一系列细胞分裂和细胞移动后形成的多细胞结构。
在组胚阶段,胚胎呈球状或盘状,由内外两层细胞组织构成。
外层细胞组成外胚层,内层细胞则构成内胚层。
组胚阶段通常发生在受精卵分裂为16至64个细胞之后,具体时间根据物种的不同而有所不同。
三、组胚的形成过程组胚的形成是一个复杂而精确的过程,在多细胞生物的发育过程中起着重要的作用。
以下是一个典型的组胚形成的过程:1.受精卵分裂:受精卵在受精后,细胞开始进行连续而快速的分裂,形成一系列的细胞。
2.细胞移动:在分裂的过程中,细胞开始进行移动,沿着一定的方向进行排列。
这个过程被称为胚胎的腹背轴形成。
3.细胞分化:细胞在组胚阶段逐渐分化为不同的类型。
一般来说,外层细胞分化为外胚层细胞,内层细胞则分化为内胚层细胞。
4.产生体轴:组胚的形成还伴随着体轴的产生。
在体轴形成过程中,一些特定的细胞会发育成为神经板,最终形成中枢神经系统。
四、组胚的分子调控机制组胚的形成过程受到多个信号通路和基因网络的调控。
以下是一些重要的分子调控机制:1.Wnt信号通路:Wnt信号通路是组胚形成过程中的关键调节因子之一。
它在组织和器官的形成中起着重要的作用,并参与细胞命运的决定。
2.FGF信号通路:FGF信号通路通过调节细胞增殖和分化来影响组胚的形成。
它可以促进细胞的迁移和多样化,并在早期胚胎发育中发挥重要的作用。
名词解释1.滤泡旁细胞:滤泡旁细胞(parafollicularcell)又称C细胞,成团积聚在浦泡之间,少量镶嵌在滤泡上皮细胞之间,其腔面被滤泡上皮覆盖,HE染色标本下,胞质2.血窦:(1)由于真体腔不发达,微血管和一部分静脉的腔扩大了,而且无血管壁包围,于是便形成了组织间不规则的空隙,血液在空隙流过便成了血窦 .3.小肠绒毛:为固有层和上皮共同凸向肠腔形成的叶状结构,游离在肠腔内的团状结构是绒毛的横切面.4.胶原纤维:细胞外基质的骨架成分,由胶原分子有序排列并相互交联构成的纤维,具有很高的抗张力强度.纤维具有韧性,5.,位于上皮细胞基底面与结缔组织的膜状结构.具有支持连Hassall小体,是胸腺髓质的特征性结构.由数层扁平的胸腺上皮细胞呈.胸腺小体外周的细胞较幼稚,细胞核清晰,胞质嗜酸性;小体中心的细胞胞核消失,已变性解体.7.能,RNA),织红细胞(以下简Retc)是反映骨髓红系造血功能以及判断贫血和相关疾病疗效的重要指标。
8.尼氏体:为嗜碱性物质,又称嗜染质,光镜下呈斑块状或细粒状散在分布.尼氏体由大量平行排列的粗面内质网和其间的游离核糖体组成。
粗面内质网常呈现规则的平行排列,游离核糖体分布于细胞质中。
9.气-血屏障:是肺泡内气体与血液内气体进行交换所通过的结构,包括肺泡表年活性物质,1型肺泡细胞与基膜,薄层疏松结缔组织,毛细血管基膜与内皮。
有的部位无结缔组织,两层基膜融合.气-血屏障很薄,总厚度为0。
2~0.5μm,有利于气体迅速交换。
10.网状纤维:(reticular fiber,纤维较细,有(argyrophilic fiber).11.闰盘:心肌纤维呈短柱状,多数有分支,相互连接成网状。
相邻两心肌纤维的连接处称闰盘(intercalated disc),在HE染色体的标本中呈着色较深的横形或阶梯状粗线。
,其内含有丰富的毛细血管网、大量的弹性纤维及.13.球旁复合体:也称近血管球复合体或肾小球旁器,由球旁细胞,致密斑,球外系膜细胞和极周细胞组成,它们在位置,结构和功能上密切相关,故合为一体.它是一种离子感受器,它能敏感的感受远曲小管内的钠离子浓度,当钠离子浓度降低时,将信息传给球旁细胞,促进球旁细胞分泌肾素。
体节名词解释组胚
组胚是指在生物发育过程中,由单个受精卵或多个细胞通过细胞分裂形成的、具有一定结构和功能的细胞集合体。
在动物的早期胚胎发育阶段,经过一系列细胞分裂和细胞移动,原始细胞逐渐分化为不同类型的细胞,并按照特定的排列方式组织起来,形成各个器官和组织的原始结构。
这些分化和排列的细胞集合体就被称为组胚。
组胚可以看作是胚胎发育过程中的一个重要阶段,它标志着胚胎进入了多细胞组织形成的阶段。
在组胚阶段,胚胎内部已经开始形成胚芽、原肠道、原神经系统等最初的器官和组织结构。
通过细胞分裂和细胞分化,组胚逐渐演化为更加复杂的胚胎结构,最终形成完整的器官系统和身体结构。
组胚的形成和发展对于生物体的正常发育至关重要。
在组胚阶段,细胞之间的相互作用和调控机制起着关键作用,决定了细胞的命运和分化方向。
同时,组胚也为后续的器官发生和组织形成提供了基础,为生物体的正常结构和功能奠定了基础。
总之,组胚是胚胎发育过程中的一个阶段,指由单个受精卵或多个细胞经过细胞分裂和分化,形成具有一定结构和功能的细胞集合体,为生物体的正常发育和器官形成奠定基础。
组胚的名词解释组胚(somatic embryogenesis),指的是在非生殖部位的细胞或组织中形成胚胎发育所需的各种细胞类型的一种过程。
组胚的发生和发育与植物的生长调节、细胞分裂和分化等相关,是一种重要的研究领域,也被广泛应用于植物育种和繁殖技术中。
1. 组胚的起源和类型组胚的起源主要有两种方式:某些植物具有内源性的组胚潜能,即细胞在一定条件下可以启动胚胎发生过程;另一种是通过外源性刺激来诱导细胞分化为胚胎。
根据组胚的发生途径和特点,可以将其分为体细胞组胚和胚乳细胞组胚两种类型。
2. 体细胞组胚体细胞组胚是指在植物非生殖器官的体细胞中形成胚胎的过程。
这是一种广泛存在于植物界的现象,既可以自然发生,也可以通过人工诱导实现。
体细胞组胚一般分为离体培养和原位诱导两种方式。
离体培养是将细胞通过培养基和适当条件刺激,形成愈伤组织或胚性愈伤组织,再进一步培养分化为胚胎。
原位诱导则是在植物体内或组织内施加外部因素(如激素),刺激细胞分化为胚胎。
3. 胚乳细胞组胚胚乳细胞组胚是指通过处理植物种子的胚乳细胞,使其分化为胚胎的过程。
胚乳细胞是种子发育过程中的一部分,主要起供给胚囊内的胚胎发育所需的物质和能量。
在特定条件下,胚乳细胞也可以通过诱导分化为胚胎。
这种方式相对于体细胞组胚来说更为复杂,需要克服多个生理、解剖和遗传障碍。
4. 组胚的应用价值和研究意义组胚技术在植物繁殖和育种中有着广泛的应用价值。
首先,组胚技术可以解决植物繁殖的问题,例如无性繁殖困难的植物品种可以通过体细胞组胚进行大规模繁殖。
其次,组胚技术可以加速植物育种过程,例如通过组胚选育出高产、耐逆的新品种。
此外,组胚技术还有助于植物的遗传改良和基因工程研究,可以通过组胚将外源基因导入到新胚体中,实现基因的转移和转导。
组胚作为一门研究领域,还有许多待解决的问题和深入探索的方向。
例如,如何提高组胚成功率和胚体质量,如何改善胚胎转化和成熟的方式,如何克服遗传背景的限制,等等。
组胚名词解释及简答绪论1.组织:是形态和功能相同或相似的细胞组成的细胞群体,细胞间可有或多或少的细胞外基质。
根据形态结构和功能,人体的组织可分为上皮组织、结缔组织、肌组织和神经组织4种基本组织,这些组织按一定的方式有机组合形成器官。
2.HE染色:为苏木精-伊红染色法的简称,是最常用的组织学染色方法。
苏木精染液为碱性,主要使细胞核内的染色质与胞质内的核糖体着紫蓝色;伊红为酸性染料,主要使细胞质和细胞外基质中的成分着红色。
3.免疫组织化学术:是根据免疫学的原理,通过特异性标记抗体与抗原(某种蛋白质、多肽等)的结合来显示细胞内某种抗原,并进行定位和定量的研究方法。
4.原位杂交术:是根据两条单链核苷酸互补碱基序列专一配对的特点,应用已知碱基序列并具有标记物的RNA或DNA片段即核酸探针,将标记探针与组织切片或细胞内的待测核酸(RNA或DNA片段)进行杂交,通过放射自显影处理或免疫组织化学处理,显示标记物,在光镜或电镜下观察目的mRNA或DNA的存在与定位。
上皮组织四、名词解释1.junctional ple*两种或两种以上的特化的细胞间连接紧挨在一起,即称“连接复合体”,在小肠单层柱状上皮较典型。
2.microvillus 位于上皮细胞游离面,电镜观察由细胞膜和细胞质形成的指状突起,中轴含纵行微丝,微丝与终末网相延续,功能是通过增大细胞的表面积,扩大吸收面积,参与细胞的吸收功能。
3.cilium位于细胞游离面,较微绒毛粗而长,光镜下可见:根部有一个基体。
电镜结构为细胞膜和细胞质组成,胞质中有纵行排列的微管。
周围是9组2联微管,中央为两根单独的微管,每根微管都与胞质中的基体连接,纤毛的功能是能定向摆动,排出上皮表面的尘埃和细菌等物,纤毛的摆动与微管的相互滑动有关4.gap junction缝隙连接又称“通信连接”,是一种大的平板状连接,相邻细胞间隙仅2~3nm,有许多间隔大致相等的连接点,这些连接点是两细胞膜上的镶嵌蛋白相互结合,电镜下由六个亚单位构成,又称连接小体,中央有亲水小管,它是相邻细胞间直通的管道,可供细胞间交换某些小分子物质、离子,传递化学信息,此处电阻低,是电偶联发生的主要部位,广泛存在于多种细胞间。
「组胚」名词解释与简答名词解释(内脏)1.皱襞plica粘膜与粘膜下层共同向消化管腔内得突起,可以就是环形(小肠)、纵形(食管)或不规则形(胃)。
有得就是恒定结构,有得该段消化管扩张时可消失。
2.浆膜serosa由薄层结缔组织与间皮共同构成得薄膜,包括胸膜、腹膜、心包膜与睾丸鞘膜,覆盖在体腔表面或内脏器官外表面。
3.胃底腺fundic gland分布于胃体与胃底部,就是胃粘膜中数量最多,功能最主要得腺体,主要由主细胞与壁细胞构成,分泌胃蛋白酶原与盐酸内因子4.中央乳糜管central chyle在小肠绒毛中轴固有层内有1~2 条毛细淋巴管,称为中央乳糜管。
主要转运肠上皮吸收得脂肪。
5.肝小叶acini hepatis就是肝得结构与功能得基本单位,小叶中央为中央静脉,肝细胞以中央静脉为中心放射状排列成肝板,肝板之间为肝血窦。
肝细胞相邻面得细胞膜局部凹陷,形成胆小管。
6.肝血窦hepatic sinusoid位于肝板之间得血流通道,腔大不规则,窦壁为一层不连续得内皮,窦腔含血液,肝巨噬细胞等。
7.肝巨噬细胞位于肝血窦内,形态不规则,胞质嗜酸,能吞噬与清除血液中得异物、细菌与病毒等有害物质,参与吞噬衰老得红细胞与血小板。
8.窦周隙sinus gap指肝血窦得内皮细胞与肝细胞之间得狭小间隙,含有一种散在贮脂细胞,就是肝细胞与血液之间进行物质交换得场所。
9.肝门管区hepatic portal area就是指相邻几个肝小叶之间得区域,含有较多得结缔组织,并有小叶间胆管、小叶间动脉与小叶间静脉通过。
10.胆小管bile duct就是相邻肝细胞连接面得局部质膜向内凹陷并对接而成得精细小管,在肝板内连结呈网状管道,可收集胆汁。
11.泡心细胞centro-acinar cells胰腺闰管得一端上皮细胞插入腺泡腔内,称为泡心细胞。
其为扁平或立方形细胞,染色浅。
12.胰岛pancreas islet胰腺外分泌部中散在得内分泌细胞团,细胞之间有大量有孔毛细血管。
1、杯状细胞:形似高脚杯,底部狭窄,含深染色核,顶部膨大,充满分泌颗粒。
2、浆半月:混合性腺底部有少量浆液性细胞,在切片中为半月形。
3、微绒毛:上皮细胞的指状突起,扩大细胞的表面积,有利于吸收。
4、缝隙连接:又名通讯连接,细胞间的信息通道,受钙离子的因素的控制。
5、基膜:上皮细胞基底面与深部结缔组织之间共同形成的薄膜。
分基板和网板。
6、软骨陷窝:软骨基质中的腔隙,内含软骨细胞。
7、骨单位:又名哈弗斯系统,(位置)位于内、外环骨板之间,是长骨中起支持作用的主要结构,(形状)由多层同心圆排列的哈弗斯骨板围绕中央管形成。
8、破骨细胞:(位置)散在分布在骨组织边缘,是一种多核的巨细胞,由单核细胞融合成。
(功能)具有很强的融骨、吞噬和消化能力。
9、肌节:横纹肌肌纤维的结构和收缩功能的基本单位,是相邻两Z线间的一段机原纤维,包括:1/2I带+A带+1/2I带。
10、闰盘:相邻肌纤维连接处染色较深处称闰盘。
光镜结构:深染的横行或阶梯状粗线,位于Z线水平。
电镜结构:纵向为缝隙连接,便于细胞间化学信息的交流和电冲动传导,横向为中间连接与桥粒连接,使心肌纤维连接更牢固。
11、视杆细胞:杆状视细胞,具有感光作用,当视紫红质缺乏时会导致夜盲症。
12、视网膜中央凹:视网膜最薄的地方,只有色素上皮和视锥细胞,是视觉最敏锐的部位。
13、螺旋器:又名柯蒂氏器,是膜蜗管基底部膜上呈螺旋状行走的膨大结构,是听觉感受器。
14、肌性动脉:即中动脉,管壁中平滑肌十分丰富,故得名。
15、内弹性膜:中动脉内膜与中膜的交界处的薄膜。
16、血窦:窦状毛细血管,管腔较大,形状不规则,内皮间隙较大,易化大分子进出血液。
主要分布在肝、脾、骨髓和某些内分泌腺。
17、淋巴小结:又名淋巴滤泡,(形态)淋巴组织构的球形小体,(构成)含有大量B细胞、TH细胞、树突状细胞、巨噬细胞等。
(分类)初级淋巴小结和刺激淋巴小结。
18、***胸腺小体:胸腺髓质的特征性结构,缺乏时无法培育T细胞。
组胚重点名词解释1、osteon:(1)、骨单位,即哈夫斯系统,是长骨中起支持作用的主要结构;(2)、位置:位于内、外环骨板之间;(3)、特点:数量多,长筒状,其长轴与骨干长轴平行;(4)、构成:由4~20层呈同心圆排列的哈弗斯骨板围绕中央管构成,中央管内有血管、神经纤维和骨祖细胞等。
2、bone lamella:(1)、骨板;(2)、定义:骨胶原纤维被黏合质黏合在一起并有钙盐沉积的薄板状结构;(3)、特点:内有大量排列的胶原纤维,同一层骨板内的纤维相互平行,而相邻骨板之间的纤维相互垂直;(4)、分类:分为密质骨和松质骨;(5)、功能:增加骨的强度。
3、chondrocyte:(1)、软骨细胞;(2)、位置:包埋在软骨陷窝内;(3)、形态结构:靠近软骨膜的细胞幼稚,单个分布,体积小,呈扁圆形;长轴与软骨平面平行;越靠近软骨中心的细胞越成熟,体积渐大,圆形或椭圆形,成群分布由同一个幼稚软骨细胞分裂而来,故称同源细胞群,细胞核小而圆,可见1~2个核仁,细胞质弱嗜碱性,电镜下可见丰富的粗面内质网和高尔基复合体,线粒体较少。
(4)、功能:产生软骨基质。
4、osteocyte:(1)、骨细胞;(2)、位置:位于骨板之间或骨板内;(3)、形态结构:骨细胞胞体藏于软骨陷窝内,较小,扁椭圆形,骨细胞突起位于骨小管内,相邻骨细胞的突起以缝隙连接相连;(4)、功能:具有一定的成骨和溶骨作用,参与调节钙磷平衡,维持血钙。
5、recirculation of lymphocyte:(1)、淋巴细胞再循环;(2)、定义:周围淋巴器官和淋巴组织内的淋巴细胞经淋巴管进入血液循环,又通过毛细血管后微静脉再回流到淋巴器官或淋巴组织内,如此周而复始,使淋巴细胞从一个淋巴器官到另一个淋巴器官,从一处淋巴组织到另一处淋巴组织,这种现象称为淋巴细胞再循环;(3)、功能:有利于识别抗原,促进免疫细胞间的协作,使分散于全身的免疫细胞成为一个相互关联的统一体。
1.肥大细胞:起源于骨髓,呈圆形或椭圆形,胞质内含有粗大的颗粒和白三烯、组胺、肝素等物质,常见于疏松结缔组织内2.浆细胞:细胞呈圆形或椭圆形,是B淋巴细胞接受抗原刺激后转化而来的。
胞质嗜碱性,核偏向细胞的一侧,内含大量的RER和Glogi复合体3.致密结缔组织:一种以纤维成分为主的固有结缔组织,可分为不规则和规则两种4.单核吞噬细胞系统:单核细胞和其分化而来具有吞噬功能的细胞组成的系统,包括单核细胞、巨噬细胞、破骨细胞、小胶质细胞、肝巨噬细胞、尘细胞5.网织红细胞:细胞内尚残余部分核糖体,用煌焦油蓝染色呈洗网状,故称网织红细胞6.造血干细胞:是生成各种细胞的原始细胞,又称多能干细胞,起源于人的胚第3周初的卵黄囊血岛,出生后,造血干细胞主要存在与红骨髓,其次是脾和淋巴结,外周血也有少量7.造血组织:主要由网状组织和造血细胞组成8.骨单位:是长骨中起支持作用的主要结构,位于内,外环骨板之间,数量多,长筒状,其方向与骨干长轴一致9.骨板:骨质的结构呈板层状,称骨板10.间骨板:位于骨单位之间或骨单位与环骨板之间,是一些形状不规则的平行板,是骨生长和改建过程中哈弗斯骨板或环骨板未被吸收的残留部分11.同源细胞群:靠近软骨中央,细胞较成熟,体积较大,呈圆形或椭圆形,而且多为2-8个聚集在一起,它们一个软骨细胞分裂而来,故称同源细胞群12.软骨陷窝:基质内的小腔称软骨陷窝13.软骨囊:糖胺多糖在基质中的分布不均匀,紧靠软骨陷窝的部位硫酸软骨素较多,此处呈强嗜酸性,形似囊状包围软骨细胞,故此区域称软骨囊14.肌节:相邻两条Z线之间的一段肌原纤维称肌节15.三联体:每条横小管与两侧的终池组成三联体16.闰盘:心肌纤维呈不规则的短圆柱状,有分支,互连成网,连接处染色较深,称闰盘17.肌浆网:肌纤维中特化的滑面内质网,位于横小管之间18.横小管:肌膜向肌浆内凹陷形成的小管--T小管19.终池:纵小管两端扩大呈扁囊状,称终池20.血脑屏障:有些星形胶质细胞末端扩大形成脚板,在脑和脊髓表面形成胶质界膜,或贴附在毛细血管壁上,构成血-脑屏障的神经胶质膜21.运动终板:躯体运动神经末梢的分支形成葡萄状终末,并与骨骼肌纤维建立突起连接,此连接区域呈椭圆形板状隆起,称运动终板22.突触:神经元与神经元之间,或神经元与非神经细胞之间的一种特化的细胞连接,实现细胞与细胞之间的通讯23.尼氏体:尼氏体由许多平行排列的粗面内质网和游离核糖体构成24.运动终板:运动神经元的轴突终末与骨骼肌纤维共同形成的效应器,分布于骨骼肌内,支配肌纤维的收缩。
组胚名词解释组胚是生物学中一个重要的概念,用来描述生物体在发育过程中形成的初始细胞团。
组胚起源于受精卵或一细胞胚胎,通过细胞分裂和分化,最终发展成为一个有功能的多细胞生物。
在生物体的发育过程中,组胚是一个关键的阶段。
它代表了胚胎发育的最初阶段,通过细胞的相互作用和调控,组胚细胞逐渐分化为不同类型的细胞,并形成各种组织和器官。
组胚的形成和分化是一个复杂而精确的过程,涉及到许多生物学上的重要机制。
首先,组胚的形成依赖于细胞分裂。
一细胞胚胎经过连续的有丝分裂,产生了许多细胞,这些细胞逐渐组合在一起,形成了组胚。
这些细胞之间的相互作用和通信是组胚形成的重要驱动力。
例如,一些细胞会分泌信号分子,影响周围细胞的分化方向,从而形成不同类型的细胞。
其次,组胚细胞在发展过程中会发生分化。
分化是指细胞从相对未定向的状态逐渐成为特定类型的细胞,具有特定的形态和功能。
分化的过程受到遗传和环境因素的调控。
通过调控基因表达和细胞内信号传导通路,细胞可以选择不同的分化路径。
例如,在动物胚胎发育过程中,组胚细胞会分化成表皮细胞、神经细胞、肌肉细胞等不同类型的细胞。
另外,组胚细胞还会发生细胞迁移和细胞死亡。
细胞迁移是指细胞从一个位置移动到另一个位置,以形成不同的细胞层和组织结构。
细胞死亡则是在发育过程中,不需要或有损害的细胞会自我引发死亡,以促进整个胚胎的完整性和正常发育。
这些细胞迁移和细胞死亡的过程是组胚形成的重要组成部分。
最后,组胚的形成需要正确的时序和定位。
在整个发育过程中,细胞的分裂、分化、迁移和死亡都需要在特定的时间和位置发生。
这种时序和定位的准确性是非常重要的,对于生物体的正常形态和功能发挥起着关键的作用。
综上所述,组胚是在生物体发育过程中形成的初始细胞团,通过细胞分裂、分化、迁移和死亡等复杂机制,最终发展成为一个功能完整的多细胞生物。
组胚的研究对于理解生物发育过程和疾病发生机制具有重要意义,也为生物医学研究和临床治疗提供了理论基础。
组胚串讲课件名词解释与简答题答案整理1.胚胎学: 研究生物个体发生, 生长及其发育机制的一门科学, 其研究内容主要包括生殖细胞发生, 受精, 胚胎发育过程, 发育规律, 发育机制·胚胎与母体的关系和先天畸形等。
2.HE染色: 将能组织或细胞内的酸性物质染成紫蓝色的苏木清和将组织或细胞内的碱性物质染成粉红色的伊红两种染色法简称为: HE 染色3.内皮: 衬贴在心、血管和淋巴管腔面的单层扁平上皮。
4.间皮: 分布在胸膜、腹膜和心包膜的单层扁平上皮。
5.肌节:在偏振光显微镜下, 明带呈单折光为各向同性:暗带呈双折光, 为各向异性。
暗带中央有一条暗色的窄带。
明带中央有一条深色的细线成为Z线。
相邻的两条Z线之间的一段肌原纤维成为肌节。
6.横小管: 是肌膜向肌质内凹陷的管状结构。
其走向与肌纤维长轴垂直。
7.三联体: 每一条横小管与其两者的终池共同组成8.闰盘: 盘心肌纤维的连接处, 在HE染色的标本中呈着色较深的横行或阶梯状粗线。
9.尼氏体:为嗜碱性物质,又称嗜染质,为光镜下可见的嗜碱性小体或颗粒。
在一些大型的运动神经元,尼氏体大而多,宛如虎皮花纹,又称虎斑小体。
电镜下,尼氏体由大量平行排列的粗面内质网和其间的游离核糖体构成。
是神经元合成蛋白质的部位。
10.神经原纤维:是神经细胞质内的丝状纤维结构。
在银染标本切片中, 呈棕褐色细丝, 交织成网, 并向轴突和树突方向延伸。
神经原纤维由神经丝和微管聚集成束所构成, 神经原纤维构成神经元的细胞骨架, 具有支持作用, 参与细胞内的物质转运。
现细胞之间的通讯。
12.化学突触: 以神经递质为媒介, 单向传导。
由突触前成分、突触后成分与突触间隙组成。
13.动脉周围淋巴鞘:简称为淋巴鞘, 由位于中央动脉周围的淋巴组织构成。
主要含有大量T细胞, 属于胸腺依赖区, 同时含有巨噬细胞、交错突细胞等, 但无毛细血管后微静脉。
14.胃底腺: 分布于胃底和胃体, 为单管状或分支管状腺。
组胚串讲课件名词解释与简答题答案整理1.HE染色:将能组织或细胞内的酸性物质染成紫蓝色的苏木清和将组织或细胞内的碱性物质染成粉红色的伊红两种染色法简称为:HE 染色3.内皮:衬贴在心、血管和淋巴管腔面的单层扁平上皮。
4.间皮:分布在胸膜、腹膜和心包膜的单层扁平上皮。
5.肌节:在偏振光显微镜下,明带呈单折光为各向同性:暗带呈双折光,为各向异性。
暗带中央有一条暗色的窄带。
明带中央有一条深色的细线成为Z线。
相邻的两条Z线之间的一段肌原纤维成为肌节。
6.横小管:是肌膜向肌质内凹陷的管状结构。
其走向与肌纤维长轴垂直。
7. 三联体:每一条横小管与其两者的终池共同组成8.闰盘:盘心肌纤维的连接处,在HE染色的标本中呈着色较深的横行或阶梯状粗线。
9.尼氏体:为嗜碱性物质,又称嗜染质,为光镜下可见的嗜碱性小体或颗粒。
在一些大型的运动神经元,尼氏体大而多,宛如虎皮花纹,又称虎斑小体。
电镜下,尼氏体由大量平行排列的粗面内质网和其间的游离核糖体构成。
是神经元合成蛋白质的部位。
10.神经原纤维:是神经细胞质内的丝状纤维结构。
在银染标本切片中,呈棕褐色细丝,交织成网,并向轴突和树突方向延伸。
神经原纤维由神经丝和微管聚集成束所构成,神经原纤维构成神经元的细胞骨架,具有支持作用,参与细胞内的物质转运。
现细胞之间的通讯。
12.化学突触:以神经递质为媒介,单向传导。
由突触前成分、突触后成分与突触间隙组成。
13.动脉周围淋巴鞘:简称为淋巴鞘,由位于中央动脉周围的淋巴组织构成。
主要含有大量T细胞,属于胸腺依赖区,同时含有巨噬细胞、交错突细胞等,但无毛细血管后微静脉。
14.胃底腺:分布于胃底和胃体,为单管状或分支管状腺。
每个胃底腺分为颈部、体部和底部3部分,由主细胞、壁细胞、颈粘液细胞、干细胞和内分泌细胞组成。
15.皱襞:皱襞是由黏膜和黏膜下层向腔面形成的突起。
16.小肠绒毛:小肠壁的内表面有大量的环形皱襞,皱襞上有许多绒毛状的突起。
17.微绒毛:是上皮细胞游离面的细胞膜和细胞质伸出的微细指状突起。
组胚名词解释组胚是细胞学中的一个重要概念,它是指由多个细胞组成并具有特定功能的结构体。
组胚在生物体发育过程中起着至关重要的作用,决定了生物体的形态和功能。
在本文中,我们将对组胚这一概念进行详细解释,并探讨其在生物学领域的应用。
组胚是由多个细胞通过细胞分裂和细胞分化形成的。
在生物体发育的早期阶段,由受精卵发展而来的胚胎会经历一系列的细胞分裂和分化过程,最终形成一些特定类型的细胞群组织。
这些细胞群组织之间相互协作,相互依赖,最终形成完整的生物体。
组胚的形成过程主要包括以下几个阶段:受精卵的形成、分裂阶段、胚胎期和器官发育期。
在受精卵的形成过程中,精子和卵子结合,形成受精卵。
受精卵随后经历细胞分裂阶段,其中一个细胞会不断分裂形成多个细胞,并同时发生细胞分化现象。
在胚胎期,细胞继续分裂分化,逐渐形成不同的器官和组织。
最后,在器官发育期,组胚中的细胞进一步分化,并形成特定的器官和组织结构。
组胚的发育过程受到许多因素的调控,包括基因表达、细胞信号通路、环境因素等。
在组胚的形成过程中,不同的细胞会通过相互之间的相互作用和信号传递,来决定它们发展成为何种类型的细胞,并最终形成不同的器官和组织。
组胚的研究对于理解生物体发育和疾病发生机制具有重要意义。
通过研究组胚的形成过程和调控机制,科学家可以揭示生物体发育的奥秘,并深入了解疾病的发生和治疗方法。
此外,组胚工程也是一个热门的研究领域,科学家可以通过将细胞进行特定的组合和调控,来培育出特定功能的组织和器官,为医学研究和生物技术的发展提供了新的途径。
总的来说,组胚是生物学中的一个重要概念,它指由多个细胞组成并具有特定功能的结构体。
组胚的形成和发育过程受到许多因素的调控,包括基因表达、细胞信号通路和环境因素等。
组胚的研究对于理解生物体发育和疾病发生机制具有重要意义,并为组织工程和生物技术的发展提供新的思路和方法。
通过深入研究和探索组胚的奥秘,我们可以更好地认识和理解生命的本质。
组胚子宫周期内膜的变化与卵巢激素的关系答:①增生期:卵泡分泌雌激素,上皮细胞和基质细胞不断分裂增生,功能层重新出现;新的表面上皮形成;子宫腺增多;螺旋动脉增长。
②分泌期:黄体分泌的雌激素和孕激素作用下,子宫内膜继续增厚;子宫腺极度弯曲,腺腔膨胀,腺细胞的分泌物有大量糖原;螺旋动脉增长,更加弯曲。
③月经期:雌激素和孕激素水平下降;螺旋动脉持续收缩;功能层全部脱落;子宫腺细胞迅速分裂增生。
卵泡的发育与成熟答:①原始卵泡:数量多,体积小,,由一个初级卵母细胞和周围一层扁平的卵泡细胞组成。
初级卵母为圆形,嗜酸性,核大而圆,着色浅。
胞质中有较多的线粒体,板层状排列的滑面内质网和高尔基体。
②初级卵泡:初级卵母细胞增大,核糖体、粗面内质网等增多。
出现电子致密的溶酶体(皮质颗粒)。
卵泡细胞增生,由扁平变为立方形或柱形,由单层变为多层,出现放射冠和透明带。
③次级卵泡:卵泡细胞增至6—12层,有卵泡腔出现,卵泡液增多,卵泡腔增大,初级卵母细胞、透明带、放射冠及部分卵泡细胞突入卵泡腔形成卵丘;卵泡腔周围的数层卵泡细胞形成卵泡壁(颗粒层)。
④成熟卵泡:初级卵母增大,卵泡液急剧增多,卵泡体积增大,颗粒细胞不再增多,卵泡壁越来越薄。
排卵前36—48小时,初级卵母细胞恢复并完成第一次减数分裂,形成次级卵母细胞和极体。
黄斑:是视网膜后极的一浅黄色区域,正对视轴处,呈横向椭圆形,直径1—3mm,其中央有一浅凹,称中央凹,为视网膜最薄的部分,只有色素上皮和视锥细胞。
为视觉最敏锐的部分。
视杆细胞:细胞细长,核小,染色深,外突呈杆状,内突末端膨大呈小球状。
膜盘与细胞表面胞膜分离而独立,膜盘不断更新,膜盘上的感光蛋白称视紫红质。
当人体维生素A不足,缺乏视紫红质,导致弱光视力减弱,即夜盲症。
视锥细胞:外形叫视杆细胞粗壮,核较大,染色较浅,外突呈圆锥形,内突末端膨大呈足状,膜盘大多与细胞膜不分离。
感光物质称视蛋白,含有红敏色素、绿敏色素和蓝敏色素,缺乏时,可为红(或绿)色盲。
组胚名词解释及大题组胚名词解释1.桥粒(分布、结构和功能)答:桥粒连接区的细胞间隙内有低密度的丝状物,这些丝状物于间隙中央交织形成一条与细胞膜平行且致密的中间线。
细胞膜的细胞质面各有一椭圆形的附着板,由致密物质构成。
附着板上有许多张力丝附着,并常呈袢状返回细胞质。
2.哈弗斯系统(定义、组成)答:又称骨单位,是由哈弗斯骨板和哈弗斯管共同组成的系统。
哈弗斯骨板介于内、外环骨板之间,是骨干密质骨的主要部分,它们以哈弗斯管为中心呈同心圆排列。
哈弗斯管内有血管、神经及少量的结缔组织。
3.网织红细胞(特性、结构特点、数值)网织红细胞是未完全成熟的红细胞,直径略大于成熟红细胞。
用煌焦油蓝做体外活体染色。
可见网织红细胞的细胞质内有染成蓝色的细网或颗粒,它是细胞内残留的核糖体。
在成人网织红细胞占红细胞总数的0.5%-1.5%,新生儿较多,可达3%-6%。
4.肌浆网(定义、结构组成)答:肌纤维内特化的滑面内质网,在相邻的两个横小管之间形成互相通连的小管网,纵行包绕在每条肌原纤维周围,又称纵小管。
肌质网膜上有丰富的钙泵和钙通道。
钙泵能逆浓度差把肌质中的Ca2+泵入肌质网内储存,使其内Ca2+浓度为肌质中上千倍。
当肌质网膜接受兴奋后,钙通道开放,大量Ca2+涌入肌质。
5.尼氏体(光、电镜结构)答:尼氏体在光镜下呈嗜碱性团块状或细粒状物质,电镜下为大量平行排列的粗面内质网和游离核糖体。
6.血-胸腺屏障(定义、组成、功能意义)答:为血液与胸腺皮质间的屏障结构。
主要由以下5层组成:①连续毛细血管内皮;②内皮基膜;③血管周间隙,间隙中可有巨噬细胞等;④胸腺上皮细胞的基膜;⑤最外面包裹一层连续的胸腺上皮细胞。
该结构使血液中的大分子物质很难与胸腺细胞接触,避免引起直接的免疫应答,是保证胸腺细胞发育微环境的结构之一。
给分点:为血液与胸腺皮质间的屏障结构(☆)。
主要由以下5层组成:①连续的毛细血管内皮(☆),内皮间有紧密连接(☆);②内皮外完整的基板(☆);③血管周间隙,间隙中可有巨噬细胞,周细胞、组织液等(☆);④胸腺上皮细胞基板(☆);⑤连续的胸腺上皮细胞(突起) (☆)。
名词解释
1.滤泡旁细胞:滤泡旁细胞(parafollicularcell)又称C细胞,成团积聚在浦泡之间,少量镶嵌在滤泡上皮细胞之间,其腔面被滤泡上皮覆盖,细胞体积较大,在HE染色标本下,胞质稍淡。
用镀银法可见基底部胞质内有嗜银颗粒,颗粒内含有降钙素,以胞吐的方式分泌。
滤泡旁细胞的形态、大小、数量和分布随动物的种属而有差别。
2.血窦:(1)由于真体腔不发达,微血管和一部分静脉的腔扩大了,而且无血管壁包围,于是便形成了组织间不规则的空隙,血液在空隙流过便成了血窦。
3.小肠绒毛:为固有层和上皮共同凸向肠腔形成的叶状结构,游离在肠腔内的团状结构是绒毛的横切面.
4.胶原纤维:细胞外基质的骨架成分,由胶原分子有序排列并相互交联构成的纤维,具有很高的抗张力强度。
胶原纤维在疏松结缔组织中排列成束,彼此交织吻合,纤维束常有分支。
纤维具有韧性,抗牵引力强。
5.基膜:是一种复合的细胞外结构,位于上皮细胞基底面与结缔组织的膜状结构。
具有支持连接作用,亦是物质通透的半透膜。
是细胞外基质的特异区。
6.胸腺小体:或称Hassall小体,是胸腺髓质的特征性结构。
由数层扁平的胸腺上皮细胞呈同心圆状排列而成。
胸腺小体外周的细胞较幼稚,细胞核清晰,胞质嗜酸性;小体中心的细胞胞核消失,已变性解体。
7.是尚未完全成熟的红细胞,在周围血液中的数值可反映骨髓红细胞的生成
RNA),用煌焦油蓝染色时成网状故名网织红细胞。
网织红细胞(以下简Retc)是反映骨髓红系造血功能以及判断贫血和相关疾病疗效的重要指标。
8.尼氏体:为嗜碱性物质,又称嗜染质,光镜下呈斑块状或细粒状散在分布。
尼氏体由大量平行排列的粗面内质网和其间的游离核糖体组成。
粗面内质网常呈现规则的平行排列,游离核糖体分布于细胞质中。
9.气-血屏障:是肺泡内气体与血液内气体进行交换所通过的结构,包括肺泡表年活性物质,1型肺泡细胞与基膜,薄层疏松结缔组织,毛细血管基膜与内皮。
有的部位无结缔组织,两层基膜融合。
气-血屏障很薄,总厚度为0.2~0.5μm,有利于气体迅速交换。
10.网状纤维:(reticular fiber)网状纤维在疏松结缔组织中含量较少,纤维较细,有分支,彼此交织成网状。
用浸银法可将纤维染成黑色,故又称嗜银纤维(argyrophilic fiber)。
11.
闰盘:心肌纤维呈短柱状,多数有分支,相互连接成网状。
相邻两心肌纤维的连接处称闰盘(intercalated disc),在HE染色体的标本中呈着色较深的横形或阶梯状粗线。
12.肺泡隔:是指相邻肺泡之间的间质,其内含有丰富的毛细血管网、大量的弹性纤维及成纤维细胞、肺巨噬细胞和肥大细胞等多种细胞。
13.球旁复合体:也称近血管球复合体或肾小球旁器,由球旁细胞,致密斑,球外系膜细胞和极周细胞组成,它们在位置,结构和功能上密切相关,故合为一体。
它是一种离子感受器,它能敏感的感受远曲小管内的钠离子浓度,当钠离子浓度降低时,将信息传给球旁细胞,促进球旁细胞分泌肾素。
14.微绒毛:亦称细绒毛、绒毛状突起。
是上皮细胞游离面的细胞膜和细胞质伸出的微细指状突起,被细胞膜所包围,直径约0.1微米长度由0.2微米到数微米,广泛地存在于动物细胞中。
15.肌节:在肌原纤维中,两条相邻Z线之间的一段肌原纤维称为肌节,每个肌节由1/2 I带+A带+1/2 I带组成的。
是骨骼肌纤维结构和功能的基本单位。
16.突触:一个神经元与另一个神经元相接触的部位叫做突触。
突触是神经元之间在功能上发生联系的部位,也是信息传递的关键部位。
一个神经元的轴突末梢经过多次分支,最后每一小支的末端膨大呈杯状或球状,叫做突触小体。
这些突触小体可以与多个神经元的细胞体或树突相接触,形成突触。
17.虑过屏障:血液流经血管球毛细血管时,血浆成分滤入肾小囊腔必须经过有孔内皮、血管球基膜和裂孔膜,这三层结构合称为滤过屏障,又称之为滤过膜。
滤过膜对血浆有选择性通透的作用。
18.三联体:三联体主要见于骨骼肌纤维内,由一条横小管及其两侧相邻的肌浆网终池组成,横小管膜与肌浆网膜紧密相贴形成三联体结构。
功能是将肌膜的兴奋经横小管和三联体连接传至肌浆网膜,引起钙泵活动,使肌浆网贮存的钙离子迅速大量释放到肌浆内,为肌丝滑动、肌纤维收缩创造必备条件。
19.致密斑:远曲小管在靠近血管极一侧,上皮由原来单层立方上皮变为单层柱状,且排列紧密,形成的椭圆形斑。
胞质色淡,胞核椭圆形且深染,多位于细胞顶部。
一般认为致密斑是化学感受器,可感受远曲小管滤液内Na+浓度的变化。
20.胚泡:桑椹胚的细胞在子宫腔内继续分裂,细胞数目不断增多,发育到第5天时已有100多个细胞,这时细胞重新排列成泡状,称胚泡或囊胚。
胚泡由三部分构成即①滋养层②胚泡腔③内细胞群。
21.胎盘膜:胎儿血与母体血在胎盘内进行物质交换所通过的结构,称胎盘膜(placental membrane)或称胎盘屏障(placental barrier)。
22.睾丸间质细胞:成群分布在曲精小管之间,胞体呈圆形,椭圆形或不规则形,胞体较大,直径约20μm,胞质呈嗜酸性,细胞核呈圆形或卵圆形,常位于中央,染色较淡,有1~2个核仁。
23.胰岛:pancreatic islets (langerhans)是胰的内分泌部分,是许多大小不等和形状不定的细胞团,散布在胰的各处,胰岛产生的激素成胰岛素,可控制碳水化合物的代谢;如胰岛素分泌不足则患糖尿病。
24.黄体:排卵后残留的卵泡壁塌陷,卵泡膜的结缔组织、毛细血管等伸入到颗粒层,在LH的作用下演变成体积较大,富含毛细血管并具有内分泌功能的细胞团,新鲜时显黄色,称黄体。
为排卵后由卵泡迅速转变成的富有血管的腺体样结构。
25.赫令体:位于脑垂体神经部,是下丘脑视上核和室旁核神经分泌颗粒沿轴突被运输到脑垂体神经部储存,在轴突沿途和终末,分泌颗粒常聚集成团,是轴突呈串珠状膨大,于光镜下呈现为大小不等的弱嗜酸性团块,称赫令体。
26.窦周隙:),又称Disse隙,为肝血窦内皮细胞与肝细胞之间有一狭窄间隙。
由于肝血窦壁的通透性大,所以血浆能经内皮细胞窗孔进入窦周隙。
有贮脂细胞(fat - storing cell),主要贮存维生素A。
27.莱氏细胞:下丘脑分泌的促性腺激素释放激素。
28.中央凹(fovea centralis),是视网膜中视觉(辨色力、分辨力)最敏锐的区域。
以人为例,在视神经盘颞侧约3.5mm处,有一黄色小区,称黄斑(macula lutea),其中央的凹陷,就是中央凹。
29.浦肯野细胞:浦肯野细胞(Purkinje cell)是从小脑皮质发出的唯一能够传出冲动的神经元。
30.泡心细胞:在几个肝小叶之间的区域,结蒂组织较多,其中含有肝动脉,门静脉和肝管的分支,它们分别称为小叶间动脉,小叶间静脉和小叶间胆管,成为门管区。
31.精子形成:精子发生过程中由精细胞转变为精子的变态过程。
32.血-睾屏障:相邻的支持细胞基底部、血管内皮基膜、结缔组织和曲精细管基膜牢固紧密连接组成的屏障结构,可防止精子与免疫系统接触。