不等式的基本性质
- 格式:ppt
- 大小:802.50 KB
- 文档页数:19
不等式的基本性质知识点1 .不等式的定义:a-b>0 a>b, a-b=O a=b, a-b<O L> a<b。
①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
如证明y=x3为单增函数,3 3 2 2 2设x1, X2《(-m,+ m), X<X2, f(x i)_f(X 2)=X1 _X2 =(X1_X2)(X1 +X1X2+X2 )=(X1_X2)[(X l+ -)3+ X22]5 3再由(X什- )2+ X22>0, X1-X2<0,可得 f(X l)<f(X2), ••• f(X)为单增。
2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:(1)a>b三b<a (对称性)(2)a>b, b>c 二a>c (传递性)⑶ a>b = a+c>b+c (c € R)(4) c>0 时,a>b A,ac>bcc<0 时,a>b ac<bc。
运算性质有:(1) a>b, c>d —a+c>b+d。
⑵ a>b>0,c>d>0 ac>bd。
⑶ a>b>0 —a n>b n(n € N, n>1)。
⑷ a>b>0= 川>w (n € N, n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“ ”和“ ”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
不等式的性质不等式的基本性质各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢不等式的性质不等式的性质1.不等式的基本性质:性质1:如果a>b,b>c,那么a>c(不等式的传递性).性质2:如果a>b,那么a+c>b+c(不等式的可加性).性质3:如果a>b,c>0,那么ac>bc;如果a>b,cd,那么a+c>b+d.性质5:如果a>b>0,c>d>0,那么ac>bd.性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.例1:判断下列命题的真假,并说明理由.若a>b,c=d,则ac2>bd2;(假)若,则a>b;(真)若a>b且abb;(真)若|a|b2;(充要条件)命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.a,b∈R且a>b,比较a3-b3与ab2-a2b 的大小.(≥)说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.练习:1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)3.判断下列命题的真假,并说明理由.(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)若a>b,c>d,则a-d>b-c.(真).各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
不等式的基本性质
不等式的基本性质
不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘
法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。
一、不等式的基本性质
1.如果x>y,那么y<X;如果Yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减
去同一个整式,不等号方向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0
的整式,不等号方向不变;
5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同一个小于0
的整式,不等号方向改变;<>
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N
次幂(N为负数)。
< p>
二、不等式的基本性质的另一种表达方式
1.对称性;
2.传递性;
3.加法单调性,即同向不等式可加性;
4.乘法单调性;
5.同向正值不等式可乘性;
6.正值不等式可乘方;
7.正值不等式可开方;
8.倒数法则。
如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。
3.1 不等式的基本性质 目标:不等式的基本性质一.不等式的性质不等式的证明和不等式的求解都离不开对不等式的性质的灵活运用,在不等式这一章中,不等式的性质有着极其重要的地位,不等式的性质归纳起来,主要有下面八条性质和三条推论: 性质1.(对称性)a b b a <⇐⇒>;性质2.(传递性)若b a >,c b >⇒c a >;性质3.(移项法则)若b a >⇐⇒c b c a +>+;性质4. 若b a >,0>c ⇒bc ac >;若b a >,0<c ⇒bc ac <;性质5.(同向不等式可以相加)若b a >,d c >⇒d b c a +>+;性质6.(正的同向不等式可以相乘)若0>>b a ,0>>d c ⇒bd ac >;性质7. 若0>>b a ⇒nn b a >, )2,(*≥∈n N n ;性质8. 若0>>b a ⇒n n b a >,)2,(*≥∈n N n ;二.典型例题1.若c b a >>,且0=++c b a ,则 ( ) A.ac ab > B.bc ac > C.bc ab > D.不同于A,B,C 的结论2.已知0<a ,01<<-b ,则 ( )A.2ab ab a >>B.a ab ab >>2C.2ab a ab >>D.a ab ab >>23.若0<<b a ,则下列不等式中不能成立的是 ( ) A.ba 11> B.ab a 11>- C.||||b a > D.b a )21()21(>4.给出下列命题:①如果b a >,那么c b c a ->- ②如果b a >,那么cbc a > ③如果bc ac <,那么b a < ④如果22bc ac >,那么b a >其中真命题的个数是 ( ) A.0个 B.1个 C.2个 D.3个5.设n m y x ,,,是互不相等的正数,且n m y x +=+,n m y x -<-<0,则以下结论正确的是 ( ) A.mn xy >且y n m x >>> B.mn xy >且n y x m >>> C.mn xy <且y n m x >>> D.mn xy <且n y x m >>>6.判断下列命题正确与否.①若b a >,则22bc ac > . ②若22cb c a >,则b a > . ③若b a >,0≠ab ,则ba 11< . ④若b a >,dc >,则bd ac >.⑤若b a >,d c >,则d b c a ->- ⑥bc ac >,则b a >⑦若0<<b a ,则1<b a . ⑧若0<<b a ,则ba 11<.7. 若βα,满足22πβαπ<<<-,则βα-的取值范围是 ( )A.πβαπ<-<-B.0<-<-βαπC.22πβαπ<-<-D.02<-<-βαπ8.已知0>>>y x c ,求证 yc y x c x ->- .9.设1≥x ,比较3x 与12+-x x 的大小.10.已知 0>a ,0222=+-c ab a ,2a bc >,试比较a 、b 、c 的大小.12.已知 6012<<a ,3615<<b ,求b a -及ba的取值范围.13.已知二次函数)(x f y =的图象经过原点且 2)1(1≤-≤f , 4)1(3≤≤f ,求)2(-f 的取值范围 .。
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
简述不等式的4个基本性质
不等式的基本性质:1、在一个区间上可导,在另一个区间上也可导;2、对于任何实数,都存在至少一个解析式;3、当不等式两边同时乘以或除以一个常数时,所得结果仍然是不等式。
4、如果有增根,那么它们互为相反数。
不等式的解题思路:首先要弄清楚该不等式左右两边到底是什么关系,因此必须从函数的角度考虑问题,即把不等式转化成一般形式,然后再利用各种方法进行求解。
由于不等号两边的关系较复杂,建议大家通过举例来理解和掌握。
在做题过程中,应注意分类讨论的作用,多联想一些与之有关的知识点,能起到事半功倍的效果。