1.中国古代数学著作《算法统宗》中有这样一个问题三
- 格式:doc
- 大小:337.00 KB
- 文档页数:3
1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378 里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6 天后到达目的地.”则该人最后一天走的路程为A.24里B.12里C.6里D.3里2.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:几日相逢?A.12日B.16日C.8日D.9日3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等. 问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列. 问五人各得多少钱?”(“钱”是古代的一种重量单位). 这个问题中,甲所得为 A.45钱 B.35钱 C.23钱 D.34钱 4.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体. 它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是A.a ,bB.a ,cC.c ,bD.b ,d5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺331寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺π≈3),则圆柱底面周长约为A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺6.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤. 问依次每一尺各重几斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为A.6斤B.9斤C.10斤D.12斤7.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是DCBA8.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”愿意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为()A. B. C. D.9.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图8,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”。
专题九数学文化数学文化至今并没有一个得到学术界广泛认同的定义,但不少学者理解如下:指数学的思想、精神、方法、观点以及它们的形成和发展;除此之外,还包含数学家、数学史、数学美、数学教育、数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系.考点1:数列1.《算法统综》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有()盏灯.A.14B.12C.10D.82.中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到的目的地,那么第二天走了()A.192里B.96里C.48里D.24里3.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第1天长高3尺,莞草第1天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同.(结果采取“只入不舍”的原则取整数,相关数据:l g3≈0.4771,l g2≈0.3010).34.我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四个节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是()A.五寸B.二尺五寸C.三尺五寸D.四尺五寸5.《九章算术》中有一题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何.其意思是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿五斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”若按此比例偿还,牛、马、羊的主人各应赔偿多少粟?在这个问题中,牛主人比羊主人多赔偿()A.斗粟B.斗粟C.斗粟D.斗粟6.《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为:已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列,问五人各得多少钱?(“钱”是古代的一种重量单位)在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱7.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.B.C.D.8.我国南宋数学家杨辉所著的《详解九章算法》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角”.现将杨辉三角中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为S n,如S1=1,S2=2,S3=2,S4=4,…,则S126=________.64考点2:立体几何1.古代著名的数学书籍《九章算术》中,将底面为矩形,同时有一条侧棱与底面垂直的四棱锥称为“阳马”.已知阳马中,平面为底面,,若阳马的五个顶点都在某一球面上,该球的体积为_______.2.《九章算术》中,将底面为矩形,同时有一条侧棱与底面垂直的四棱锥称为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,三棱锥的四个顶点都在球的球面上,则球的表面积为________.3.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么,近似公式相当于将圆锥体积公式中的π近似取为()A.B.C.D.4.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在登高处的截面积恒相等,则体积相等.设为两个同高的几何体,的体积不相等,在等高处的截面积不恒相等,根据祖暅原理可知,是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.中国有悠久的金石文化,印信是金石文化的代表之一。
一元一次方程强化训练一、选择题1.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A. 102里B. 126里C. 192里D. 198里2.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家()A. 亏损8元B. 赚了12元C. 亏损了12元D. 不亏不损3.下列运用等式性质进行变形:①如果,那么;②如果,那么;③由,得;④由,得,其中正确的有()A. 1个B. 2个C. 3个D. 4个4.一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.()A. 10B. 25C. 30D. 355.在解方程时,去分母后正确的是()A. B. C. D.6.下列变形中错误的是()A. 若x=y,则x+a=y+aB. 若mx=my,则x=yC. 若x+a=y+a,则x=yD. 若x=y,则mx=my7.下列等式变形,正确的是()A. 如果x=y,那么=B. 如果ax=ay,那么x=yC. 如果S=ab,那么a=D. 如果x=y,那么|x-3|=|3-y|8.对于两个不相等的有理数a,b,我们规定符号max{a,b}表示a,b两数中较大的数,例如max{2,4}=4.按照这个规定,那么方程max{x,-x}=2x+1的解为()A. -1B.C. 1D. -1或9.关于的一元一次方程的解为,那么关于的一元一次方程的解为()A. B. C. D.10.如果单项式-xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A. x=1B. x=-1C. x=2D. x=-211.若x=1是方程-2mx+n-1=0的解,则2019+n-2m的值为()A. 2018B. 2019C. 2020D. 2019或202012.下列各个变形正确的是()A. 由=1+去分母,得2(2x-1)=1+3(x-3)B. 方程-=1可化为-=1C. 由2(2x-1)-3(x-3)=1去括号,得4x-2-3x-9=1D. 由2(x+1)=x+7去括号,移项,合并同类项,得x=513.下列变形正确的是()A. 由5x=2x-3,移项得5x-2x=3B. 由,去分母得2(2x-1)=1+3(x-3)C. 由2(2x-1)-3(x-3)=1,去括号得4x-2-3x-9=1D. 把中的分母化为整数得14.王涵同学在某月的日历上圈出了三个数a,b,c,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是()A. B. C. D.15.王涵同学在解关于的方程时,误将看作,得方程的解为,那么原方程的解为()A. B. C. D.16.小南在解关于x的一元一次方程时,由于粗心大意,去分母时出现漏乘错误,把原方程化为3x-m=2,并计算得解为x=1.则原方程正确的解为()A. B. x=1 C. D.17.关于x的方程ax+3=4x+1的解为正整数,则整数a的值为()A. 2B. 3C. 1或2D. 2或318.解方程=-1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是()A. x=-3B. x=-2C. x=D. x=二、填空题19.如果方程(m-1)x2|m|-1+2=0是一个关于x的一元一次方程,那么m的值是______.20.若代数式4x-5的值与7互为相反数,则x的值是______.21.若(3-m)x|m|-2-1=0是关于x的一元一次方程,则m的值为______.三、计算题(本大题共4小题,共24.0分)22.关于x的方程=-x与方程4(3x-7)=19-35x有相同的解,求m的值.23.解方程:(1)3x-7(x-1)=5-2(x+3);(2)x-=2-.24.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?25.某工厂车间有22名工人,每人每天可以生产12个甲种零部件或15个乙种零部件,已知2个甲种零部件需要配3个乙种零部件,为使每天生产的甲、乙两种零部件刚好配套,车间应该分配生产甲种零部件和乙种零部件的工人各多少名?四、解答题26.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如表:进价(元/件)售价(元/件)A2530B3545(1)A、B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?27.列方程式应用题.天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.请问:哪种方案获利更多?获利多少元?28.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款______元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款______元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?29.已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是______;当点P运动到AB的中点时,它所表示的数是______.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?30.关于的方程的解与的解互为相反数,求的值。
一元一次方程一、单选题(28分)1.(2分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()2.(2分)若关于x的一元一次方程2x−k−x−3k=1的解是x=-1,则k的值是()3.(2分)下列变形正确的是()4.(2分)已知x=2是关于x的方程x-7m=2x+5的解,则m的值是()5.(2分)下列各式变形正确的是()6.(2分)若关于x的方程2x+a-4=0的解是x=-2,则a的值等于()7.(2分)若关于x的方程2x+a-4=0的解是x=-2,则a的值等于()8.(2分)今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,如果设妹妹今年x岁,那么可列方程为()9.(2分)已知下列方程:① x-2=2;② 0.3x=1;③=5x-1;④x2-4x=3;⑤x=6;⑥x+2y=0.x其中一元一次方程的个数是()10.(2分)将正整数1至2 018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()11.(2分)我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天,大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()797912.(2分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.13.(2分)我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭和大雁分别从南海和北海同时起飞,经过x天相遇,可列方程为()14.(2分)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()二、填空题(14分)15.(2分)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m3,每立方米收费2元;若用水超过20 m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.16.(2分)若关于x的方程mx2+(2−m)x+3=0的解是x=2,则m= .17.(2分)已知关于x的一元一次方程2(x-1)=m-3的解为x=m,则m= .=x-2的解为.18.(2分)方程:x−3219.(2分)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.20.(2分)一个多项式加上-x2+x-2得x2-1,则此多项式应为.21.(2分)按下面的程序计算,若开始输入的值x为正数,最后输出的结果为15,则满足条件的x的值分别有.三、解答题(58分)22.(2分)从2016年1月1日开始,北京市居民生活用气阶梯价格制度正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小锋一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用200立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用400立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?23.(2分)解方程:(1)x−1−x3=x+26−1.(2)0.4x+0.90.5−0.03+0.02x0.03=x−52.24.(2分)2-3x+12=2x+35.25.(2分)3(x-2)-2=x-(2x-2).26.(2分)6x+13=4x+37.27.(2分)我们规定,若关于x的一元一次方程ax=b的解为b-a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4-2,则该方程2x-4是差解方程.(1)判断3x=4.5是否是差解方程.(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.28.(2分)解答:(1)若|x+5|=2,则x=.(2)代数式|x−1|+|x+3|的最小值为,当取此最小值时,x的取值范围是.(3)解方程:|2x+4|−|x−3|=9.29.(2分)如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A、B、C、D对应的数分别为整数a、b、c、d,且d−2a=5.试问:数轴上的原点在哪一点上?30.(2分)解方程.(1)-1=2−3x.3(2)-5x+116=1+2x−43.31.(4分)如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d-2a=14.(1)那么a= ,b= .(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持AB=23AC.当点C运动到-6时,点A对应的数是多少?32.(4分)A、B两地分别有水泥20吨和30吨,C、D两地分别需要水泥15吨和35吨;已知从A、B到C、D的运价如下表:(1)若从A地运到C地的水泥为x吨,则用含x的式子表示从A地运到D地的水泥为吨,从A地将水泥运到D地的运输费用为元.(2)用含x的代数式表示从A、B两地运到C、D两地的总运输费用,并化简该式子.(3)当总费用为545元时水泥该如何运输调配?33.(4分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本.(2)求商店获得的利润.34.(4分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?35.(4分)动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度.(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置.(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:经过几秒钟,A、B两点之间相距4个单位长度?36.(4分)在数轴上,点A表示数a,点B表示数b,已知a、b满足(3a+b)2+|b-6|=0,(1)求a、b的值.(2)若在数轴上存在一点C,使得C到B的距离是C到A的距离的3倍,求点C表示的数.(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.37.(4分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.38.(4分)如果关于x的方程2x−35=23x-3与3n-14=3(x+n)-2n的解相同,求(n-358)2的值.39.(4分)超市用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(1)设进A商品x件,则进A商品花元,购B商品花元,那么购进B商品件.(2)求超市购进A、B两种商品各多少件.(3)超市第二次以原进价购进A、B两种商品,购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原销售价出售,而B种商品打折出售,若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最多只能打几折?40.(4分)如图,数轴上A、B两点对应的有理数分别为20和30,点O表示原点,点P和点Q分别同时从点A和点O出发,以每秒2个单位长度,每秒4个单位长度的速度向数轴正方向运动,设运动时间为t秒.(1)当t=2时,则P、Q两点对应的有理数分别是;PQ= .(2)点C是数轴上点B左侧一点,其对应的数是x,且CB=2CA,求x的值.(3)在点P和点Q出发的同时,点R以每秒8个单位长度的速度从点B出发,开始向左运动,遇到点Q后立即返回向右运动,遇到点P后立即返回向左运动,与点Q相遇后再立即返回,如此往返,直到P、Q两点相遇时,点R停止运动,求点R运动的路程一共是多少个单位长度?点R停止的位置所对应的数是多少?一元一次方程答案一、单选题(28分)1.(2分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()【答案】C2.(2分)若关于x的一元一次方程2x−k−x−3k=1的解是x=-1,则k的值是()【答案】B3.(2分)下列变形正确的是()【答案】D4.(2分)已知x=2是关于x的方程x-7m=2x+5的解,则m的值是()【答案】A5.(2分)下列各式变形正确的是()【答案】A6.(2分)若关于x的方程2x+a-4=0的解是x=-2,则a的值等于()【答案】D7.(2分)若关于x的方程2x+a-4=0的解是x=-2,则a的值等于()【答案】D8.(2分)今年哥哥的年龄是妹妹年龄的2倍,四年前哥哥的年龄是妹妹年龄的3倍,如果设妹妹今年x岁,那么可列方程为()【答案】B9.(2分)已知下列方程:① x-2=2;② 0.3x=1;③=5x-1;④x2-4x=3;⑤x=6;⑥x+2y=0.x其中一元一次方程的个数是()【答案】B10.(2分)将正整数1至2 018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()【答案】D11.(2分)我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天,大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()【答案】C12.(2分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【答案】A13.(2分)我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭和大雁分别从南海和北海同时起飞,经过x天相遇,可列方程为()【答案】D14.(2分)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()【答案】C二、填空题(14分)15.(2分)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m3,每立方米收费2元;若用水超过20 m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.【答案】2816.(2分)若关于x的方程mx2+(2−m)x+3=0的解是x=2,则m= .【答案】−7217.(2分)已知关于x的一元一次方程2(x-1)=m-3的解为x=m,则m= .【答案】-1=x-2的解为.18.(2分)方程:x−32【答案】x=119.(2分)文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.【答案】48620.(2分)一个多项式加上-x2+x-2得x2-1,则此多项式应为.【答案】2x2-x+121.(2分)按下面的程序计算,若开始输入的值x为正数,最后输出的结果为15,则满足条件的x的值分别有.【答案】7,3,1三、解答题(58分)22.(2分)从2016年1月1日开始,北京市居民生活用气阶梯价格制度正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28元/m3收费,超过350立方米的部分按2.5元/m3收费.小锋一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用200立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用400立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?【答案】(1)解:如果他家2016年全年使用300立方米天然气,那么需要交天然气费2.28×200=456(元).(2)解:如果他家2016年全年使用400立方米天然气,那么需要交天然气费:2.28×350+2.5×(400-350)=798+125=923(元).(3)解:∵2.28×350+2.5×(500-350)=1173,1173<1563,∴小锋家2016年所用天然气超过了500立方米.设小锋家2016年用了x立方米天然气.根据题意得 2.28×350+2.5×(500-350)+3.9(x-500)=1563,即1173+3.9(x-500)=1563,移项,得 3.9(x-500)=390,系数化1得x-500=100,移项,得x=600.答:小锋家2016年用了600立方米天然气.23.(2分)解方程:(1)x−1−x3=x+26−1.(2)0.4x+0.90.5−0.03+0.02x0.03=x−52.【答案】(1)解:去分母得:6x-2+2x=x+2-6,解得:x=-27.(2)解:方程整理得:4x+95−3+2x3=x−52,去分母得:24x+54-30-20x=15x-75,解得:x=9.24.(2分)2-3x+12=2x+35.【答案】解:由原方程,得20-5(3x+1)=2(2x+3),20-15x-5=4x+6,-15x-4x=6+5-20,-19x=-9,x=919.25.(2分)3(x-2)-2=x-(2x-2).【答案】解:3(x-2)-2=x-(2x-2)3x-6-2=x-2x+2,3x-x+2x=2+2+6,4x=10,x=52.26.(2分)6x+13=4x+37.【答案】解:6x+13=4x+376x-4x=37-13,2x=24,x=12.27.(2分)我们规定,若关于x的一元一次方程ax=b的解为b-a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4-2,则该方程2x-4是差解方程.(1)判断3x=4.5是否是差解方程.(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.【答案】(1)解:∵3x=4.5,∴x=1.5,∵4.5-3=1.5,∴3x=4.5是差解方程.(2)解:∵关于x的一元一次方程5x=m+1是差解方程,∴m+1-5=m+15,解得:m=214.故m的值为214.28.(2分)解答:(1)若|x+5|=2,则x=.(2)代数式|x−1|+|x+3|的最小值为,当取此最小值时,x的取值范围是.(3)解方程:|2x+4|−|x−3|=9.【答案】(1)-3或-7(2)4 −3≤x≤1(3)解:当x≤−2时,原方程可化为:−2x−4+x−3=9,解得:x=−16;当x≥3时,原方程可化为:2x+4−x+3=9,解得:x=2,与x≥3不符;当−2<x<3时,原方程可化为:2x+4+x−3=9,解得:x=83.综上所述,方程的解为:x=−16或x=83.29.(2分)如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A、B、C、D对应的数分别为整数a、b、c、d,且d−2a=5.试问:数轴上的原点在哪一点上?【答案】解:由题意知d=a+3,∵d−2a=5,∴a+3−2a=5,解得:a=−2.∴数轴上的原点在点C上.30.(2分)解方程.(1)-1=2−3x3.(2)-5x+116=1+2x−43.【答案】(1)解:去分母得3(x+1)-6=2(2-3x)3x+3-6=4-6x9x=7x=.(2)解:去分母得3x-(5x+11)=6+2(2x-4)去括号得3x-5x-11=6+4x-8移项得3x-5x-4x=6-8+11合并同类项得-6x=9系数化为1得x=-.31.(4分)如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d-2a=14.(1)那么a= ,b= .(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A 、B 两点以(2)中的速度同时向数轴的负方向运动,点C 从图上的位置出发也向数轴的负方向运动,且始终保持AB=23AC .当点C 运动到-6时,点A 对应的数是多少? 【答案】(1)-6 -8(2)解:由(1)可知:a=-6,b=-8,c=-3,d=2,点A 运动到D 点所花的时间为83,设运动的时间为t 秒,则A 对应的数为2-3(t-83)=10-3t ,B 对应的数为:-8+4(t-1)=4t-12,当A 、B 两点相遇时,10-3t=4t-12,t=227,∴4t-12=47. 答:这个点对应的数为47.(3)解:设运动的时间为t ,A 对应的数为:-6-3t ,B 对应的数为:-8-4t ,∴AB=|-6-3t-(-8-4t)|=|t+2|=t+2.∵AB=23AC .∴AC=32AB=32t+3.∵C 对应的数为-6,∴AC=|-6-(-6-3t)|=|3t|=32t+3,①当3t=32t+3,t=2;②当3t+32t+3=0,t=-23,不符合实际情况.∴t=2,∴-6-3t=-12.答:点A 对应的数为-12.32.(4分)A 、B 两地分别有水泥20吨和30吨,C 、D 两地分别需要水泥15吨和35吨;已知从A 、B 到C 、D 的运价如下表:(1)若从A 地运到C 地的水泥为x 吨,则用含x 的式子表示从A 地运到D 地的水泥为 吨,从A 地将水泥运到D 地的运输费用为 元.(2)用含x 的代数式表示从A 、B 两地运到C 、D 两地的总运输费用,并化简该式子.(3)当总费用为545元时水泥该如何运输调配?【答案】(1)(20-x) (240-12x)(2)解:根据题意得出:15x+12(20-x)+10(15-x)+9[35-(20-x)]=2x+525.(3)解:由(2)得,2x+525=545,解得:x=10,即从A 地运到C 地10吨,从A 地运到D 地10吨,从B 地运到C 地5吨,从B 地运到D 地25吨.答:应该从A 地运到C 地10吨,从A 地运到D 地10吨,从B 地运到C 地5吨,从B 地运到D 地25吨.33.(4分)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本.(2)求商店获得的利润.【答案】(1)解:设每套课桌椅的成本为x 元,根据题意得:60×100-60x=72×(100-3)-72x,解得:x=82.答:每套课桌椅的成本为82元.(2)解:60×(100-82)=1080(元).答:商店获得的利润为1080元.34.(4分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【答案】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.35.(4分)动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3:2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度.(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置.(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:经过几秒钟,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2.答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒.(2)解:3×3=9,2×3=6,如图所示:∴运动到3秒钟时,点A表示的数为-9,点B表示的数为6.(3)解:设运动的时间为t秒.当A、B两点向数轴正方向运动时,有|3t-2t-15|=4,解得:t1=11或t2=19;当A、B两点相向而行时,有|15-3t-2t|=4,解得:t3=115或t4=195.答:经过115、195、11或19秒,A、B两点之间相距4个单位长度.36.(4分)在数轴上,点A表示数a,点B表示数b,已知a、b满足(3a+b)2+|b-6|=0,(1)求a、b的值.(2)若在数轴上存在一点C,使得C到B的距离是C到A的距离的3倍,求点C表示的数.(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.【答案】(1)解:∵(3a+b)2+|b-6|=0,∴{3a+b=0b−6=0,解得:a=-2,b=6.(2)解:设点C表示的数是x,①当点C在A、B之间时,3[x-(-2)]=(6-x),解得x=0;②当点C在A点的左侧时,3[x-(-2)]=(x-6),解得x=-6.综上所述,点C表示0或-6.(3)解:①甲、乙两球均向左运动,即0≤t≤3时,此时OA=2+t,OB=6-2t,则可得方程2+t=6-2t,解得t=43;②甲继续向左运动,乙向右运动,即t>3时,此时OA=2+t,OB=2t-6,则可得方程2+t=2t-6,解得t=8.答:甲、乙两小球到原点的距离相等时经历的时间为43秒或8秒.37.(4分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【答案】解:设城中有x户人家,依题意得:x+x3=100解得x=75.答:城中有75户人家.38.(4分)如果关于x的方程2x−35=23x-3与3n-14=3(x+n)-2n的解相同,求(n-358)2的值.【答案】解:由方程2x−35=23x-3可得:3(2x-3)=10x-45,解得:x=9,由题意可知x=9是方程3n-14=3(x+n)-2n的解,则3n-14=3(9+n)-2n,解得:n=1098,当n=1098时,(n-358)2=102=100,即(n-358)2的值是100.39.(4分)超市用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(1)设进A商品x件,则进A商品花元,购B商品花元,那么购进B商品件.(2)求超市购进A、B两种商品各多少件.(3)超市第二次以原进价购进A、B两种商品,购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原销售价出售,而B种商品打折出售,若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最多只能打几折?【答案】(1)1200x 360000-1200x 360-1.2x(2)200和120(3)解:根据(2)可知:第二次购进A种商品400件,购进B种商品120件.设B种商品最多打y折,-1000)×120=81600,根据题意得:(1380-1200)×400+(1200×y10解得:y=9.答:B种商品最多只能打9折.40.(4分)如图,数轴上A、B两点对应的有理数分别为20和30,点O表示原点,点P和点Q分别同时从点A和点O出发,以每秒2个单位长度,每秒4个单位长度的速度向数轴正方向运动,设运动时间为t秒.(1)当t=2时,则P、Q两点对应的有理数分别是;PQ= .(2)点C是数轴上点B左侧一点,其对应的数是x,且CB=2CA,求x的值.(3)在点P和点Q出发的同时,点R以每秒8个单位长度的速度从点B出发,开始向左运动,遇到点Q后立即返回向右运动,遇到点P后立即返回向左运动,与点Q相遇后再立即返回,如此往返,直到P、Q两点相遇时,点R停止运动,求点R运动的路程一共是多少个单位长度?点R停止的位置所对应的数是多少?【答案】(1)24和8 16(2)解:∵CB=2CA,∴30-x=2(x-20)或30-x=2(20-x),∴x=70或10.3(3)解:设t秒后P、Q相遇.则有4t-2t=20,∴t=10.∴R运动的路程一共是8×10=80.此时P、Q、R在同一点,所以点R的位置所对应的数是40.。
一、等比数列选择题1.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 2.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .20073.若1,a ,4成等比数列,则a =( ) A .1B .2±C .2D .2-4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里5.设n S 为等比数列{}n a 的前n 项和,若110,,22n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4⎛⎤ ⎥⎝⎦B .20,3⎛⎤ ⎥⎝⎦C .30,4⎛⎫ ⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭6.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40B .81C .121D .2427.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2058.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( )A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T9.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4B .5C .4或5D .5或610.已知等比数列{}n a 的前5项积为32,112a <<,则35124a a a ++的取值范围为( ) A .73,2⎡⎫⎪⎢⎣⎭B .()3,+∞C .73,2⎛⎫ ⎪⎝⎭D .[)3,+∞11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .1613.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152B .142C .132D .12214.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009B .1010C .1011D .202015.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6B .7C .8D .916.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102317.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏18.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2B .3C .4D .519.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-20.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )A .3B .12C .24D .48二、多选题21.题目文件丢失!22.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( )A .数列|n S n ⎧⎫⎨⎬⎩⎭为等差数列B .数列{}2na 为等比数列C .若,()m n a n a m m n ==≠,则0m n a +=D .若,()m n S n S m m n ==≠,则0m n S += 23.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 24.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( ) A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++25.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍26.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍27.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202010a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值28.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N ++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列 B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=29.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{}21na n +的前n 项和为,n S 则( ) A .12a =B .221n a n =- C .21n nS n =+ D .1n n S na +=30.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S31.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =32.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <33.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 1034.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( ) A .数列n S n ⎧⎫⎨⎬⎩⎭的前10项和为100 B .若1,a 3,a m a 成等比数列,则21m = C .若111625ni i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则116m n+的最小值为2512【参考答案】***试卷处理标记,请不要删除一、等比数列选择题1.C 【分析】根据题意,由等比数列的通项公式,以及题中条件,即可求出结果. 【详解】因为三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以q =所以111111k k n n k a a a a a ---⎛⎫ ⎪⎛== ⎭⎝⎝1111n k k n n na a----==⋅ 故选:C. 2.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 3.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 4.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 5.A 【分析】设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1102n q -⨯>,1(1)221n q q-<-,即可求出参数q 的取值范围;【详解】解:设等比数列{}n a 的公比为q ,依题意可得1q ≠. 110,2n a a >=,2n S <, ∴1102n q -⨯>,1(1)221n q q-<-, 10q ∴>>. 144q ∴-,解得34q. 综上可得:{}n a 的公比的取值范围是:30,4⎛⎤ ⎥⎝⎦.故选:A . 【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 6.C 【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【详解】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =, 所以()5515113121113a q S q--===--, 故选:C. 7.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
一、选择题1.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里2.用科学记数方法表示0.0000907,得()A.49.0710-⨯B.59.0710-⨯C.690.710-⨯D.790.710-⨯3.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=12,y=34.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81B.508C.928D.13245.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=52b B.a=3b C.a=72b D.a=4b6.下面四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .7.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯8.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB ,则∠MON 的度数为( )A .60°B .45°C .65.5°D .52.5°9.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A .66.6×107 B .0.666×108 C .6.66×108 D .6.66×10710.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330 B .(1﹣10%)x =330 C .(1﹣10%)2x =330 D .(1+10%)x =330 11.将方程247236x x ---=去分母得 ( ) A .2﹣2(2x-4)= - (x-7) B .12﹣2(2x ﹣4)=﹣x ﹣7 C .12﹣4x ﹣8= - (x-7) D .12﹣2(2x ﹣4)= x ﹣712.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣913.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .14.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--=C .2(21)3(53)6x x +--=D .213(53)6x x +--=15.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( ) A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km二、填空题16.A ∠与B 的两边分别平行,且A ∠比B 的2倍少45°,则A ∠=__________. 17.商店运来120台洗衣机,每台售价是440元,每售出一台可以得到售价15%的利润,其中两台有些破损,按售价打八折出售。
数学文化选题一、选择题1.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间3尺的重量为A. 6斤B. 9斤C. 10斤D. 12斤【答案】B【解析】试题分析:此问题是一个等差数列,设首项为,则,∴中间尺的重量为斤.故选:B.学科&网2.“珠算之父”程大位是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成.程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”([注释]三升九:3.9升.次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为A. 1.9升B. 2.1升C. 2.2升D. 2.3升【答案】B3.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方棱台(上、下底面均为矩形额棱台)的专用术语.关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之.亦倍下表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为,高为3,且上底面的周长为6,则该棱台的体积的最大值是A. 14B. 56C.D. 63【答案】C4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有邹亮,下广三丈,茅四仗,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽仗长仗;上棱长仗,高一丈,问它的体积是多少?”已知丈为尺,现将该锲体的三视图给出右图所示,齐总网格纸小正方形的边长1丈,则该锲体的体积为A. 立方尺B. 立方尺C. 立方尺D. 立方尺【答案】A5.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入时,输出的A. 6B. 9C. 12D. 18【答案】D【解析】试题分析:模拟程序框图的运行过程,如下;a=6102,b=2016,执行循环体,r=54,a=2016,b=54,不满足退出循环的条件,执行循环体,r=18,a=54,b=18,不满足退出循环的条件,执行循环体,r=0,a=18,b=0,满足退出循环的条件r=0,退出循环,输出a的值为18. 学科&网6.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知五人分5钱,两人所得与三人所得相同,且每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,所得为A. 钱B. 钱C. 钱D. 钱【答案】A7.我国古代著名的思想家庄子在《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭.”用现代语言叙述为:一尺长的木棒,每日取其一半,永远也取不完. 这样,每日剩下的部分都是前一日的一半. 如果把“一尺之棰”看成单位“”,那么剩下的部分所成的数列的通项公式为A. B. C. D.【答案】C【解析】由“一尺长的木棒,每日取其一半.”可知每天剩下的木棒构成一个首相为1,公比为的等比数列.所以该数列的通项公式为.故选C.8.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,半径等于4米的弧田.按照上述方法计算出弧田的面积约为A. 6平方米B. 9平方米C. 12平方米D. 15平方米[来源学科网ZXXK]【答案】B9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为A. 24里B. 12里C. 6里D. 3里【答案】C【解析】试题分析:记每天走的路程里数为,易知是公比的等比数列,,,故选C. 学科&网10.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为A. 55B. 52C. 39D. 26【答案】B11.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?A. B. C. D.【答案】C【解析】根据“红灯向下成培增”可得该塔每层的灯从上到下构成一个等比数列,公比为2,其中.由等比数列的前n项和公式可得.故选C.12.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(参考数据:,,)[来源:]A. B. C. D.【答案】B13.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.下图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数A. 336B. 510C. 1326D. 3603【答案】B【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为,故选B.14.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B15. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽丈,长丈,上棱丈,.与平面的距离为1丈,问它的体积是A. 4立方丈B. 5立方丈C. 6立方丈D. 8立方丈【答案】B【解析】延长EF、FE分别到H、G,且|FH|=|EG|=1,则该几何体为直三棱柱,三棱锥F-BCH的体积为,三棱柱的体积为,所以所求体积为.故选B.16.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形.其中正确的有A. ①③B. ①③④C. ②③D. ①④【答案】A17.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有周长为的满足,试用以上给出的公式求得的面积为A. B. C. D.【答案】A二、填空题18.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分解:按此规律,____________;____________.【答案】(1). ;(2).19.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)【答案】20.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.[来源:]【答案】【解析】椭圆的长半轴为5,短半轴为2,现构造一个底面半径为2,高为5的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V=2(V圆柱﹣V圆锥)=2(π×22×5﹣)=.[来源学科网Z.X.X.K]21.艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列,设,已知,则的通项公式__________.【答案】22.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3V kD =,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3V kD =中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3V kD =求体积(在等边圆柱中, D 表示底面圆的直径;在正方体中, D 表示棱长).假设运用次体积公式求得球(直径为a )、等边圆柱(底面积的直径为a )、正方体(棱长为a )的“玉积率”分别为1k 、2k 、3k ,那么123::k k k =__________.【答案】::164ππ【解析】 由题意得,球的体积为333114433266a V R a k ππππ⎛⎫===⇒= ⎪⎝⎭; 、等边圆柱的体积为22322244a V R a a a k ππππ⎛⎫===⇒= ⎪⎝⎭;学科&网正方体的体积3321V a k =⇒=,所以123::::164k k k ππ=[来源学科网].。
同步训练:第三章《一元一次方程》实际应用填空题提优四1.我国古代数学著作《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问几房几客?意思是:“一批客人来到李三店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出1间房.问有多少房间,多少客人?”那么房间有间,客人有人.2.为节约用电,长沙市实“阶梯电价”具体收费方法是第一档每户用电不超过240度,每度电价0.6元;第二档用电超过240度,但不超过400度,则超过部分每度提价0.05元;第三档用电超过400度,超过部分每度提高0.3元,某居民家12月份交电费222元,则该居民家12月份用电度.3.如图,一块长4厘米、宽1厘米的长方形纸板①,一块长5厘米、宽2厘米的长方形纸板②与一块正方形纸板③以及另两块长方形纸板④和⑤,恰好拼成一个大正方形,则大正方形的面积是平方厘米.4.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.若水流速度是3千米/时,则甲、乙两码头之间的距离是千米.5.学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有人.6.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米.若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为千米/小时.7.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打折.8.A、B、C三地依次在同一直线上,B,C两地相距560千米,甲、乙两车分别从B,C两地同时出发,相向匀速行驶.行驶4小时两车相遇,再经过3小时,甲车到达C地,然后立即调头,并将速度提高10%后与乙车同向行驶,经过一段时间后两车同时到达A地,则A,B两地相距千米.9.甲,乙两人在一条长400米的环形跑道上练习跑步,甲的速度为6米每秒,乙的速度为4米每秒,若两人同时同地背向出发,经过秒两人首次相遇.10.甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使乙组人数是甲组人数的2倍,则甲组应调来人.11.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.12.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是元.13.如图是一块长方形,由六个正方形组成,已知中间最小的一个正方形A的边长为cm,那么这个长方形的面积为cm2.14.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.15.服装店销售某款服装,一件服装的标价为200元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价是元.16.已知A、B两地相距1000米,甲、乙两人分别从A、B两地同时出发,沿着同一条直线公路相向而行.若甲以7米/秒的速度骑自行车前进,乙以3米/秒的速度步行,则经过秒两人相距100米.17.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.18.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有名.19.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为.20.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分.今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为.21.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是千米/时.22.如图,数轴上线段AB=2,CD=4,点A在数轴上的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,点P是线段AB上一点,当点B运动到线段CD上,且BD=3PC+AP,则线段PC的长为.23.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元24.有两根木条,一根AB长为100cm,另一根CD长为150cm,在它们的中点处各有一个小圆孔M、N(圆孔直径忽略不计,M、N抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN是cm.25.某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为元.参考答案1.解:设有x间房间,根据题意可得:7x+7=9x﹣9,解得x=8;客人有7×8+7=63(人).答:房间有8间,客人有63人.故答案为:8,63.2.解:因为222<0.6×240+(400﹣240)×0.65=248,所以该居民家今年12月份的用电量是多于240度而少于400度.设该居民家12月份的用电量为x,则240×0.6+(x﹣240)×0.65=222,解得x=360.答:该居民家12月份用电360度.故答案是:360.3.解:设小正方形的边长为x,依题意得1+x+2=4+5﹣x,解得x=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案是:36.4.解:设船在静水中的速度为x千米/小时,根据题意得:(x+3)×2=(x﹣3)×2.5,解得:x=27,即:船在静水中的速度是27千米/小时,(27+3)×2=60(千米);答:两码头间的距离是60千米.故答案是:60.5.解:设宿舍有x间房,则:8x+12=9(x﹣2),解得x=30,∴8x+12=252.答:这个学校的住宿生有252人.故答案是:252.6.解:设轮船在静水中的速度为x千米/小时,则水流速度为(20﹣x)千米/小时,由题意可得:x﹣(20﹣x)=16,解得:x=18,∴轮船在静水中的速度为18千米/小时,故答案为:18.7.解:设商店打x折,依题意,得:180×﹣120=120×20%,解得:x=8.故答案为:8.8.解:设乙车的平均速度是x千米/时,则4(+x)=560.解得x=60即乙车的平均速度是60千米/时.设甲车从C地到A地需要t小时,则乙车从C地到A地需要(t+7)小时,则80(1+10%)t=60(7+t)解得t=15.所以60(7+t)﹣560=760(千米)故答案是:760.9.解:设经过x秒两人首次相遇,由题意可得:6x+4x=400,解得:x=40,答:设经过40秒两人首次相遇;故答案为:40.10.解:设甲组应调来x人.根据题意,得2(10+x)=14+(12﹣x)解得x=2.答:甲组应调来2人.故答案为2.11.解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.12.解:设这件商品的标价是x元,根据题意得:x﹣0.8x=20,解得:x=100.故答案为:100.13.解:设第二个小正方形D的边长是x,则其余正方形的边长为:x,x+,x+1,x+,则根据题意得:x+x+x+=x+1+x+,解得:x=2,∴x+=,x+1=3,x+=,∴这个长方形的面积为:(+2+2)×(3+)=,故答案是:.14.解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+36,解得:x=300,故答案为:300元.15.解:设这款服装每件的进价为x元,由题意,得200×0.8﹣x=60,解得:x=100.故答案是:100.16.解:设经过x秒两人相距100米,当两人未相遇前,7x+3x+100=1000,解得:x=90;当两人相遇后,7x+3x﹣100=1000,解得:x=110.故答案为:90或110.17.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.18.解:设女生有x名,则男生人数有(2x﹣17)名,依题意有2x﹣17+x=52,解得x=23.故女生有23名.故答案为:23.19.解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.20.解:设胜场数为x场,则平场数为(26﹣6﹣x)场,依题意得:3x+(26﹣6﹣x)=42解得:x=11那么胜场数为11场.故答案为:11.21.解:设水流的速度为x千米/时,∴4(20+x)=6(20﹣x),∴x=4,故答案为:422.解:设线段AB未运动时点P所表示的数为x,B点运动时间为t,则此时C点表示的数为16﹣2t,D点表示的数为20﹣2t,A点表示的数为﹣10+6t,B点表示的数为﹣8+6t,P点表示的数为x+6t,∴BD=20﹣2t﹣(﹣8+6t)=28﹣8t,AP=x+6t﹣(﹣10+6t)=10+x,PC=|16﹣2t﹣(x+6t)|=|16﹣8t﹣x|,PD=20﹣2t﹣(x+6t)=20﹣8t﹣x=20﹣(8t+x),∵BD=3PC+AP,∴BD﹣AP=3PC,∴28﹣8t﹣(10+x)=3|16﹣8t﹣x|,即:18﹣8t﹣x=3|16﹣8t﹣x|,①当C点在P点右侧时,18﹣8t﹣x=3(16﹣8t﹣x)=48﹣24t﹣3x,∴x+8t=15,∴PD=20﹣(8t+x)=20﹣15=5;②当C点在P点左侧时,18﹣8t﹣x=﹣3(16﹣8t﹣x)=﹣48+24t+3x,∴x+8t=,∴PD=20﹣(8t+x)=20﹣=3.5.∴PD的长有2种可能,即5或3.5,则PC的长有2种可能,即5﹣4=1或4﹣3.5=0.5.或①当C点在P点右侧时,18﹣8t﹣x=3(16﹣8t﹣x)=48﹣24t﹣3x,∴x+8t=15,∴PC=|16﹣8t﹣x|=|16﹣15|=1;②当C点在P点左侧时,18﹣8t﹣x=﹣3(16﹣8t﹣x)=﹣48+24t+3x,∴x+8t=,∴PD=20﹣(8t+x)=20﹣=3.5.∴PC=|16﹣8t﹣x|=|16﹣|=0.5.综上所述,PC的长为1或0.5.故答案为:1或0.5.23.解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.24.解:当A与C重合或B与D重合时,设两根木条的小圆孔之间的距离MN是acm,a+=,解得,a=25,当A与D重合或B与C重合时,设两根木条的小圆孔之间的距离MN是bcm,b﹣=,解得,b=125,由上可得,两根木条的小圆孔之间的距离MN是25cm或125cm,故答案为:25或125.25.解:该商品每件的进价为x元,依题意,得:150×80%﹣x=20%x,解得:x=100.故答案为:100.。
第五节有关数列的4大难点问题突破难点一 数列在数学文化与实际问题中的应用[典例] (1)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则此人第4天和第5天共走了( )A .60里B .48里C .36里D .24里(2)(2019·北京东城区模拟)为了观看2022年的冬奥会,小明打算从2018年起,每年的1月1日到银行存入a 元 的一年期定期储蓄,若年利率为p ,且保持不变,并约定每年到期存款本息均自动转为新一年的定期.到2022年的1月1日不再存钱而是将所有的存款和利息全部取出,则可取回________元.[解析] (1)由题意知,此人每天走的里数构成公比为12的等比数列{a n },设等比数列的首项为a 1,则a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,所以a 4=192×18=24,a 5=24×12=12,则a 4+a 5=24+12=36,即此人第4天和第5天共走了36里. (2)2022年1月1日可取出钱的总数为 a (1+p )4+a (1+p )3+a (1+p )2+a (1+p ) =a ·(1+p )[1-(1+p )4]1-(1+p )=ap [(1+p )5-(1+p )]=ap[(1+p )5-1-p ]. [答案] (1)C (2)ap [(1+p )5-1-p ][解题技法] 解答数列应用题需过好“四关”[过关训练]1.(2018·江西金溪一中月考)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t 倍.下列选项中,与t 值最接近的是( )A .11B .13C .15D .17解析:选B 设鱼原来的质量为a ,饲养n 年后鱼的质量为a n ,q =200%=2,则a 1=a (1+q ),a 2=a 1⎝⎛⎭⎫1+q 2=a (1+q )⎝⎛⎭⎫1+q 2,…,a 5=a (1+2)×(1+1)×⎝⎛⎭⎫1+12×⎝⎛⎭⎫1+122×⎝⎛⎭⎫1+123=40532a ≈12.7a ,即5年后,鱼的质量预计为原来的12.7倍,故选B. 2.我国古代数学名著《九章算术》中有如下问题:“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:“今有蒲草第一天长高3尺,莞草第一天长高1尺.以后,蒲草每天长高前一天的一半,莞草每天长高前一天的2倍.问第几天蒲草和莞草的高度相同?”根据上述的已知条件,可求得第________天时,蒲草和莞草的高度相同(结果采取“只入不舍”的原则取整数,相关数据:lg 3≈0.477 1,lg 2≈0.301 0).解析:由题意得,蒲草的高度组成首项为a 1=3,公比为12的等比数列{a n },设其前n 项和为A n ;莞草的高度组成首项为b 1=1,公比为2的等比数列{b n },设其前n 项和为B n .则A n =3⎝⎛⎭⎫1-12n 1-12,B n =2n -12-1,令3⎝⎛⎭⎫1-12n 1-12=2n -12-1,化简得2n +62n =7(n ∈N *),解得2n =6,所以n =lg 6lg 2=1+lg 3lg 2≈3,即第3天时蒲草和莞草高度相同. 答案:3难点二 数列中的新定义问题[典例] 若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”,已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“调和数列”,且b 1+b 2+…+b 2 019=20 190,则b 2b 2 018的最大值是________.[解析] 因为数列⎩⎨⎧⎭⎬⎫1b n 是“调和数列”,所以b n +1-b n =d , 即数列{b n }是等差数列, 所以b 1+b 2+…+b 2 019=2 019(b 1+b 2 019)2=2 019(b 2+b 2 018)2=20 190,所以b 2+b 2 018=20.又1b n >0,所以b 2>0,b 2 018>0, 所以b 2+b 2 018=20≥2b 2b 2 018,即b 2b 2 018≤100(当且仅当b 2=b 2 018时等号成立), 因此b 2b 2 018的最大值为100. [答案] 100 [解题技法]1.新定义数列问题的特点通过给出一个新的数列的概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.2.新定义问题的解题思路遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.[过关训练]1.定义一种运算“※”,对于任意n ∈N *均满足以下运算性质:(1)2※2 019=1;(2)(2n +2)※2 019=(2n )※2 019+3,则2 018※2 019=________.解析:设a n =(2n )※2 019,则由运算性质(1)知a 1=1,由运算性质(2)知a n +1=a n +3,即a n +1-a n =3.所以数列{a n }是首项为1,公差为3的等差数列,故2 018※2 019=(2×1 009)※2 019=a 1 009=1+1 008×3=3 025. 答案:3 0252.定义各项为正数的数列{p n }的“美数”为np 1+p 2+…+p n(n ∈N *).若各项为正数的数列{a n }的“美数”为12n +1,且b n =a n +14,则1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=________.解析:因为各项为正数的数列{a n }的“美数”为12n +1,所以n a 1+a 2+…+a n =12n +1.设数列{a n }的前n 项和为S n ,则S n =n (2n +1), S n -1=(n -1)[2(n -1)+1]=2n 2-3n +1(n ≥2), 所以a n =S n -S n -1=4n -1(n ≥2).又1a 1=13,所以a 1=3,满足式子a n =4n -1, 所以a n =4n -1(n ∈N *). 又b n =a n +14,所以b n =n , 所以1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=11×2+12×3+…+12 018×2 019=1-12+12-13+…+12 018-12 019=1-12 019=2 0182 019. 答案:2 0182 019难点三 数列与函数的综合问题[典例] (2019·抚顺模拟)已知函数f (x )=ax 2+bx 的图象经过(-1,0)点,且在x =-1处的切线斜率为-1.设数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项的和T n . [解] (1)函数f (x )=ax 2+bx 的图象经过(-1,0)点, 则a -b =0,即a =b .①因为f ′(x )=2ax +b ,函数f (x )=ax 2+bx 在x =-1处的切线斜率为-1,所以-2a +b =-1.②由①②得a =1,b =1,所以数列{a n }的前n 项和S n =f (n )=n 2+n . 当n ≥2时,S n -1=(n -1)2+(n -1), 所以a n =S n -S n -1=2n .当n =1时,a 1=2符合上式,则a n =2n . (2)由于a n =2n ,则1a n ·a n +1=12n (2n +2)=14⎝⎛⎭⎫1n -1n +1,则T n =14⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=14⎝⎛⎭⎫1-1n +1=n 4n +4.[解题技法] 数列与函数综合问题的类型及注意点[过关训练]1.已知函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{x n }满足x n +1=x n -f (x n )f ′(x n ).设a n =ln x n -2x n -1,若a 1=12,x n >2,则数列{a n }的通项公式a n =________.解析:由函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,可得f (x )=a (x -1)(x -2),则f ′(x )=a (2x -3),∴x n +1=x n -f (x n )f ′(x n )=x n -a (x n -1)(x n -2)a (2x n -3)=x 2n -22x n -3.由a 1=12,x n >2,得a n +1=ln x n +1-2x n +1-1=ln (x n -2)2(x n -1)2=2ln x n -2x n -1=2a n , ∴数列{a n }是以12为首项,2为公比的等比数列,∴a n =12×2n -1=2n -2.答案:2n -22.(2019·大庆模拟)已知数列{a n }的前n 项和为S n ,点(n ,S n )在曲线y =12x 2+52x 上,数列{b n }满足b n +b n +2=2b n +1,b 4=11,{b n }的前5项和为45.(1)求{a n },{b n }的通项公式;(2)设c n =1(2a n -3)(2b n -8),数列{c n }的前n 项和为T n ,求使不等式T n >k 54恒成立的最大正整数k 的值.解:(1)由已知得S n =12n 2+52n ,当n =1时,a 1=S 1=12+52=3;当n ≥2时,a n =S n -S n -1=12n 2+52n -12(n -1)2-52(n -1)=n +2, 当n =1时,符合上式. 所以a n =n +2.因为数列{b n }满足b n +b n +2=2b n +1, 所以数列{b n }为等差数列.设其公差为d ,则⎩⎪⎨⎪⎧ b 1+3d =11,5b 1+10d =45,解得⎩⎪⎨⎪⎧b 1=5,d =2,所以b n =2n +3. (2)由(1)得,c n =1(2a n -3)(2b n -8)=1(2n +1)(4n -2)=12(2n +1)(2n -1)=14⎝⎛⎭⎫12n -1-12n +1,所以T n =14⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=14⎝⎛⎭⎫1-12n +1. 因为T n +1-T n =14⎝⎛⎭⎫12n +1-12n +3=12(2n +1)(2n +3)>0, 所以{T n }是递增数列,所以T n ≥T 1=16,故要使T n >k 54恒成立,只要T 1=16>k54恒成立,解得k <9,所以使不等式成立的最大正整数k 的值为8.难点四 数列与不等式的综合问题[典例] (2019·洛阳第一次统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.[解] (1)∵a n +1=3S n +4,∴a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n . 又a 2=3a 1+4=16=4a 1,∴数列{a n }是首项为4,公比为4的等比数列, ∴a n =4n .(2)证明:∵a n b n =log 2a n ,∴b n =2n 4n, ∴T n =241+442+643+…+2n 4n ,14T n =242+443+644+…+2n 4n +1, 两式相减得,34T n =24+242+243+244+…+24n -2n 4n +1 =2⎝⎛⎭⎫14+142+143+144+…+14n -2n4n +1 =2×14⎝⎛⎭⎫1-14n 1-14-2n 4n +1=23-23×4n -2n 4n +1 =23-6n +83×4n +1, ∴T n =89-6n +89×4n <89.[解题技法]数列中不等式证明问题的解题策略数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝⎛⎭⎫1k -1-1k +1. (2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1). [过关训练]在数列{a n }中,a 1=2,a n +1=n +12n ·a n(n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式;(2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝⎛⎭⎫12n -1=22-n ,a n =n ·22-n =4n 2n . (2)由(1)知b n =a n 4n -a n=4n 2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1恒成立,所以b n ≤12n-1.所以T n ≤1+12+122+123+…+12n -1=2⎝⎛⎭⎫1-12n <2. [课时跟踪检测]1.(2019·深圳模拟)设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.n n -1D.n +1n解析:选A ∵f ′(x )=mx m -1+a =2x +1,∴a =1,m =2, ∴f (x )=x (x +1),则1f (n )=1n (n +1)=1n -1n +1,用裂项法求和得S n =1-12+12-13+…+1n -1n +1=n n +1. 2.(2019·柳州模拟)设函数f (x )定义为如下数表,且对任意自然数n 均有x n +1=f (x n ),若x 0=6,则x 2 019的值为( )A .1 C .4D .5解析:选D ∵数列{x n }满足x 0=6,且对任意自然数n 均有x n +1=f (x n ),∴利用表格可得x 1=f (x 0)=f (6)=4,x 2=f (x 1)=f (4)=2,x 3=f (x 2)=f (2)=1,x 4=f (x 3)=f (1)=5,x 5=f (x 4)=f (5)=6,x 6=f (x 5)=f (6)=4,…,∴x n +5=x n ,∴x 2 019=x 403×5+4=x 4=5.3.(2019·安徽知名示范高中联考)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( )A .a ,b ,c 成公比为2的等比数列,且a =507B .a ,b ,c 成公比为2的等比数列,且c =507C .a ,b ,c 成公比为12的等比数列,且a =507D .a ,b ,c 成公比为12的等比数列,且c =507解析:选D 由题意可得,a ,b ,c 成公比为12的等比数列,b =12a ,c =12b ,故4c +2c+c =50,解得c =507.故选D. 4.已知数列{a n }满足a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫12-λn +1(n <6),λn -5(n ≥6),若对于任意的n ∈N *都有a n >a n +1,则实数λ的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫12,712 C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫712,1 解析:选B 因为a n >a n +1,所以数列{a n}是递减数列,所以⎩⎪⎨⎪⎧12-λ<0,0<λ<1,λ<⎝⎛⎭⎫12-λ×5+1,解得12<λ<712,故选B. 5.(2019·南昌模拟)数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9解析:选B ∵数列{a n }的通项公式为a n =1n (n +1),且其前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴该直线在y 轴上的截距为-9.6.(2019·郑州质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( ) A.⎝⎛⎭⎫13,+∞ B.⎣⎡⎭⎫13,+∞ C.⎝⎛⎭⎫23,+∞ D.⎣⎡⎭⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝⎛⎭⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝⎛⎭⎫1-14n 1-14=23⎝⎛⎭⎫1-14n <23,因此实数t 的取值范围是⎣⎡⎭⎫23,+∞.7.用[x ]表示不超过x 的最大整数,例如[3]=3,[1.2]=1,[-1.3]=-2.已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,则⎣⎡⎦⎤a 1a 1+1+a 2a 2+1+…+a 2 019a 2 019+1=________. 解析:因为a 1=1,a n +1=a 2n +a n >1,所以1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1,所以1a 1+1+1a 2+1+…+1a 2 019+1=⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a 2 019-1a 2 020=1-1a 2 020∈(0,1).又a n a n +1=1-1a n +1,所以a 1a 1+1+a 2a 2+1+…+a 2 019a 2 019+1=2 019-⎝⎛⎭⎫1-1a 2 020. 所以⎣⎡⎦⎤a 1a 1+1+a 2a 2+1+…+a 2 019a 2 019+1=2 018.答案:2 0188.数列lg 1 000,lg(1 000·cos 60°),lg(1 000·cos 260°),…,lg(1 000·cos n -160°),…的前________项和为最大.解析:依题意知,数列的通项a n =lg(1 000·cos n -160°)=3+(n -1)lg 12,公差d =lg 12<0,数列单调递减.因为a n =3+(n -1)lg 12>0时,n ≤10,所以数列的前10项均为正,从第11项开始为负,故可知数列前10项的和最大.答案:109.(2019·济宁模拟)若数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,那么就称数列{a n }具有性质P .已知数列{a n }具有性质P ,且a 1=1,a 2=2,a 3=3,a 5=2,a 6+a 7+a 8=21,则a 2 020=____________.解析:根据题意,数列{a n }具有性质P ,且a 2=a 5=2, 则有a 3=a 6=3,a 4=a 7,a 5=a 8=2. 由a 6+a 7+a 8=21,可得a 3+a 4+a 5=21, 则a 4=21-3-2=16,进而分析可得a 3=a 6=a 9=…=a 3n =3,a 4=a 7=a 10=…=a 3n +1=16,a 5=a 8=…=a 3n+2=2(n ≥1),则a 2 020=a 3×673+1=16. 答案:1610.若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 2 019中,正数的个数是____________.解析:由于sin π7>0,sin 2π7>0,…,sin 6π7>0,sin 7π7=0,sin 8π7=-sin π7<0,…,sin13π7=-sin 6π7<0,sin 14π7=0,可得到S 1>0,…,S 12>0,S 13=0,S 14=0,∵2 019=14×144+3,∴S 1,S 2,…,S 2 019中,正数的个数是144×12+3=1 731.答案:1 73111.为了加强城市环保建设,某市计划用若干年时间更换5 000辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型两种车型.今年年初投入了电力型公交车128辆,混合动力型公交车300辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.市政府根据人大代表的建议,要求5年内完成全部更换,则a 的最小值为________.解析:依题意知,电力型公交车的数量组成首项为128,公比为1+50%=32的等比数列,混合动力型公交车的数量组成首项为300,公差为a 的等差数列,则5年后的数量和为128×⎣⎡⎦⎤1-⎝⎛⎭⎫3251-32+300×5+5×42a ,则128×⎣⎡⎦⎤1-⎝⎛⎭⎫3251-32+300×5+5×42a ≥5 000,即10a ≥1 812,解得a ≥181.2,因为5年内更换公交车的总和不小于5 000,所以a 的最小值为182.答案:18212.(2019·遂宁模拟)已知数列{a n }的前n 项和为S n ,向量a =(S n,2),b =(1,1-2n )满足条件a ⊥b .(1)求数列{a n }的通项公式;(2)设c n =na n,求数列{c n }的前n 项和T n .解:(1)∵a ⊥b ,∴a ·b =S n +2-2n +1=0, ∴S n =2n +1-2,当n ≥2时,a n =S n -S n -1=2n , 当n =1时,a 1=S 1=2满足上式, ∴a n =2n . (2)∵c n =n a n =n 2n ,∴T n =12+222+…+n -12n -1+n 2n ,两边同乘12,得12T n =122+223+…+n -12n +n 2n +1, 两式相减得12T n =12+122+…+12n -n 2n +1=1-n +22n +1,∴T n =2-n +22n(n ∈N *). 13.(2019·安阳模拟)设等差数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=x 2+Bx +C -1(B ,C ∈R)的图象上,且a 1=C .(1)求数列{a n }的通项公式;(2)记数列b n =a n (a 2n -1+1),求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 则S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n . 又S n =n 2+Bn +C -1,两式比较得d 2=1,B =a 1-d2,C -1=0.又a 1=C ,解得d =2,C =1=a 1,B =0,∴a n =1+2(n -1)=2n -1.(2)∵b n =a n (a 2n -1+1)=(2n -1)(2×2n -1-1+1)=(2n -1)×2n , ∴数列{b n }的前n 项和T n =2+3×22+5×23+…+(2n -1)×2n , ∴2T n =22+3×23+…+(2n -3)×2n +(2n -1)×2n +1, ∴-T n =2+2×(22+23+…+2n )-(2n -1)×2n +1 =2+2×4(2n -1-1)2-1-(2n -1)×2n +1=(3-2n )×2n +1-6,故T n =(2n -3)×2n +1+6.14.(2018·淮南一模)若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 12a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34.解:(1)∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=16-13a 1,∴a 1=18,∴a n =18×⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n +1.(2)证明:由c n +1-c n =log 12a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1).∴1c 2+1c 3+1c 4+…+1c n=122-1+132-1+142-1+…+1n 2-1=12×⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫1n -1-1n +1 =12⎣⎡⎦⎤⎝⎛⎭⎫1+12-⎝⎛⎭⎫1n +1n +1 =34-12⎝⎛⎭⎫1n +1n +1<34.1c2+1c3+1c4+…+1c n≥1c2=13,∴原式得证.又∵。
山东省2019年、2020年数学中考试题分类(4)——方程的解法与应用一.选择题(共16小题) 1.(2020•东营)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( ) A .96里 B .48里 C .24里 D .12里 2.(2020•临沂)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( )A .2392x y x y ⎧=+⎪⎪⎨⎪+=⎪⎩B .2392x y x y ⎧=-⎪⎪⎨-⎪=⎪⎩C .2392x y x y ⎧=+⎪⎪⎨-⎪=⎪⎩D .2392x y x y ⎧=-⎪⎪⎨⎪-=⎪⎩3.(2019•东营)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )?A .10216x y x y +=⎧⎨+=⎩B .10216x y x y +=⎧⎨-=⎩C .10216x y x y +=⎧⎨-=⎩D .10216x y x y +=⎧⎨+=⎩4.(2019•菏泽)已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是( )A .1-B .1C .5-D .5 5.(2019•德州)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩ D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩6.(2020•潍坊)关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 7.(2020•菏泽)等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k -+=的两个根,则k 的值为( ) A .3 B .4 C .3或4 D .7 8.(2020•临沂)一元二次方程2480x x --=的解是( )A.12x =-+,22x =--B.12x =+22x =-C .1222x =+,2222x =-D .123x =,223x =-9.(2020•聊城)用配方法解一元二次方程22310x x --=,配方正确的是( )A .2317()416x -=B .231()42x -=C .2313()24x -=D .2311()24x -=10.(2020•滨州)对于任意实数k ,关于x 的方程221(5)22502x k x k k -++++=的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定 11.(2019•威海)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .2019 12.(2019•聊城)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0kB .0k 且2k ≠C .32kD .32k 且2k ≠13.(2019•潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =14.(2020•枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b =-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( )A .4x =B .5x =C .6x =D .7x =15.(2019•淄博)解分式方程11222x x x-=---时,去分母变形正确的是( )A .112(2)x x -+=---B .112(2)x x -=--C .112(2)x x -+=+-D .112(2)x x -=--- 16.(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -=B .5005004510x x -=C .500050045x x -=D .500500045x x-=二.填空题(共18小题)17.(2020•泰安)方程组16,5372x y x y +=⎧⎨+=⎩的解是 .18.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式11(2S a b a =+-是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克()Pick 定理”.如图给出了一个格点五边形,则该五边形的面积S = .19.(2019•临沂)用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共 块.20.(2019•泰安)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 .21.(2020•东营)如果关于x 的一元二次方程260x x m -+=有实数根,那么m 的取值范围是 . 22.(2020•威海)一元二次方程4(2)2x x x -=-的解为 . 23.(2020•淄博)已知关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则实数m 的取值范围是 . 24.(2020•烟台)关于x 的一元二次方程2(1)210m x x -+-=有两个不相等的实数根,则m 的取值范围是 . 25.(2020•德州)菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为 .26.(2019•莱芜区)已知1x ,2x 是方程230x x --=的两根,则1211x x += .27.(2019•威海)一元二次方程2342x x =-的解是 . 28.(2019•青岛)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则m 的值为 . 29.(2019•枣庄)已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是 . 30.(2019•济宁)已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 .31.(2020•潍坊)若关于x 的分式方程33122x m x x +=+--有增根,则m = .32.(2020•菏泽)方程111x x x x -+=-的解是 . 33.(2019•德州)方程631(1)(1)1x x x -=+--的解为 .34.(2019•滨州)方程33122x x x-+=--的解是 . 三.解答题(共6小题)35.(2020•淄博)解方程组:138,21222x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩36.(2019•东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元? 37.(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度. 38.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒? 39.(2019•日照)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?40.(2019•菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.山东省2019年、2020年数学中考试题分类(4)——方程的解法与应用一.选择题(共16小题)1.(2020•东营)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,12x里,14x里,18x里,依题意,得:11142378248x x x x x x+++++=,解得:48x=.故选:B.2.(2020•临沂)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩【解答】解:依题意,得:2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩.故选:B.3.(2019•东营)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为()?A.10216x yx y+=⎧⎨+=⎩B.10216x yx y+=⎧⎨-=⎩C.10216x yx y+=⎧⎨-=⎩D.10216x yx y+=⎧⎨+=⎩【解答】解:设这个队胜x场,负y场,根据题意,得10 216x yx y+=⎧⎨+=⎩.故选:A.4.(2019•菏泽)已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则a b+的值是()A.1-B.1C.5-D.5【解答】解:将32xy=⎧⎨=-⎩代入23ax bybx ay+=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选:A . 5.(2019•德州)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩ B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【解答】解:设绳长x 尺,木长为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选:B . 6.(2020•潍坊)关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【解答】解:△2(3)4(1)k k =---26944k k k =-+-+ 225k k =-+ 2(1)4k =-+,2(1)40k ∴-+>,即△0>,∴方程总有两个不相等的实数根. 故选:A . 7.(2020•菏泽)等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k -+=的两个根,则k 的值为( ) A .3 B .4 C .3或4 D .7【解答】解:当3为腰长时,将3x =代入240x x k -+=,得:23430k -⨯+=, 解得:3k =,当3k =时,原方程为2430x x -+=, 解得:11x =,23x =, 134+=,43>, 3k ∴=符合题意;当3为底边长时,关于x 的方程240x x k -+=有两个相等的实数根, ∴△2(4)410k =--⨯⨯=, 解得:4k =,当4k =时,原方程为2440x x -+=, 解得:122x x ==, 224+=,43>, 4k ∴=符合题意. k ∴的值为3或4. 故选:C .8.(2020•临沂)一元二次方程2480x x --=的解是( )A .12x =-+,22x =--B .12x =+,22x =-C .12x =+22x =-D .1x =,2x =-【解答】解:一元二次方程2480x x --=, 移项得:248x x -=,配方得:24412x x -+=,即2(2)12x -=,开方得:2x -=±解得:12x =+,22x =- 故选:B . 9.(2020•聊城)用配方法解一元二次方程22310x x --=,配方正确的是( )A .2317()416x -=B .231()42x -=C .2313()24x -=D .2311()24x -=【解答】解:由原方程,得23122x x -=,23919216216x x -+=+,2317()416x -=,故选:A .10.(2020•滨州)对于任意实数k ,关于x 的方程221(5)22502x k x k k -++++=的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定【解答】解:221(5)22502x k x k k -++++=,△2222214[(5)]4(225)625(3)162b ac k k k k k k =-=-+-⨯⨯++=-+-=---,不论k 为何值,2(3)0k --,即△2(3)160k =---<, 所以方程没有实数根, 故选:B . 11.(2019•威海)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .2019 【解答】解:a ,b 是方程230x x +-=的两个实数根, 23b b ∴=-,1a b +=-,3ab =-,2222201932019()220161620162023a b a b a b ab ∴-+=-++=+-+=++=; 故选:A . 12.(2019•聊城)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0kB .0k 且2k ≠C .32kD .32k 且2k ≠【解答】解:2(2)260k x kx k --+-=,关于x 的一元二次方程2(2)26k x kx k --+=有实数根, ∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩,解得:32k且2k ≠. 故选:D . 13.(2019•潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m = 【解答】解:设1x ,2x 是2220x mx m m +++=的两个实数根, ∴△40m =-, 0m ∴, 122x x m ∴+=-,212x x m m =+,222222121212()24222212x x x x x x m m m m m ∴+=+-=--=-=, 3m ∴=或2m =-; 2m ∴=-; 故选:A .14.(2020•枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b =-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( )A .4x =B .5x =C .6x =D .7x =【解答】解:根据题意,得12144x x =---,去分母得:12(4)x =--, 解得:5x =, 经检验5x =是分式方程的解.故选:B .15.(2019•淄博)解分式方程11222x x x-=---时,去分母变形正确的是( ) A .112(2)x x -+=--- B .112(2)x x -=-- C .112(2)x x -+=+- D .112(2)x x -=--- 【解答】解:去分母得:112(2)x x -=---, 故选:D . 16.(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -=B .5005004510x x -=C .500050045x x -=D .500500045x x-=【解答】解:设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是: 5005004510x x -=. 故选:A .二.填空题(共18小题)17.(2020•泰安)方程组16,5372x y x y +=⎧⎨+=⎩的解是 124x y =⎧⎨=⎩ .【解答】解:165372x y x y +=⎧⎨+=⎩①②②3-⨯①,得224x =, 12x ∴=.把12x =代入①,得1216y +=, 4y ∴=.∴原方程组的解为124x y =⎧⎨=⎩.故答案为:124x y =⎧⎨=⎩.18.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式11(2S a b a =+-是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克()Pick 定理”.如图给出了一个格点五边形,则该五边形的面积S = 6 .【解答】解:a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积, 通过图象可知4a =,6b =,∴该五边形的面积146162S =+⨯-=,故答案为:6. 19.(2019•临沂)用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共 11 块.【解答】解:设需用A 型钢板x 块,B 型钢板y 块,依题意,得:4337218x y x y +=⎧⎨+=⎩①②,(①+②)5÷,得:11x y +=. 故答案为:11. 20.(2019•泰安)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 911(10)(8)13x yy x x y =⎧⎨+-+=⎩. 【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得: 911(10)(8)13x yy x x y =⎧⎨+-+=⎩, 故答案为:911(10)(8)13x y y x x y =⎧⎨+-+=⎩.21.(2020•东营)如果关于x 的一元二次方程260x x m -+=有实数根,那么m 的取值范围是 9m . 【解答】解:关于x 的一元二次方程260x x m -+=有实数根,∴△3640m =-, 解得:9m ,则m 的取值范围是9m . 故答案为:9m .22.(2020•威海)一元二次方程4(2)2x x x -=-的解为 12x =,214x =. 【解答】解:4(2)2x x x -=- 4(2)(2)0x x x ---= (2)(41)0x x --= 20x -=或410x -=解得12x =,214x =.故答案为:12x =,214x =.23.(2020•淄博)已知关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则实数m 的取值范围是 18m < .【解答】解:方程有两个不相等的实数根,1a =,1b =-,2c m = ∴△224(1)4120b ac m =-=--⨯⨯>,解得18m <,故答案为18m <.24.(2020•烟台)关于x 的一元二次方程2(1)210m x x -+-=有两个不相等的实数根,则m 的取值范围是 0m >且1m ≠ .【解答】解:根据题意得10m -≠且△224(1)(1)0m =--⨯->, 解得0m >且1m ≠.故答案为:0m >且1m ≠. 25.(2020•德州)菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为 20 . 【解答】解:如图所示: 四边形ABCD 是菱形, AB BC CD AD ∴===, 29200x x -+=,因式分解得:(4)(5)0x x --=, 解得:4x =或5x =, 分两种情况:①当4AB AD ==时,448+=,不能构成三角形; ②当5AB AD ==时,558+>, ∴菱形ABCD 的周长420AB ==. 故答案为:20.26.(2019•莱芜区)已知1x ,2x 是方程230x x --=的两根,则1211x x += 13- . 【解答】解:1x ,2x 是方程230x x --=的两根, 121x x ∴+=,123x x =-,∴121212111133x x x x x x ++===--. 故答案为:13-. 27.(2019•威海)一元二次方程2342x x =-的解是 1x =,2x = . 【解答】解:2342x x =-23240x x +-=,则24443(4)520b ac -=-⨯⨯-=>,故x=解得:1x=2x= 故答案为:1x 2x = 28.(2019•青岛)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则m 的值为18. 【解答】解:根据题意得:△1420m =-⨯=,整理得:180m -=,解得:18m =, 故答案为:18. 29.(2019•枣庄)已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是 13a >-且0a ≠ .【解答】解:由关于x 的方程2230ax x +-=有两个不相等的实数根得△244430b ac a =-=+⨯>,解得13a >- 则13a >-且0a ≠ 故答案为13a >-且0a ≠ 30.(2019•济宁)已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 2- .【解答】解:1x =是方程220x bx +-=的一个根,122c x x a∴==-, 212x ∴⨯=-,则方程的另一个根是:2-,故答案为2-.31.(2020•潍坊)若关于x 的分式方程33122x m x x +=+--有增根,则m = 3 . 【解答】解:去分母得:33(2)x m x =++-,整理得:21x m =+,关于x 的分式方程33122x m x x +=+--有增根,即20x -=, 2x ∴=,把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =;故答案为:3.32.(2020•菏泽)方程111x x x x -+=-的解是 13x = . 【解答】解:方程111x x x x -+=-, 去分母得:2(1)(1)x x x -=+,整理得:2221x x x x -+=+, 解得:13x =, 经检验13x =是分式方程的解. 故答案为:13x =. 33.(2019•德州)方程631(1)(1)1x x x -=+--的解为 4x =- . 【解答】解:631(1)(1)1x x x -=+--, 63(1)1(1)(1)(1)(1)x x x x x +-=+--+, 331(1)(1)x x x -=+-, 311x -=+, 13x +=-,4x =-,经检验4x =-是原方程的根;故答案为4x =-;34.(2019•滨州)方程33122x x x-+=--的解是 1x = . 【解答】解:去分母,得323x x -+-=-,移项、合并,得22x =,解得1x =,检验:当1x =时,20x -≠,所以,原方程的解为1x =,故答案为:1x =.三.解答题(共6小题)35.(2020•淄博)解方程组:138,21222x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩ 【解答】解:13821222x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩①②, ①+②,得:510x =,解得2x =,把2x =代入①,得:1682y +=, 解得4y =, 所以原方程组的解为24x y =⎧⎨=⎩. 36.(2019•东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【解答】解:设降价后的销售单价为x 元,则降价后每天可售出[3005(200)]x +-个,依题意,得:(100)[3005(200)]32000x x -+-=,整理,得:2360324000x x -+=,解得:12180x x ==.180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.37.(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.【解答】解:设计划平均每天修建步行道的长度为xm ,则采用新的施工方式后平均每天修建步行道的长度为1.5xm , 依题意,得:1200120051.5x x-=, 解得:80x =,经检验,80x =是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m .38.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?【解答】解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元, 依题意,得:84004000101.4x x-=, 解得:200x =,经检验,200x =是原方程的解,且符合题意,1.4280x ∴=.答:A 种茶叶每盒进价为200元,B 种茶叶每盒进价为280元.(2)设第二次购进A 种茶叶m 盒,则购进B 种茶叶(100)m -盒,依题意,得:100100(300200)(3000.7200)(400280)(4000.7280)58002222m m m m ---⨯+⨯-⨯+-⨯+⨯-⨯=, 解得:40m =,10060m ∴-=.答:第二次购进A 种茶叶40盒,B 种茶叶60盒.39.(2019•日照)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?【解答】解:设每件产品的实际定价是x 元,则原定价为(40)x +元,由题意,得5000400040x x=+. 解得160x =.经检验160x =是原方程的解,且符合题意.答:每件产品的实际定价是160元.40.(2019•菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.【解答】解:设汽车行驶在普通公路上的平均速度是x 千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x 千米/分钟, 由题意,得8181361.8x x+=. 解得1x =.经检验,1x =是所列方程的根,且符合题意.所以1.8 1.8x =(千米/分钟).答:汽车行驶在高速公路上的平均速度是1.8千米/分钟.。
1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378 里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6 天后到达目的地.”则该人最后一天走的路程为
A.24里
B.12里
C.6里
D.3里
2.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:几日相逢?
A.12日
B.16日
C.8日
D.9日
3.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等. 问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列. 问五人各得多少钱?”(“钱”是古代的一种重量单位). 这个问题中,甲所得为 A.45钱 B.35钱 C.23钱 D.3
4钱 4.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体. 它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图2中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是
A.a ,b
B.a ,c
C.c ,b
D.b ,d
5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺33
1寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺π≈3),则圆柱底面周长约为
A.1丈3尺
B.5丈4尺
C.9丈2尺
D.48丈6尺
6.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤. 问依次每一尺各重几斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为
A.6斤
B.9斤
C.10斤
D.12斤
7.我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是
D
C
B
A
8.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”愿意是指《孙子算经》中
记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数
位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6613用算筹表示就是,则9117用算筹可表示为()
A. B. C. D.
9.“圆材埋壁”是我国古代著名数学著作《九章算术》中的
一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一
寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问
题:“如图8,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,
求CD的长”。
根据题意可得CD的长为
10.在我国明代数学家吴敬所著的《九章算术比类大全》中,
有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有________盏灯.
17高考数学模拟题参考答案(仅供参考)
1.记每天走的路程里数为{a n },易知{a n }是公比21=q 的等比数列,S 6=378,S 6=211)211(61--a =378 ∴ a 1=192,a 6=192×52
1=6,选C. 2.良马每日所行里数构成一等差数列,其通项公式为a n =103+13(n -1)=13(n +90 ),驽马每日所行里数也构成一等差数列,其通项公式为b n =97-2
19521)1(21+-=-n n ,两马相逢时所走的路程之和为2×1250 =2250 , 所以有
2)(2)(11n n b b n a a n +++=2250即2
)21952197(2)9013103(+-+++n n n n =2250,解之得,n =9,故选D. 3.设等差数列{a n }的首项为a 1,公差为d ,依题意有⎪⎩⎪⎨⎧=++=+252932111d a d a d a ,⎪⎪⎩
⎪⎪⎨⎧-==61341d a ,故选D. 4.由直观图可知:其正视图与侧视图完全相同,则其只能是圆,这时其俯视图那就是正方形加对角线(实线);
故选A.
5.由题意得:2000×1.62=s (10+3+10
1310⨯),解得s =3
4062.12000⨯=243,因为s =πr 2,所以,r =9, 所以,C=2πr =2×3×9=54(尺),54 尺= 5丈4尺,故选B.
6.此问题是一个等差数列{a n },设首项为2,则a 5=4,∴中间3尺的重量为3a 3=
3251⨯+a a =32
42⨯+=9(斤),故选B.
8.
二.简答题答案:
9.26
10.3。