P(x=0)=q
1,A事件发生,成功 0,A事件未发生,失败
(二)二项分布的定义及其特点
在n重贝努里试验中,事件 A 可能发生0, 1,2,…,n次,现在我们来求事件 A 恰 好发生k(0≤k≤n)次的概率Pn(k)。事件A在n
次试验中正好发生k次共有 Cnk种情况。由
贝努里试验的独立性可知,A在k次实验中 发生,而在其余n-k次试验中不发生的概率 为
界t值已编制成附表1,即t值表(p219)。
例如,当df=15时,查附表1得两尾概率等于0.05的 临界t值为 =2.131,其意义是:
P(-∞<t<-2.131)= P(2.131<t<+∞) =0.025;
P(-∞<t<-2.131)+ (2.131<t<+∞) =0.05。
由附表1可知,当df一定时,概率P越大,临界t值越 小;概率P越小,临界t值越大。当 概 率 P 一定时,随 着df的增加,临界t值在减小,当df=∞时,临界t值与标 准正态分布的临界u值相等。
二、统计量:均值、方差、标准差、极差 三、表征数据资料集中趋势的统计特征数-平均数
x 算术平均数
众数 中(位)数
四、表征数据资料变异程度的统计特征变异数
极差R 偏差、偏差和 偏差平方和SS、方差S2 标准差S 变异系数CV
统计中常用希腊字母读法
大写 小写 音标 读法 大写 小写 音标 读法
4. F分布( F distribution)
在一个平均数为μ、方差为σ2的正态总体
中,
随机抽取容量为n1和n2的两个样本,则这两个样本 方差为S12 与S22 之比值定义为统计量 F,即
F=
S12 S22