在 yt = β0+ β1zt + µt 的回归模型中如何增加虚拟变量进
行“除季节性”处理?
12
6.4 平稳性和弱相依时间序列
1. 平稳随机过程(stationary stochastic process):对每一组时间指 数1≦t1<t2<…<tm,和所有的整数h≧1,如果{xt1, xt2, …, xtm}与{xt1+h, xt2+h, …, xtm+h}的联合分布相同,那么随机过程{xt: t=1, 2, …}就是平 稳的。
(0.136) (0.678)
(0.0035)
n = 42,adj.R2 = 0.307
11
3. 季节性
定义:如果一个时间序列是由定期如每月或每季度(甚至 每周或每天)观测而得到的,它就有可能表现出季节性 (seasonality)。
处理:在回归模型中增加一组季节性虚拟变量(seasonal dummy variables)来解释(控制)因变量或自变量中的 季节性。
yt变化的比例: △ log(yt) ≈(yt - yt-1)/yt-1 = β1 β1近似地等于yt各期增长率的平均值。例如,β1 = 0.025
表示yt以平均每年2.5%的速度增长。
10
(3)在回归分析中使用趋势变量
例1、房产投资与价格关系的回归结果 (JM P.322)
Inv代表实际人均房产投资,price代表房产价格指数,对 美国1947-1988年房产投资和房产价格指数的观测结果。
1. 不考虑趋势性的回归结果
log(inv) = - 0.550 + 1.241log(price)
(0.043) (0.382)
n = 42,adj.R2 = 0.189