聚丙烯非织造布亲水改性的研究
- 格式:pdf
- 大小:315.11 KB
- 文档页数:3
高分子材料改性课程论文专业:材料科学与工程学生姓名:学号:导师:聚丙烯的亲水性改善研究摘要:聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,其与极性聚合物、无机填料及增强材料等相容性差,其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广应用。
本文利用聚丙烯固相接枝丙烯酸(AA)、聚丙烯与乙烯-丙烯酸共聚物(EAA)共混和聚丙烯中空纤维膜的表面活性剂浸渍处理,三个途径分别对聚丙烯进行亲水改性研究。
关键词:聚丙烯;亲水性;接触角;共混改性;因为PP不含任何极性基团而难以和金属"玻璃粘结,难以和其他许多高聚物"无机填料相容; 也难于进行印刷染色等!这些缺点限制了聚丙烯在某些领域中的应用!表面接枝法可以将强极性的亲水基团引入薄膜的表面,并且由于接枝链与基体薄膜以化学键相联! 改性后的表面具有极性和亲水性,从根本上改变现有的塑料薄膜印刷技术!PP接枝改性产物还可经压膜" 磺化"碱洗等工艺制得亲水性较好的离子交换膜,与亲水性差的膜相比具有容量大"高洗脱率"高再生率的特征!聚丙烯(PP) 材料作为第三大通用塑料,具有机械性能、耐腐蚀性及电绝缘性优良,无毒性、易加工及价格低廉等优点,受到广大学者及工业领域的极大青睐。
其薄膜、纤维、非织造布、片材及各种制品在日常生活中被大量应用。
其中,聚丙烯微孔膜主要用于锂离子电池隔离膜[1]、废水处理、气体分离等领域。
但是由于聚丙烯表面没有极性基团,其表面能很小,临界表面张力只有( 31 ~34) ×10–5 N/ cm,所以它的表面润湿性和亲水性很差,这不仅导致聚丙烯微孔膜的水通量小,而且导致其表面和溶质:之间存在憎水性相互作用,进一步导致膜污染现象。
膜污染将导致在水处理过程中膜清洗的次数和维护费用增加,甚至会产生不可逆的破坏,降低膜的使用寿命,从而限制了其在工业中的应用。
浙江理工大学学报,第26卷,第2期,2009年3月Journal of Zhejiang Sc-i Tech U niv ersityVol.26,N o.2,M ar.2009文章编号:1673-3851(2009)02-0160-05聚丙烯非织造布亲水整理工艺研究刘 娴,吴明华(浙江理工大学先进纺织材料与制备技术教育部重点实验室,杭州310018)摘 要:采用阴离子表面活性剂(表面活性剂O ASE和快速渗透剂T)与非离子型的高分子表面活性剂(聚醚改性硅油)复配制备了亲水整理剂,并对聚丙烯非织造布进行整理。
结果表明:亲水整理优化工艺条件为整理剂浓度2 g/L;浸渍温度30 ;烘干温度95 ;烘干时间180s。
相对于未整理聚丙烯非织造布,整理聚丙烯非织造布的透水时间、抗静电和柔软性得到明显改善,静态水的接触角几乎为0,其它指标如白度和机械强度无负面影响。
表明实验所配制的亲水整理剂可以作为聚丙烯非织造布亲水整理剂。
关键词:表面活性剂;聚丙烯非织造布;亲水整理;透水时间;接触角中图分类号:T S195.67 文献标识码:A0 前 言聚丙烯纤维具有质量轻、强度高、保暖性好、抗污、抗霉变、耐磨、耐化学腐蚀等优点,且原料价格低廉,对于纺织行业具有很强的吸引力。
由其制成的非织造布因其制备工艺流程短、产量大、成本低、撕裂强度高等优点在一次性医疗、保健、卫生和超净化环境用品中占有较高的市场份额。
但聚丙烯为非极性分子结构,结晶度高,结构紧密且分子中无亲水基团,以致聚丙烯非织造布吸湿性差,难以适应在一次性医疗、保健、卫生和超净化环境用品领域对吸湿性的要求。
因此,聚丙烯非织造布要在这些领域得到广泛应用必须对其进行亲水整理,以改善其吸湿性。
目前国内外对涤纶织物亲水整理剂的研究较多[1-3],但对适用于聚丙烯非织造布的亲水整理剂的研究鲜有报道。
本实验采用阴离子表面活性剂OASE、快速渗透剂T及自制非离子型高分子表面活性剂 聚醚改性硅油为原料,通过复配方式制备适用于聚丙烯非织造布的亲水整理剂,并研究该整理剂在聚丙烯非织造布上的亲水整理应用工艺。
聚丙烯纤维亲水改性的研究赵灿纺硕1002班学号:2100032摘要:聚丙烯纤维综合性能好,用途广泛,但由于分子中不含极性基团亲水性差,限制了其应用领域。
为了扩大聚丙烯纤维的应用范围,需要对纤维进行亲水改性。
本文分析了聚丙烯纤维亲水性差的原因,简要介绍提高其亲水性的几种方法,通过亲水性处理,改善聚丙烯纤维表面状况或大分子结构,可在保持纤维原有性能的基础上改进聚丙烯纤维的亲水性。
关键词:聚丙烯纤维;亲水性;改性The Hydrophilic Modification of Polypropylene Fiber Abstract:Polypropylene fiber is widely used because of its good comprehensive performance, however, without polar group, its hydrophilicity is poor, thus limited its application areas. In order to expand the application of polypropylene fiber, we need to modify its hydrophilicity. The article analyzed the reasons that make polypropylene fibers hydrophobic, briefly introduced several methods of improving its hydrophilicity, through the hydrophilic treatment, the situation of its surface or macromolecular structure is modified, thus improving the hydrophilicity of polypropylene fiber on the basis of maintaining its original performance.Keywords: Polypropylene fiber; hydrophilicity; modification前言聚丙烯纤维(丙纶),具有质地轻、强力高、弹性好、耐腐蚀、不起球等优点,其原料丙烯来源丰富,生产成本较低。
医用介入导管材料聚丙烯的亲水性及生物相容性表面改性研究的开题报告一、研究背景及意义医用介入导管广泛用于人体内部的治疗和诊断,在手术中有着至关重要的作用。
目前,常用的医用导管材料主要有聚乙烯、聚氨酯、聚碳酸酯、聚乳酸等,但这些材料存在相应的问题,如亲水性差、生物相容性差等,容易导致机体对其产生排斥和不良反应,影响治疗和诊断效果。
聚丙烯作为医用导管材料,在亲水性和生物相容性方面也存在一定的不足。
因此,针对聚丙烯的表面改性研究具有重要的意义,可以提高其亲水性和生物相容性,降低机体对其的排斥和不良反应,提高治疗和诊断效果。
二、研究内容及方法本研究的主要内容是针对聚丙烯的表面改性研究,旨在提高其亲水性和生物相容性,具体包括以下几个方面:1.表面改性方法的选择及优化。
本研究将探讨聚丙烯表面改性的几种方法,包括物理方法和化学方法,根据实验结果选择最优方法进行表面改性。
2.表面特性的分析和评价。
对改性后的聚丙烯导管进行表面形态、元素组成、亲水性等方面的测试和分析,评价改性效果。
3.生物相容性的评价。
应用细胞培养和动物实验等方法,评价改性后材料对细胞和动物的生物相容性和安全性。
三、研究预期结果1.采用合适的表面改性方法,成功改善聚丙烯导管的表面特性,提高其亲水性和生物相容性。
2.对改性后的材料进行全面的表面特性分析和评价,确认改性效果。
3.通过生物相容性评价,证明改性后的材料对细胞和动物的生物相容性和安全性良好,并具有较好的应用前景。
四、研究意义及应用前景本研究对改善聚丙烯导管材料的亲水性和生物相容性,提高其在医学领域的应用价值具有重大意义,具体包括以下几个方面:1.提高医用导管的安全性和效果。
改性后的材料能够减少机体对其的排斥和不良反应,提高治疗和诊断效果。
2.推动医用材料的发展。
表面改性技术可以对医用材料的特性进行调整,推动医用材料的发展,为相关领域的发展做出贡献。
3.具有广阔的应用前景。
该研究成果可以在很多领域得到应用,如医疗器械制造、生物医学工程等,对相关领域的发展做出贡献。
丙纶非织造布亲水改性工艺研究何一帆 赵耀明 (华南理工大学材料学院,广州,510640)摘 要:论述了用表面活性剂对纺粘法丙纶非织造布进行亲水化改性的机理和表面活性剂的选用要求。
通过正交试验法优选出用三组分表面活性剂复配体系对丙纶非织造布整理的最优工艺条件,讨论了处理温度、处理时间和处理浓度对非织造布亲水性影响的规律。
经整理后的纺粘法丙纶非织造布的透水时间为1.2s,获得了优异的亲水性改性效果。
关键词:表面活性剂,亲水性,整理,丙纶非织造布,透水时间中图分类号:T S195 5 文献标识码:A 文章编号:1004-7093(2002)12-0031-04丙纶非织造布具有良好的透气性、极低的回潮率(仅为0.03%),抗张强力、抗弯曲强度、耐磨损等性能好,价格较低廉。
但由于聚丙烯大分子结构中没有亲水性基团,且结晶度高,同时纤维截面呈圆形,结构致密,缺少微孔和缝隙,所以丙纶亲水性极差。
为了使丙纶非织造布在用即弃卫生材料领域得到更广泛的应用,必须对其进行有效的亲水改性。
使丙纶非织造布具有亲水性主要是在纺丝和整理两个过程中进行[1]。
纺丝改性大多是纤维的整理改性,如通过大分子结构亲水化法、与亲水化单体接枝共聚法、与亲水化物质共混法和纤维结构微孔化法等[2~3]。
而整理改性则大多是纤维表面层的改性,这种改性方法具有生产工艺短、操作简便、成本较低的优点。
尽管表面亲水化整理的纤维亲水性的耐久性差,但由于用即弃卫生材料对耐久性要求不高,而且该方法经济效益高,所以值得采用。
表面亲水化整理工艺一般分为浸渍法和浸轧法两类。
浸轧法常用于布匹加工,浸渍法则常用于纱线加工。
本研究从生产实际的需要出发,着重探讨丙纶非织造布采用浸轧法进行亲水化整理改性的工艺及其规律。
收稿日期:2002-07-11作者简介:何一帆,女,1978年生,在读硕士研究生。
主要从事丙纶非织造布功能改性的研究和开发工作。
1 表面活性剂对丙纶的亲水化改性机理1.1 润湿机理由于丙纶不吸水,其表面不能被水所润湿。
聚丙烯无纺布表面亲疏水位点的构建及其吸附性能研究本研究采用辐照接枝的方式将甲基丙烯酸缩水甘油酯(GMA)单体引入聚丙烯非织造布表面,并通过与正辛胺开环反应制备出一种具有亲疏水位点的双亲性非织造布(PP-g-GMA-OA)。
系统研究了该非织造布对邻苯二甲酸酯(DBP和DEHP)和双酚A(BPA)等内分泌干扰物(EDCs)的吸附性能和吸附行为。
通过红外(FTIR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、接触角(CA)以及激光共聚焦扫描显微镜(CLSM)等方式,探究了 PP-g-GMA-OA非织造布的表面官能团、元素组成、表面形貌、表面能和内部空间结构。
此外本研究还构建了一种疏水性的对比结构(PP-g-LMA),通过对两者吸附性能、吸附动力学、吸附作用力、吸附过程活化能等方面的对比,量化亲疏水位点对于吸附行为的影响。
采用红外光谱分析和计算微分吸附焓的方法,检测氢键作用和疏水作用力作用的存在,提出氢键作用与疏水作用的协同吸附过程,探究两种作用力的协同吸附效应。
通过对比性结构设计和改变溶剂体系,建立方程量化氢键作用与疏水作用的参与度,结果表明疏水作用力是主要作用力,氢键作用辅助参与吸附。
从吸附过程能量的角度提出氢键吸附优先性原则,即吸附质优先占据能量较高的氢键吸附位点,然后再占据能量相对较低的疏水作用位点。
设计聚丙烯微粒接枝实验,采用粒径测试,将接枝构型与吸附行为相结合,认为接枝层具有收缩性构型和舒张型构型两种构型,相比于收缩型构型,舒张型构型能够提供更多的吸附空间和吸附位点,因此更有利于吸附。
将污染体系扩展到油水乳液,提出关于吸油材料构建的两个悖论,认为强疏水性与高孔隙率等吸油材料的构建方式忽视了溢油事故的实际情况。
因此本研提出了双亲性改性和构建贯穿通道的方法,成功地解决了常规吸附法无法清除油水乳液污染的问题。
最后本研究采用紫外辐照交联法在聚丙烯吸油毡表面构建高分子单向扩散层(PP-g-LA-co-EGDMA吸油毡),解决了常规纤维型吸油材料吸附量低,保油性能差的问题。
PEPP非织造布等离子体改性及其亲水抗静电性能的研究的开题报告一、研究背景非织造布作为一种新型的材料,具有重量轻、透气性好、柔软度高等特点,已广泛应用于医疗、卫生、包装、建筑等领域。
然而,在某些特定的应用领域中,非织造布的热塑性和亲水性等性能出现不足的情况,导致其应用效果不佳。
因此,通过对非织造布进行改性,从而改善其性能,已成为当前研究的热点问题之一。
等离子体技术作为一种新型的材料表面改性技术,近年来被广泛应用于各个领域。
等离子体可以产生高能电子,离子和自由基等活性粒子,从而改变材料表面的化学和物理性质。
将等离子体技术应用于非织造布的改性中,可以改善其亲水性和抗静电性能。
因此,本研究将通过等离子体技术,对非织造布进行改性,并研究其亲水性和抗静电性能的变化规律,为非织造布的应用提供有益的参考。
二、研究目的和内容本研究的目的为,通过等离子体技术对PEPP非织造布进行改性,研究改性后的非织造布的亲水性和抗静电性能的变化规律。
具体研究内容如下:1. 制备PEPP非织造布,并确定其基本性能指标;2. 确定等离子体改性的最佳工艺条件,包括等离子体功率、气体流速、处理时间等因素;3. 采用联系角法和表面电位法,研究等离子体改性后的PEPP非织造布的亲水性和表面电位的变化规律;4. 采用静电计和扫描电镜等手段,研究等离子体改性后的PEPP非织造布的抗静电性能和表面形貌的变化规律;5. 对研究结果进行分析和总结,并提出下一步的研究方向和建议。
三、研究意义本研究的意义在于,通过等离子体技术对PEPP非织造布进行改性,提高其亲水性和抗静电性能,从而改善其应用效果。
同时,本研究也可以为非织造布的制备和改性提供有益的参考,对于促进非织造布的发展具有重要的意义。
四、预期结果通过本研究,预期可以得到以下几方面的结果:1. 确定等离子体改性的最佳工艺条件,为非织造布的改性提供参考;2. 研究等离子体改性对PEPP非织造布表面亲水性和抗静电性能的影响,为其在特定应用领域中的应用提供理论依据;3. 对非织造布的改性提供一种新的方法和思路。