有限元方法在机械工程领域的应用
- 格式:doc
- 大小:43.00 KB
- 文档页数:5
有限元法在机械设计中的应用有限元法(Finite Element Method, FEM)是一种数值分析方法,广泛应用于工程领域中的机械设计中。
它能够有效地模拟各种结构的力学行为,帮助工程师优化设计、预测性能和寻找问题源。
本文将介绍有限元法在机械设计中的应用,并探讨其在不同情况下的优势和局限性。
有限元法是一种基于物理原理的数学方法,它将一个复杂的结构分解成许多小的单元,然后对这些单元进行力学分析。
在这个过程中,工程师可以考虑各种因素如材料的弹性、载荷的大小和方向、结构的约束等,从而得到结构的应力、变形等信息。
有限元法的优势在于可以模拟各种非线性和复杂的情况,比如弯曲、扭曲、疲劳等,因此在机械设计中有着广泛的应用。
在机械设计中,有限元法通常用于以下几个方面:1. 结构强度分析结构强度分析是有限元法的一个主要应用领域。
利用有限元法,工程师可以对各种结构进行应力、变形、疲劳寿命等方面的分析,从而优化设计和提高产品的可靠性。
比如在汽车零部件的设计中,有限元法可以帮助工程师确定零部件在各种情况下的受力情况,从而指导材料的选择和结构的设计。
3. 液压、气动系统分析有限元法还可以用于分析液压、气动系统的结构。
比如在液压缸的设计中,工程师可以利用有限元法模拟缸体在液压压力的作用下的应力分布,从而找到哪些地方可能会受到损坏,并做出相应的改进。
4. 材料优化有限元法还可以帮助工程师进行材料的优化设计。
比如在航空航天领域,工程师可以利用有限元法进行材料的轻量化设计,从而提高产品的性能和降低成本。
尽管有限元法在机械设计中有许多优势,但它也存在一些局限性。
比如在模拟结构破坏时的行为时,有限元法需要考虑材料的非线性、裂纹的扩展等因素,这将增加分析的复杂度和计算的难度。
有限元法也需要合理的边界条件和加载条件,否则结果可能不准确。
随着计算机技术的发展,这些问题逐渐得到了解决,有限元法在机械设计中的应用范围也在不断扩大。
有限元法在机械设计中扮演着重要的角色。
机械工程中的有限元分析方法学习有限元分析(Finite Element Analysis,FEA)是一种用于求解结构力学问题的数值方法。
在机械工程中,有限元分析是一项重要的工具,可以预测和优化机械结构的性能,并帮助工程师设计更可靠、更高效的产品。
本文将介绍机械工程中的有限元分析方法,并讨论其在不同领域的应用。
有限元分析的基本原理是将复杂的连续体划分为许多有限的几何单元,如三角形或四边形。
每个几何单元被视为一个子结构,可以通过离散的方式来建立数学模型。
然后,利用数值方法求解这些子结构的应力和形变。
最后,将这些子结构的解合并,得到整个结构的应力和形变分布。
在进行有限元分析之前,首先需要进行建模。
建模是指将实际结构的几何形状转化为计算机可以处理的几何模型。
常见的建模软件有SolidWorks、CATIA、AutoCAD等。
在建模过程中,需要考虑结构的复杂性和准确性,以及计算机资源的限制。
建模完成后,下一步是对结构进行离散化。
离散化是指将结构划分为有限元素,并定义元素之间的连接关系。
根据结构的形状和性质,可以选择合适的有限元类型。
常见的有限元类型有线性三角形单元、线性四边形单元、六面体单元等。
每个有限元都有自己的节点和自由度,节点用于定义有限元的几何形状,自由度用于描述节点的位移。
完成离散化后,需要对有限元模型进行加载和约束条件的定义。
加载是指对结构施加外部载荷,包括静载荷和动载荷。
约束条件是指对结构的部分或全部自由度进行限制,以模拟实际工况中的约束情况。
加载和约束条件的定义需要根据实际应用场景进行合理选择。
有限元分析的核心是求解方程组。
通过应变能量原理和变分法,可以得到结构的刚度矩阵和载荷向量。
然后,利用数值方法求解线性代数方程组,得到结构的位移和应力。
常用的求解方法有直接法、迭代法和模态分析法。
求解方程组时,需要考虑数值稳定性和精度控制。
完成有限元分析后,可以对结果进行后处理。
后处理是指对分析结果进行可视化和分析,以评估结构的性能。
有限元法在机械设计中的应用摘要:随着计算机水平的不断提高,计算机技术被广泛应用,有限元法在这个过程中也得到了快速的发展。
有限元软件在功能上也在不断的完善。
在产品的设计与研制过程中,有限元法的优越性越来越突出,目前已经成为机械设计中最关键的工具之一。
关键词:有限元法;机械设计;应用一、有限元法在机械设计中的应用步骤有限元法应用需要遵循一定的步骤,这个步骤是我们使用有限元法的一个有效的重要支撑。
如果我们不能够对这个步骤进行严格的遵守,那么我们的有限元法在进行使用的过程中就有可能会遇到一些意料之外的不良状况。
实际上,有限元法精髓就在于它对于复杂问题的分解。
通过有条理性的问题分解,我们才可以将复杂的建模过程简化,应用较少的人力物力资源而设计出高质量的机械设备。
有限元法的步骤大致上可以分为这样的三部分:模型简化和单元格划分、荷载分析、建立模型并并行整改。
下文当中,我们将对这三个部分进行简单的介绍。
1.1 模型简化和单元格划分首先,有限元法在机械设计当中的第一个步骤,就是模型的简化和单元格的划分。
我们所有的机械设计都是有着一定的背景的,有了这个环境的需求,我们才可以着手进行机械设计。
我们进行有限元法的应用时,最首先的一个步骤,就是要对这个应用的背景进行简化,建立一个简化的模型。
这个模型必须要包括这个应用的绝大多数关键信息,而且容易计算。
然后,我们就可以进行模型的单元格划分了。
这个步骤,就是我们有限元法的精髓所在。
有限元法之所以在当今时代实际意义很大,就是因为它可以把复杂的场景简单化,把难的计算单元格化。
一旦单元格化步骤完成,那么我们在进行下一步的计算以及后来的建模就会事半功倍。
1.2 计算荷载情况在进行完模型的简化和问题的单元格化划分之后,我们就将正式的开始机械设计当中的计算步骤了。
这个步骤也是至关重要的,如果我们做不好这一步,那么我们前面的功夫都就白费了。
目前,我们需要利用到有限元法而进行的机械设计往往是那种规模较大,承载力较强的机械。
有限元分析在机械设计中的应用机械设计是一个庞大且复杂的领域,涉及到各种力学性能的考量和优化。
而有限元分析(Finite Element Analysis,简称FEA)是一种在机械设计中相当重要的工具,能够帮助工程师们更好地了解和改善产品的结构和性能。
本文将探讨有限元分析在机械设计中的应用。
首先,有限元分析可以帮助工程师们预测和评估机械产品在各种载荷和环境条件下的行为。
通过将复杂的结构分割成许多小的有限元(finite element),并对每个有限元进行力学和物理性质的模拟分析,可以获取整个结构的行为。
这能够帮助工程师们确定材料的应力和变形分布,预测潜在的破坏点,以及评估产品的可靠性和寿命。
例如,在航空航天工业中,工程师们可以使用有限元分析来研究飞机结构在高速飞行和极端温度变化下的强度和稳定性。
其次,有限元分析还能够帮助工程师们进行结构优化。
通过在有限元模型中引入设计变量,如材料类型、尺寸、形状等,可以进行参数化研究和优化分析。
工程师们可以通过改变不同设计变量的取值,探索最佳的设计方案,以满足指定的性能要求。
例如,在汽车工业中,有限元分析可以帮助工程师们优化车身结构的强度和刚度,以提高整车的安全性和驾驶性能。
另外,有限元分析还能够帮助工程师们进行疲劳和断裂分析。
在机械设计中,疲劳和断裂是常见的失效模式,对于产品的使用寿命和可靠性具有重要影响。
有限元分析可以模拟材料在重复载荷下的疲劳行为,并预测疲劳寿命。
此外,还可以通过应力强度因子等参数对断裂特性进行评估,以避免突发断裂事故的发生。
这种能力使得有限元分析成为了机械设计领域中不可或缺的工具。
虽然有限元分析在机械设计中具有广泛的应用,但也有一些局限性。
首先,有限元分析需要工程师们对数值计算和力学知识有深入的理解和掌握,以保证模拟结果的准确性和可靠性。
其次,有限元分析的结果受到多种因素的影响,如边界条件的确定、材料模型的选择等。
因此,在进行有限元分析之前,需要进行详细的前期准备和模型验证,以确保结果的可信度。
有限元法在机械设计中的应用有限元法是一种基于数学原理的现代计算技术,它被广泛应用于机械设计、结构分析、流体力学、电磁场等领域。
在机械设计中,有限元法可以帮助工程师们更准确地预测和分析结构性能,优化设计,提高产品质量和节约成本。
以下是有限元法在机械设计中的应用。
1. 结构分析有限元法最常用的应用是结构分析。
在机械设计中,结构分析可以帮助工程师们分析机械零部件的应力、变形、位移、刚度等特征。
通过有限元法,可以将结构分为许多小的单元,计算每个单元的应力和位移,并将它们整合成整体结构的应力和位移。
这样一来,工程师们可以更好地理解结构的性能,选择更合适的设计方案。
2. 材料选择在机械设计中,材料的选择是非常重要的。
有限元法可以对不同材料的性能进行计算,帮助工程师们选择最优的材料。
通过计算应力和位移,可以确定材料的强度、刚度、韧性等特性。
这样一来,工程师们就可以根据不同的需求选择适合的材料。
3. 疲劳分析疲劳分析是机械设计中的一个重要方面。
有限元法可以在设计过程中对零部件进行疲劳分析,计算它们的疲劳寿命。
通过预测零部件的疲劳寿命,工程师们可以选择更可靠的设计方案,避免机械失效和安全事故。
4. 模拟分析在机械设计的早期阶段,有限元法可以在计算机上进行模拟分析,帮助工程师们进行设计可行性分析。
通过模拟分析,工程师们可以验证设计是否合理,优化设计,提高机械性能。
5. 优化设计有限元法还可以用于优化机械设计。
通过计算不同设计方案的性能,工程师们可以通过优化设计来改进机械性能。
这种优化设计方法可以在早期阶段对机械进行改进,避免在后期阶段出现缺陷和工作效率低下。
有限元法及模拟软件DEFORM在机械方面中的应用【摘要】有限元法广泛应用于科学计算、设计、分析中,解决了许多复杂的问题。
在机械设计中已成为一个重要的工具。
在有限元基本原理的基础上,介绍了有限元的概念、有限元的分析步骤、有限元模拟软件DEFORM-3D、及其在机械设计中的应用。
【关键词】有限元;DEFORM;机械设计;应用0.引言近年来,随着计算机性能和运算速度的迅速提高以及有限元法应用的日趋成熟与完善,并与其它技术相结合取得了较大进展,如自适应网格划分、三维场建模求解、耦合问题和开域问题等,有限元法在求解非线性和多场耦合方面的强大功能也日益明显。
利用大型商用有限元软件DEFORM-3D对机械设计过程进行模拟仿真,期望可以对实际加工工艺参数的选取和改进提供理论上的依据。
1.有限元法有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
2.有限元分析步骤有限元法求解问题一般遵循以下的分析过程和步骤:2.1结构的离散化结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。
将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。
离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。
所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。
这样,用有限元分析计算所获得的结果是近似的。
有限元分析在工程机械钢结构设计及结构优化中的应用共3篇有限元分析在工程机械钢结构设计及结构优化中的应用1有限元分析是一种基于数字计算的工程设计方法,可以在虚拟环境中对物体进行模拟,计算出物体在各种力和材质条件下的变形和应力状态。
在机械工程中,有限元分析技术被广泛应用于钢结构设计及结构优化中,可以有效提高工程机械的安全性、耐久性和性能。
在工程机械领域,钢结构设计是一个重要的环节,它涉及到许多因素,如结构强度,耐久性,安全性等。
通常,机械设计师需要设计一个坚固耐用的钢结构,同时还要确保其满足规定的力学要求和安全标准。
由于机械结构较为复杂,往往难以通过手工计算或实验测量来获得精确的力学参数,这时有限元分析技术便可以发挥重要的作用。
首先,有限元分析可以提供高精度的结构分析,可以根据设计要求细化结构模型,考虑各种载荷和边界条件下的最坏情况,分析结构的应变、应力分布,预测可能的破坏模式,从而优化结构的设计和材料选用。
有限元分析工具可以模拟正常工作过程中的多重载荷,包括静载荷和动载荷等,还可以模拟极端工作条件下的结构响应,例如自然频率、疲劳寿命等。
其次,有限元分析提供了快速和成本效益的解决方案。
设计人员可以使用有限元分析软件对各种结构方案进行快速优化,以获得最佳性能和最小的成本。
此外,比较不同结构方案的有限元分析结果可以帮助设计人员选择最佳方案,避免遗留的缺陷和错误设计问题。
最后,有限元分析还可以帮助设计人员进行结构疲劳寿命分析。
对于大型机械设备,疲劳破坏是主要的破坏模式之一。
在有限元分析中,设计人员可以对结构进行动态载荷仿真,预测结构各部件的疲劳寿命和破坏模式,从而提高结构的耐久性和工作寿命。
尽管有限元分析技术在机械工程中的应用已取得了巨大成功,但同时还存在一些挑战和限制。
例如,有限元分析的结果准确性很大程度上取决于材料属性的准确性,结构模型的准确性和边界条件的模拟准确度,因此有限元分析前期建模的精度很高。
基于有限元模拟的机械振动分析研究一、引言机械振动是在机械结构中周期性的振动现象。
对于机械系统来说,振动不仅会降低机械设备的稳定性、可靠性和寿命,还会引起噪声、能量损耗等不良影响。
因此,准确地预测、分析和控制机械振动是机械工程领域的研究热点之一。
本文将介绍基于有限元模拟的机械振动分析研究。
二、有限元分析方法有限元方法是一种广泛应用于工程领域的数值计算方法,它可以模拟实际工程中复杂的结构和载荷情况。
有限元分析将实际结构离散化为有限数量的区域,然后利用数学方法对各个区域进行计算,最终得到整个结构的振动特性。
三、有限元模拟在机械振动分析中的应用1. 结构动力学分析有限元模拟可以预测机械结构在不同工况下的振动特性,包括自由振动和强迫振动。
通过对结构的模态分析,可以确定结构的固有频率、振型以及模态质量等参数,进而评估结构的稳定性和可靠性。
2. 振动响应分析有限元模拟可以模拟机械结构在外部激励下的振动响应。
通过对结构进行动力学分析,可以获得机械结构在不同频率和振幅下的振动响应曲线,并进一步评估结构的动态性能和振动特性。
3. 结构模态优化有限元模拟可以提供不同结构参数下的振动特性,从而帮助工程师选择合适的结构参数以达到减振和优化设计的目的。
通过在有限元模拟中改变材料性质、尺寸、连接方式等参数,可以评估不同设计方案的振动特性并做出合理的优化。
四、有限元模拟的局限性和解决方案尽管有限元模拟在机械振动分析中具有广泛的应用,但也存在一定的局限性。
首先,有限元模拟是基于一定假设和简化条件进行的,因此得到的结果可能与实际情况存在一定差异。
其次,模型的精确性和准确性与所采用的网格密度和模型参数有关。
最后,有限元模拟需要进行大量的计算,对计算机性能和算法效率提出了较高的要求。
为了克服这些局限性,可以采取以下解决方案。
首先,完善模型的建立过程,尽可能准确地模拟实际结构和载荷条件。
其次,在有限元模拟中采用合适的网格划分和参数调整,以提高模型的精度和准确性。
有限元方法在机械工程领域的应用有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
简介有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。
它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。
有限元法分析计算的思路和做法可归纳如下:1)物体离散化将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。
离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。
所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。
这样,用有限元分析计算所获得的结果只是近似的。
如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。
2)单元特性分析A、选择位移模式在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。
位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。
当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。
这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。
通常,有限元法我们就将位移表示为坐标变量的简单函数。
这种函数称为位移模式或位移函数。
B、分析单元的力学性质根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。
此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。
C、计算等效节点力物体离散化后,假定力是通过节点从一个单元传递到另一个单元。
但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。
因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上的力。
3)单元组集利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程(1-1)式中,K是整体结构的刚度矩阵;q是节点位移列阵;f是载荷列阵。
4)求解未知节点位移解有限元方程式(1-1)得出位移。
这里,可以根据方程组的具体特点来选择合适的计算方法。
通过上述分析,可以看出,有限单元法的基本思想是"一分一合",分是为了就进行单元分析,合则为了对整体结构进行综合分析。
有限元的发展概况1943年 courant在论文中取定义在三角形域上分片连续函数,利用最小势能原理研究St.Venant的扭转问题。
1960年 clough的平面弹性论文中用“有限元法”这个名称。
1965年冯康发表了论文“基于变分原理的差分格式”,这篇论文是国际学术界承认我国独立发展有限元方法的主要依据。
1970年随着计算机和软件的发展,有限元发展起来。
涉及的内容:有限元所依据的理论,单元的划分原则,形状函数的选取及协调性。
有限元法涉及:数值计算方法及其误差、收敛性和稳定性。
应用范围:固体力学、流体力学、热传导、电磁学、声学、生物力学求解的情况:杆、梁、板、壳、块体等各类单元构成的弹性(线性和非线性)、弹塑性或塑性问题(包括静力和动力问题)。
能求解各类场分布问题(流体场、温度场、电磁场等的稳态和瞬态问题),水流管路、电路、润滑、噪声以及固体、流体、温度相互作用的问题。
5)有限元的未来是多物理场耦合5)有限元的未来是多物理场耦合随着计算机技术的迅速发展,在工程领域中,有限元分析(FEA)越来越多地用于仿真模拟,来求解真实的工程问题。
这些年来,越来越多的工程师、应用数学家和物理学家已经证明这种采用求解偏微分方程(PDE)的方法可以求解许多物理现象,这些偏微分方程可以用来描述流动、电磁场以及结构力学等等。
有限元方法用来将这些众所周知的数学方程转化为近似的数字式图象。
早期的有限元主要关注于某个专业领域,比如应力或疲劳,但是,一般来说,物理现象都不是单独存在的。
例如,只要运动就会产生热,而热反过来又影响一些材料属性,如电导率、化学反应速率、流体的粘性等等。
这种物理系统的耦合就是我们所说的多物理场,分析起来比我们单独去分析一个物理场要复杂得多。
很明显,我们现在需要一个多物理场分析工具。
在上个世纪90年代以前,由于计算机资源的缺乏,多物理场模拟仅仅停留在理论阶段,有限元建模也局限于对单个物理场的模拟,最常见的也就是对力学、传热、流体以及电磁场的模拟。
看起来有限元仿真的命运好像也就是对单个物理场的模拟。
现在这种情况已经开始改变。
经过数十年的努力,计算科学的发展为我们提供了更灵巧简洁而又快速的算法,更强劲的硬件配置,使得对多物理场的有限元模拟成为可能。
新兴的有限元方法为多物理场分析提供了一个新的机遇,满足了工程师对真实物理系统的求解需要。
有限元的未来在于多物理场求解。
千言万语道不尽,下面只能通过几个例子来展示多物理场的有限元分析在未来的一些潜在应用。
压电扩音器(Piezoacoustic transducer)可以将电流转换为声学压力场,或者反过来,将声场转换为电流场。
这种装置一般用在空气或者液体中的声源装置上,比如相控阵麦克风,超声生物成像仪,声纳传感器,声学生物治疗仪等,也可用在一些机械装置比如喷墨机和压电马达等。
压电扩音器涉及到三个不同的物理场:结构场,电场以及流体中的声场。
只有具有多物理场分析能力的软件才能求解这个模型。
压电材料选用PZT5-H晶体,这种材料在压电传感器中用得比较广泛。
在空气和晶体的交界面处,将声场边界条件设置为压力等于结构场的法向加速度,这样可以将压力传到空气中去。
另外,晶体域中又会因为空气压力对其的影响而产生变形。
仿真研究了在施加一个幅值200V,震荡频率为300 KHz的电流后,晶体产生的声波传播。
这个模型的描述及其完美的结果表明在任何复杂的模型下,我们都可以用一系列的数学模型进行表达,进而求解。
多物理场建模的另外一个优势就是在学校里,学生们直观地获取了以前无法见到的一些现象,而简单易懂的表达方式也获得了学生们的好感。
这只是Krishan Kumar Bhatia博士在纽约Glassboro的Rowan 大学给高年级的毕业生讲授传热方程课程时介绍建模及分析工具所感受到的,他的学生的课题是如何冷却一个摩托车的发动机箱。
Bhatia博士教他们如何利用“设计-制造-检测”的理念来判断问题、找出问题、解决问题。
如果没有计算机仿真的应用,这种方法在课堂上推广是不可想象的,因为所需费用实在是太大了。
COMSOL Multiphysics拥有优秀的用户界面,可以使学生方便地设置传热问题,并很快得到所需要的结果。
“我的目标是使每个学生都能了解偏微分方程,当下次再遇到这样的问题时,他们不会再担心,” Bhatia博士说,“这不需要了解太多的分析工具,总的来说,学生都反映‘这个建模工具太棒了’”。
很多优秀的高科技工程公司已经看到多物理场建模可以帮助他们保持竞争力。
多物理场建模工具可以让工程师进行更多的虚拟分析而不是每次都需要进行实物测试。
这样,他们就可以快速而经济地优化产品。
在印度尼西亚的Medrad Innovations Group中,由John Kalafut博士带领着一个研究小组,采用多物理场分析工具来研究细长的注射器中血细胞的注射过程,这是一种非牛顿流体,而且具有很高的剪切速率。
通过这项研究,Medrad的工程师制造了一个新颖的装置称为先锋型血管造影导管(Vanguard Dx Angiographic Catheter)。
同采用尖喷嘴的传统导管相比,采用扩散型喷嘴的新导管使得造影剂分布得更加均匀。
造影剂就是在进行X光拍照时,将病变的器官显示得更加清楚的特殊材料。
另外一个问题就是传统导管在使用过程中可能会使得造影剂产生很大的速度,进而可能会损伤血管。
先锋型血管造影导管降低了造影剂对血管产生的冲击力,将血管损伤的可能性降至最低。
关键的问题就是如何去设计导管的喷嘴形状,使其既能优化流体速度又能减少结构变形。
Kalafut的研究小组利用多物理场建模方法将层流产生的力耦合到应力应变分析中去,进而对各种不同喷嘴的形状、布局进行流固耦合分析。
“我们的一个实习生针对不同的流体区域建立不同的喷嘴布局,并进行了分析,” Kalafut博士说,“我们利用这些分析结果来评估这些新想法的可行性,进而降低实体模型制造次数”。
摩擦搅拌焊接(FSW),自从1991年被申请专利以来,已经广泛应用于铝合金的焊接。
航空工业最先开始采用这些技术,现在正在研究如何利用它来降低制造成本。
在摩擦搅拌焊接的过程中,一个圆柱状具有轴肩和搅拌头的刀具旋转插入两片金属的连接处。
旋转的轴肩和搅拌头用来生热,但是这个热还不足以融化金属。
反之,软化呈塑性的金属会形成一道坚实的屏障,会阻止氧气氧化金属和气泡的形成。
粉碎,搅拌和挤压的动作可以使焊缝处的结构比原先的金属结构还要好,强度甚至可以到原来的两倍。
这种焊接装置甚至可以用于不同类型的铝合金焊接。
空中客车(AirBus)资助了很多关于摩擦搅拌焊接的研究。
在制造商大规模投资和重组生产线之前,Cranfield大学的Paul Colegrove博士利用多物理场分析工具帮助他们理解了加工过程。
第一个研究成果是一个摩擦搅拌焊接的数学模型,这让空客的工程师“透视”到焊缝中来检查温度分布和微结构的变化。
Colegrove博士和他的研究小组还编写了一个带有图形界面的仿真工具,这样空客的工程师可以直接提取材料的热力属性以及焊缝极限强度。
在这个摩擦搅拌焊接的模拟过程中,将三维的传热分析和二维轴对称的涡流模拟耦合起来。
传热分析计算在刀具表面施加热流密度后,结构的热分布。
可以提取出刀具的位移,热边界条件,以及焊接处材料的热学属性。
接下来将刀具表面处的三维热分布映射到二维模型上。
耦合起来的模型就可以计算在加工过程中热和流体之间的相互作用。