01【数学】1.1.1《集合的表示方法》学案(新人教版A版必修1)
- 格式:doc
- 大小:517.00 KB
- 文档页数:2
1.1 第2课时集合的表示『学习目标导航』1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)『基础·初探』教材整理1 列举法阅读教材,回答下列问题.把集合的元素出来,并用括起来表示集合的方法叫做列举法.微体验大于4并且小于10的奇数组成的集合用列举法可表示为________.教材整理2 描述法阅读教材,回答下列问题.1.定义:用集合所含元素的表示集合的方法称为描述法.2.具体方法:在花括号内先写上表示这个集合元素的及,再画一条竖线,在竖线后写出这个集合中元素所具有的.微体验判断(正确的打“√”,错误的打“×”)(1)集合0∈{x |x >1}.( )(2)集合{x |x <5,x ∈N }中有5个元素.( )(3)集合{(1,2)}和{x |x 2-3x +2=0}表示同一个集合.( )『小组合作型』类型一用列举法表示集合例1 用列举法表示下列集合:(1)36与60的公约数组成的集合;(2)方程(x -4)2(x -2)=0的根组成的集合;(3)一次函数y =x -1与y =-23x +43的图象的交点组成的集合.『再练一题』1.用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=2x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合;(4)由所有正整数构成的集合.类型二用描述法表示集合例2用描述法表示下列集合:(1)比1大又比10小的实数的集合;(2)平面直角坐标系中第二象限内的点组成的集合.(3)被3除余数等于1的正整数组成的集合;『再练一题』2.用另一种方法表示下列集合:(1){能被3整除且小于10的正数};(2){(x,y)|x+y=6,x∈N*,y∈N*};(3){-3,-1,1,3,5};(4){自然数中六个最小数的平方};(5){y|y=-x2+6,x∈N,y∈N}.『探究共研型』类型三集合表示方法的简单应用探究1下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.(1)它们各自的含义是什么?(2)它们是不是相同的集合?探究2设集合A={x|ax2+x+1=0},构成集合A的元素是什么?例3集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.『再练一题』3.已知集合A={x|ax2-3x-4=0,x∈R},若A中至多有一个元素,求实数a的取值范围.『当堂训练』1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{3,4} B.A={2,3,4,5}C.{2<x<5} D.{x|2<x<5,x∈N}2.如果A={x|x>-1},那么()A.-2∈A B.{0}∈AC.-3∈A D.0∈A3.若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示B=________.4.设集合A={x|x2-3x+a=0},若4∈A,则集合A用列举法表示为________.5.用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解集; (2)所有的正方形;(3)抛物线y =x 2上的所有点组成的集合.——★ 参*考*答*案 ★——『基础·初探』教材整理1 列举法一一列举花括号“{}”微体验{5,7,9}『解析』 由题意知,集合中的元素为5,7,9,故用列举法可表示为{5,7,9}.教材整理2 描述法1. 共同特征2.一般符号取值(或变化)范围共同特征微体验(1)× (2)√ (3)×『解析』(1){x |x >1}表示由大于1的实数组成的集合,而0<1,所以(1)错误.(2){x |x <5,x ∈N}表示小于5的自然数组成的集合,其含有0,1,2,3,4,共5个元素,所以(2)正确.(3)集合{(1,2)}中只有一个元素为(1,2),而{x |x 2-3x +2=0}中有两个元素1和2,所以(3)错误.『小组合作型』例1 解:(1)36与60的公约数有1,2,3,4,6,12,故所求集合为{1,2,3,4,6,12}.(2)方程(x -4)2(x -2)=0的根是4,2,故所求集合为{4,2}.(3)方程组⎩⎪⎨⎪⎧ x -y =1,2x +3y =4的解是⎩⎨⎧ x =75,y =25,故所求集合为⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫75,25. 『再练一题』解:(1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 {0,2,4,6,8,10}.(2)方程x 2=2x 的解是x =0或x =2,所以方程的解组成的集合为{0,2}.(3)将x =0代入y =2x +1,得y =1,即交点是(0,1),故交点组成的集合是{(0,1)}.(4)正整数有1,2,3,…,故所求集合为{1,2,3,…}.例2 解:(1){x ∈R|1<x <10}.(2)集合的代表元素是点,用描述法可表示为{(x ,y )|x <0,且y >0}.(3){x |x =3n +1,n ∈N }.『再练一题』解:(1){3,6,9}.(2){(1,5),(2,4),(3,3),(4,2),(5,1)}.(3){x |x =2k +1,-2≤k ≤2,k ∈Z }.(4){0,1,4,9,16,25}.(5)∵y =-x 2+6≤6,且x ∈N ,y ∈N ,∴x =0,1,2,y =6,5,2.∴集合为{2,5,6}.『探究共研型』探究1 提示:(1)集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,所以实质上{x |y =x 2+1}=R ;集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以实质上{y |y =x 2+1}={y |y ≥1};集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1,所以{(x ,y )|y =x 2+1}={P |P 是抛物线y =x 2+1上的点}.(2)由(1)中三个集合各自的含义知,它们是不同的集合.探究2 提示:构成集合中的元素是方程ax 2+x +1=0的解.例3 解:(1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意;(2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意. 综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.『再练一题』解:当a =0时,A =⎩⎨⎧⎭⎬⎫-43,满足题意; 当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,所以Δ=9+16a ≤0,即a ≤-916. 故所求的a 的取值范围是a ≤-916或a =0. 『当堂训练』1.『答案』A『解析』大于2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.『答案』D『解析』A .∵-2<-1,∴A 错误.B.{0}为集合,不是元素,∴B 错误.C.∵-3<-1,∴C 错误.D.∵0>-1,∴0∈A 成立.故选D.3.『答案』{4,9,16}『解析』由题意知,A ={-2,2,3,4},B ={x |x =t 2,t ∈A },∴B ={4,9,16}.4.『答案』{-1,4}『解析』∵4∈A ,∴16-12+a =0,∴a =-4,∴A ={x |x 2-3x -4=0}={-1,4}.5.解:(1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2, 故解集为{(4,-2)}.(2)集合用描述法表示为{x |x 是正方形},简写为{正方形}.(3)集合用描述法表示为{(x ,y )|y =x 2}.。
§1.1 集 合1.1.1 集合的含义与表示 第1课时 集合的含义学习目标 1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题. 3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一 集合的概念 元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母a ,b ,c ,…表示.(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母A ,B ,C ,…表示. 知识点二 元素与集合的关系思考 1是整数吗?12是整数吗?有没有这样一个数,它既是整数,又不是整数?答案 1是整数;12不是整数.没有.梳理 元素与集合的关系有且只有两种,分别为属于、不属于,数学符号分别为∈、∉. 知识点三 元素的三个特性思考 某班所有的“帅哥”能否构成一个界限清楚的群体?某班身高高于175厘米的男生呢?答案 某班所有的“帅哥”不能构成界限清楚的群体,因“帅哥”无明确的标准,难以判定该班某男生是否属于“帅哥”这一群体.高于175厘米的男生能构成一个界限清楚的群体,因为标准确定.梳理 元素的三个特性是指确定性、互异性、无序性.知识点四常用数集及表示符号名称自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R1.y=x+1上所有点构成集合A,则点(1,2)∈A.(√)2.0∈N但0∉N*.(√)3.由形如2k-1,其中k∈Z的数组成集合A,则4k-1∉A.(×)类型一判断给定的对象能否构成集合例1考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某班的所有高个子同学;(4)3的近似值的全体.考点集合的概念题点集合的概念解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合;(2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.反思与感悟判断给定的对象能不能构成集合,关键在于是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素.跟踪训练1下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C .平面直角坐标系内第一象限的一些点D .所有小的正数 考点 集合的概念 题点 集合的概念 答案 B解析 A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“平面直角坐标系内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合. 类型二 元素与集合的关系 命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N , 其中正确的个数为( ) A .1 B .2 C .3 D .4 考点 常用的数集及表示 题点 常用的数集及表示 答案 B解析 12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3是无理数,④错; 0是自然数,⑤错.故选B.反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号 “∈”或“∉”填空. -2________R ;-3________Q ; -1________N ;π________Z . 考点 常用的数集及表示 题点 常用的数集及表示 答案 ∈ ∈ ∉ ∉命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________.考点 元素与集合的关系 题点 伴随元素问题 答案 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素为0,1,2.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中元素满足2x +a >0,a ∈R ,若1∉A ,2∈A ,则( ) A .a >-4 B .a ≤-2 C .-4<a <-2 D .-4<a ≤-2考点 元素与集合的关系题点 由元素与集合的关系求参数的值 答案 D解析 ∵1∉A ,∴2×1+a ≤0,a ≤-2.又∵2∈A ,∴2×2+a >0,a >-4,∴-4<a ≤-2. 类型三 元素的三个特性的应用例4 已知集合A 有三个元素:a -3,2a -1,a 2+1,集合B 也有三个元素:0,1,x .(1)若-3∈A ,求a 的值; (2)若x 2∈B ,求实数x 的值; (3)是否存在实数a ,x ,使A =B . 考点 元素与集合的关系题点 由元素与集合的关系求参数的值 解 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3,当a -3=-3时,a =0;当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. (3)显然a 2+1≠0.由集合元素的无序性, 只可能a -3=0或2a -1=0. 若a -3=0,则a =3, A ={a -3,2a -1,a 2+1} ={0,5,10}≠B .若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1} =⎩⎨⎧⎭⎬⎫0,-52,54≠B .故不存在这样的实数a ,x ,使A =B .反思与感悟 元素的无序性主要体现在:①给出元素属于某集合,则它可能等于集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等. 跟踪训练4 已知集合M 中含有三个元素:2,a ,b ,集合N 中含有三个元素:2a,2,b 2,且M =N ,求a ,b 的值. 考点 元素与集合的关系题点 由元素与集合的关系求参数的值 解 方法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a ,b =b 2或⎩⎪⎨⎪⎧ a =b 2,b =2a ,解得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.方法二 ∵两个集合相等,则其中的对应元素相同.∴⎩⎪⎨⎪⎧a +b =2a +b 2,a ·b =2a ·b 2,即⎩⎪⎨⎪⎧a +b (b -1)=0, ①ab ·(2b -1)=0, ②∵集合中的元素互异, ∴a ,b 不能同时为零.当b ≠0时,由②得a =0或b =12.当a =0时,由①得b =1或b =0(舍去). 当b =12时,由①得a =14.当b =0时,a =0(舍去).∴⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.1.下列给出的对象中,能组成集合的是( )A .一切很大的数B .好心人C .漂亮的小女孩D .清华大学2018年入学的全体学生 考点 集合的概念 题点 集合的概念 答案 D2.下面说法正确的是( ) A .所有在N 中的元素都在N *中 B .所有不在N *中的数都在Z 中 C .所有不在Q 中的实数都在R 中 D .方程4x =-8的解既在N 中又在Z 中 考点 常用的数集及表示 题点 常用的数集及表示 答案 C3.由“book ”中的字母构成的集合中元素个数为________. 考点 集合中元素的特征 题点 集合中元素的个数 答案 34.下列结论不正确的是________.(填序号) ①0∈N; ②13∈Q; ③0∉Q; ④-1∈Z .考点 元素与集合的关系 题点 判断元素与集合的关系 答案 ③5.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值. 考点 元素与集合的关系题点 由元素与集合的关系求参数的值解 由元素互异性知m ≠0,m 2-3m +2≠0.由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3, 当m =0时,与m ≠0相矛盾,当m=3时,此时集合A中的元素为0,3,2,符合题意.故实数m=2.1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.。
第一章 集合与函数概念1.1集合1.1.1集合的含义与表示【学习目标】(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;【预习指导】对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.阅读教材,并思考下列问题:(1)有哪些概念?(2)有哪些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?【课堂探究】一、问题1:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2020年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2020年9月入学的高一学生的全体.观察上面的例子,指出这些实例的共同特征是什么?(分组讨论,得出集合的概念)问题2:你还能给出一些集合的例子吗?(学生自己举例子,得出集合元素的特性)二、1、任意给定一个对象和一个集合,它们之间有什么关系?用符合如何表示?2、常用的数集(自然数集、整数集、正整数集、有理数集、实数集)的专用符号你记住了吗?3、要表示一个集合共有几种方式?4、试比较自然语言、列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?5、如何根据问题选择适当的集合表示法?【课堂练习】1. 下列说法正确的是 ( )A.{}1,2,{}2,1是两个集合B.{}(0,2)中有两个元素C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}2|20x Q x x ∈++=且是空集 2.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( )A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2--C.{}0,1,2,3 D.{}1,2,33.{},0.3,0,00R Q N +∉∈∈其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个4.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为____________.5.已知集合A={}20,1,x x -则x 在实数范围内不能取哪些值___________.6.(创新题)已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形【尝试总结】1.本节课我们学习过哪些知识内容?2.选择集合的表示法时应注意些什么?【达标检测】一、选择题1.下列元素与集合的关系中正确的是( ) A.N ∈21 B.2∈{x ∈R|x ≥3} C.|-3|∉N* D.-3.2∉Q2.给出下列四个命题:(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,23,46,21-,0.5这些数字组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R}是指第二象限或第四象限内的点的集合.以上命题中,正确命题的个数是( )A.0B.1C.2D.33.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B. M={3,2},N={(2,3)}C.M={(x ,y )|x +y =1},N={y |x +y =1}D.M={1,2},N={2,1}4.已知x ∈N,则方程220x x +-=的解集为( )A.{x |x =-2}B. {x |x =1或x =-2}C. {x |x =1}D.∅ 5.已知集合M={m ∈N|8-m ∈N},则集合M 中元素个数是( )A.6B.7C.8D.9二、填空题6.用符号“∈”或“∉”填空: 0_______N,5______N,16______N.7.用列举法表示A={y |y =x 2+1,-2≤x ≤2,x ∈Z}为_______________.8.用描述法表示集合“方程x 2-2x +3=0的解集”为_____________.9.集合{x |x >3}与集合{t|t >3}是否表示同一集合?________10.已知集合P={x |2<x <a ,x ∈N},已知集合P 中恰有3个元素,则整数a =_________.三、解答题11.已知集合A={0,1,2},集合B={x |x =ab ,a ∈A,b ∈A}.(1)用列举法写出集合B ;(2)判断集合B 的元素和集合A 的关系.12.已知集合{1,a ,b }与{-1,-b ,1}是同一集合,求实数a 、b 的值.13.(探究题)下面三个集合:①{}2|2x y x =-,②{}2|2y y x =-,③{}2(,)|2x y y x =-(1)它们是不是相同的集合?(2)试用文字语言叙述各集合的含义.附:集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔的不朽功绩前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念.但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数[注]集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系 ,它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧.公理化集合论的建立集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R 不应属于自身,即R 不属于R ;另一方面,如果R 不属于R,则R 不满足R 的定义,因此R 应属于自身,即R 属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF 公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.这个成就可能是这个时代所能夸耀的最伟大的工作.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一. 注:整系数一元n 次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x 2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.1.1.2集合间的基本关系【学习目标】1.理解集合之间的包含与相等的含义,能识别给定集合的子集;2.在具体情境中,了解全集与空集的含义.【预习指导】1.集合间有几种基本关系?2.集合的基本关系分别用哪些符号表示?怎样用Venn 图来表示?3.什么叫空集?它有什么特殊规定?4.集合之间关系的性质有哪些?【自主尝试】1.判断下列集合的关系①{}{}1,2,3,2,1,3A B ==②{}{},,,,A a b B a b c ==2.判断正误①{}0是空集 ② {}5的子集的个数为1【课堂探究】一、问题1我们知道实数有大、小或相等的关系,哪么集合间是不是也有类似的关系呢?1.{}{}1,2,3,1,2,3,4,5A B ==2.设集合A为新乐一中高一(2)班全体女生组成的集合,集合B为这个班全体学生组成的集合.3.设{}{}|,|C x x D x x ==是等边三角形是三角形.4.{}{}|,|213A x x D x x =≥=-≥2.观察上面的例子,指出给定两个集合中的元素有什么关系?问题2你还能举出有以上关系的例子吗?问题3①{}{}1,3,5,5,1,3A B ==②}|{D }|{是两条边相等的三角形,是等腰三角形x x x x C ==③{}{}1,|10A B x x ==-= ④131(,)|,(,)222x y A x y B x y ⎧+=⎫⎧⎧⎫==-⎨⎨⎬⎨⎬-=⎩⎭⎩⎩⎭ 上面的各对集合中,有没有包含关系?(归纳出集合相等的概念)问题4①{}{}2|10,|5A x x B x x =+==是身高在米以上的人观察上面给定的两个集合,归纳出空集的概念②总结以上规律,归纳集合间的基本关系:ⅰ任何集合是它本身的子集:A⊆Aⅱ对于集合A,B,C,如果A⊆B,且B⊆C,都有A⊆C(传递性)【典型例题】:1.写出下列各集合的子集及其个数{}{}{},,,,,,a a b a b c ∅2.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ⊆N,求k 的取值范围.3.已知含有3个元素的集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A=B,求20102010a b +的值.4.已知集合{}|03A x x =<<,{}|4B x m x m =<<-,且B A ⊆,求实数m 的取值范围.【课堂练习】:1.下列各式中错误的个数为( )①{}10,1,2∈ ②{}{}10,1,2∈ ③{}{}0,1,20,1,2⊆ ④{}{}0,1,22,0,1=A 1B 2C 3D 42.集合{}{}|12,|0A x x B x x a =<<=-<若A B,则a 的取值范围是___.3.已知集合{}{}2|560,|1A x x x B x mx =-+===,若B A 则实数m 所构成 的集合M=__________.4.若集合{}2|30A x x x a =++=为空集,则实数a 的取值范围是_______.【达标检测】一、选择题1.已知{}|22,M x R x a π=∈≥=,给定下列关系:①a M ∈,②{}a M ③a M ④{}a M ∈ 其中正确的是 ( )A①② B④ C③ D①②④2.若,x y R ∈,集合{}(,)|,(,)|1y A x y y x B x y x ⎧⎫====⎨⎬⎩⎭,则A,B的关系为( )A A=B B A⊆B C AB D BA3.若,A B A ⊆C,且A中含有两个元素,{}{}0,1,2,3,0,2,4,5B C ==则满足上述条件的集合A可能为( ).A {}0,1 B {}0,3 C {}2,4 D {}0,2 4.满足{}a M ⊆{},,,a b c d 的集合M共有( )A6个 B7个 C8个 D9个二、填空题5.已知{}{}{}A B C ===菱形正方形平行四边形,则集合A,B,C之间的关系为__________.6.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若B A,则实数a 的值为__. 7.已知集合{}{}|40,|12A x R x p B x x x A B =∈+≤=≤≥⊆或且,则实数p 的取值集合为_______.8.集合{}|21,A x x k k Z ==-∈,集合{}|21,B x x k k Z ==+∈,则A与B的关系为____________.9.已知A={},a b ,{}|B x x A =∈,集合A与集合B的关系为_________.三.解答题10.写出满足{},a b A ⊆{},,,a b c d 的所有集合A.11.已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.12.已知{}{}|25,|121A x x B x a x a =-≤≤=+≤≤-,B A ⊆,求实数a 的取值范围.1.1.3集合的基本运算(第一课时)【学习目标】1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.【预习指导】阅读教材并思考下列问题:1.集合有哪些基本运算?2.各种运算如何用符号和Venn 图来表示.3.集合运算与实数的运算有何区别与联系.【自主尝试】1.设全集{}|110,U x x x N =≤≤∈且,集合{}{}3,5,6,8,4,5,7,8A B ==,求A B ⋃,A B ⋂,()U C A B ⋃.2.设全集{}{}{}|25,|12,|13U x x A x x B x x =-<<=-<<=≤<集合,求A B ⋃,A B ⋂,()U C A B ⋂.3.设全集{}{}{}22|26,|450,|1U x x x Z A x x x B x x =-<<∈=--===且,求A B ⋃,A B ⋂,()U C A B ⋃.【典型例题】1.已知全集{}|U x x =是不大于30的素数,A,B 是U 的两个子集,且满足{}{}()5,13,23,()11,19,29U U A C B B C A ⋂=⋂=,{}()()3,7U U C A C B ⋂=,求集合A,B.2.设集合{}{}22|320,|220A x x x B x x ax =-+==-+=,若A B A ⋃=,求实数a 的取值集合.3. 已知{}{}|24,|A x x B x x a =-≤≤=< ① 若A B φ⋂=,求实数a 的取值范围; ② 若A B A ⋂≠,求实数a 的取值范围;③ 若A B A B A φ⋂≠⋂≠且,求实数a 的取值范围.4.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.【课堂练习】1.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃=( )A{}0,1,8,10 B {}1,2,4,6 C {}0,8,10D Φ2.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( ) A 1或0 B 1,0,或2 C 0,2或-2 D 1或2 3.若{}{}{}0,1,2,1,2,3,2,3,4A B C ===⋂⋃⋂则(A B)(B C)= ( ) A {}1,2,3 B{}2,3C{}2,3,4 D {}1,2,44.设集合{}{}|91,|32A x x B x x A B =-<<=-<<⋂=则 ( ) A{}|31x x -<< B{}|12x x << C{}|92x x -<< D{}|1x x < 【尝试总结】你能对本节课的内容做个总结吗? 1.本节课我们学习过哪些知识内容? 2.集合的运算应注意些什么?【达标检测】 一、选择题1.设集合{}{}|2,,|21,M x x n n Z N x x n n N ==∈==-∈则M N ⋂是 ( ) A Φ B M C Z D {}02.下列关系中完全正确的是 ( ) A {},a a b ⊂B{}{},,a b a c a ⋂=C{}{},,b a a b ⊆ D {}{}{},,0b a a c ⋂=3.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 ( ) A M B {}1,4 C {}1 D Φ4.若集合A,B,C满足,A B A B C C ⋂=⋃=,则A与C之间的关系一定是( ) A A C B C A C A C ⊆ D C A ⊆5.设全集{}{}|4,,2,1,3U x x x Z S =<∈=-,若u C P S ⊆,则这样的集合P共有( ) A 5个 B 6个 C 7个 D8个二、填空题6.满足条件{}{}1,2,31,2,3,4,5A ⋃=的所有集合A的个数是__________. 7.若集合{}{}|2,|A x x B x x a =≤=≥,满足{}2A B ⋂=则实数a =_______. 8.集合{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-,则集合B=_____. 9.已知{}{}1,2,3,4,5,1,3,5U A ==,则U C U =________________. 10.对于集合A,B,定义{}|A B x x A -=∈∉且B ,A⊙B=()()A B B A -⋃-, 设集合{}{}1,2,3,4,5,6,4,5,6,7,8,9,10M N ==,则M⊙N=__________.三、解答题11.已知全集{}|16U x N x =∈≤≤,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.12.已知全集U=R,集合{}{}|,|12A x x a B x x =<=<<,且()U A C B R ⋃=,求实数a 的取值范围13.设集合{}{}22|350,|3100A x x px B x x x q =+-==++=,且13A B ⎧⎫⋂=-⎨⎬⎩⎭求A B ⋃.1.1.3集合的基本运算(第二课时) 【学习目标】1.进一步巩固集合的三种运算.2.灵活运用集合的运算,解决一些实际问题. 【典型例题】1.已知集合{}{}2|15500,|10A x x x B x ax =-+==-=,若A B ⋂≠Φ,求a 的值.2.已知集合{}{}|23,|15A x a x a B x x x =≤≤+=<->或,若A B ⋂=Φ,求a 的取值范围.3.已知集合{}{}22|340,|220A x x x B x x ax =--==-+=若A B A ⋃=,求a 的取值集合.4.有54名学生,其中会打篮球的有36人,会打排球的人数比会打篮球的多4人,另外这两种球都不会的人数是都会的人数的四分之一还少1,问两种球都会打的有多少人.【课堂练习】1.设集合{}{}|32,|13M x Z x N n Z n =∈-<<=∈-≤≤,则M N ⋂= ( ) A{}0,1B{}1,0,1-C{}0,1,2D{}1,0,1,2-2.设U为全集,集合,M U N U N M ⊆⊆⊆且则 ( )A U U C N C M ⊆ B U M C ⊆N C U U C N C M = D ()U U C M C ⊆N 3.已知集合{}3|0,|31x M x N x x x +⎧⎫=<=≤-⎨⎬-⎩⎭,则集合{}|1x x ≥是 ( ) A N M ⋂ B N M ⋃ C ()M N ⋂U C D ()M N ⋃U C 4.设{}{},A B ==菱形矩形,则A B ⋂=___________.5.已知全集{}{}{}22,4,1,1,2,7U U a a A a C A a =-+=+==则_______. 【达标检测】 一、选择题1.满足{}{}1,31,3,5A ⋃=的所有集合A的个数 ( ) A 3 B 4 C 5 D 62.已知集合{}{}|23,|14A x x B x x x =-≤≤=<->或,则A B ⋂= ( ) A {}|34x x x ≤>或 B {}≤x|-1<x 3 C {}4≤<x|3x D {}1≤<-x|-2x 3.设集合{}{}|23,|8,S x x T x a x a S T R =->=<<+⋃=,则a 的取值范围是( ) A 31a -<<- B 31a -≤≤- C 31a a ≤-≥-或 D 31a a <->-或 4.第二十届奥运会于2008年8月8日在北京举行,若集合{}A =参加北京奥运会比赛的运动员{}B =参加北京奥运会比赛的男运动员,{}C =参加北京奥运会比赛的女运动员,则下列关系正确的是 ( )A A B ⊆ B B C ⊆ C A B C ⋂= D B C A ⋃= 5.对于非空集合M和N,定义M与N的差{}|M N x x M x N -=∈∉且,那么 M-(M-N)总等于 ( ) A N B M C M N ⋂ D M N ⋃ 二.填空题6.设集合{}{},(,)|1A B x y x y ==-=-(x,y)|x+2y=7,则A B ⋂=_______. 7.设{}{}2,|20,U A x x x N+==<∈x|x 是不大于10的正整数,则UCA =____.8.全集U=R,集合{}{}|0,|1X x x T y y =≥=≥,则U U C T C X 与的包含关系是__.9.设全集{}{},|U A x ==x|x 是三角形x 是锐角三角形,{}|B x =x 是钝角三角形,则U C A B⋃()=______________. 10.已知集合{}{}|2,M N y y x x R =∈==-∈y|y=-2x+1,x R ,则⋂M N =___. 三.解答题11.已知{}{}222190,|560A x ax a B x x x =-+-==-+=x|, {}2280C x x =+-=x| ①.若A B A B ⋂=⋃,求a 的值. ②.若A C C ⋂=,求a 的值.12.设U=R,M={1|≥x x },N={50|<≤x x },求U U C M C N ⋃. 13.设集合{}{}2|(2)()0,,|560A x x x m m R B x x x =--=∈=--=,求A B ⋃,A B ⋂.第一章集合与函数的概念 1.1.1集合的含义与表示 【课堂练习】1.D 2. C 3.B 4. 73,22⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭5. 150,1,x ±≠ 6.D 【达标检测】 选择题 1-5 BADCC填空题 6. ∈ ∉ ∈ 7. {}2,4,5 8. {}2|230x x x -+= 9.是 10. 6 解答题11.}4,2,1,0{=B 集合A 中的元素都在集合B 中。
1.1.1集合的含义与表示(1)一、学习目标:知识与技能:1.通过实例准确判断是否集合,并说出元素与集合的“属于”关系。
2.在具体问题中能选择自然语言、图形语言、集合语言(列举法与描述法)描述具体的问题。
3.通过实例利用元素的确定性、互异性、无序性判断集合相等。
熟记常用数集及其专用符号,并能够用其解决有关问题。
过程与方法:自主学习,合作探究,学会用归纳的方法分析研究问题.情感态度与价值观: 提高抽象概括的能力和数学表达能力.培养善于发现问题和提出问题的良好学习品质,养成良好的数学思维习惯;用极度的热情投入学习,充分享受成功的快乐.二.学习重点:集合的基本概念与表示方法.学习难点:选择恰当的方法表示一些简单的集合.三、学法:认真阅读教材,对照学习目标,完成导学案,适当总结。
四、新课切入:军训前学校通知:8月23日9点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?初中时你听说过“集合”这一词吗?你在学习那些知识点中提到了“集合”这一词?(试举几例)五、学习过程:(一)、预习思考①请我们班的全体女生起立!所有女生能不能构成一个集合?②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?(二)预习汇总1 、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。
第一章 集合与函数概念1.1集合1.1.1集合的含义与表示【学习目标】(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;【预习指导】对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.阅读教材,并思考下列问题:(1)有哪些概念?(2)有哪些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?【课堂探究】一、问题1:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2020年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2020年9月入学的高一学生的全体.观察上面的例子,指出这些实例的共同特征是什么?(分组讨论,得出集合的概念)问题2:你还能给出一些集合的例子吗?(学生自己举例子,得出集合元素的特性)二、1、任意给定一个对象和一个集合,它们之间有什么关系?用符合如何表示?2、常用的数集(自然数集、整数集、正整数集、有理数集、实数集)的专用符号你记住了吗?3、要表示一个集合共有几种方式?4、试比较自然语言、列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?5、如何根据问题选择适当的集合表示法?【课堂练习】1. 下列说法正确的是 ( )A.{}1,2,{}2,1是两个集合B.{}(0,2)中有两个元素C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}2|20x Q x x ∈++=且是空集 2.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( )A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2--C.{}0,1,2,3 D.{}1,2,33.{},0.3,0,00R Q N +∉∈∈其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个4.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为____________.5.已知集合A={}20,1,x x -则x 在实数范围内不能取哪些值___________.6.(创新题)已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形【尝试总结】1.本节课我们学习过哪些知识内容?2.选择集合的表示法时应注意些什么?【达标检测】一、选择题1.下列元素与集合的关系中正确的是( ) A.N ∈21 B.2∈{x ∈R|x ≥3} C.|-3|∉N* D.-3.2∉Q2.给出下列四个命题:(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,23,46,21-,0.5这些数字组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R}是指第二象限或第四象限内的点的集合.以上命题中,正确命题的个数是( )A.0B.1C.2D.33.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B. M={3,2},N={(2,3)}C.M={(x ,y )|x +y =1},N={y |x +y =1}D.M={1,2},N={2,1}4.已知x ∈N,则方程220x x +-=的解集为( )A.{x |x =-2}B. {x |x =1或x =-2}C. {x |x =1}D.∅ 5.已知集合M={m ∈N|8-m ∈N},则集合M 中元素个数是( )A.6B.7C.8D.9二、填空题6.用符号“∈”或“∉”填空: 0_______N,5______N,16______N.7.用列举法表示A={y |y =x 2+1,-2≤x ≤2,x ∈Z}为_______________.8.用描述法表示集合“方程x 2-2x +3=0的解集”为_____________.9.集合{x |x >3}与集合{t|t >3}是否表示同一集合?________10.已知集合P={x |2<x <a ,x ∈N},已知集合P 中恰有3个元素,则整数a =_________.三、解答题11.已知集合A={0,1,2},集合B={x |x =ab ,a ∈A,b ∈A}.(1)用列举法写出集合B ;(2)判断集合B 的元素和集合A 的关系.12.已知集合{1,a ,b }与{-1,-b ,1}是同一集合,求实数a 、b 的值.13.(探究题)下面三个集合:①{}2|2x y x =-,②{}2|2y y x =-,③{}2(,)|2x y y x =-(1)它们是不是相同的集合?(2)试用文字语言叙述各集合的含义.附:集合论的诞生集合论是德国著名数学家康托尔于19世纪末创立的.十七世纪数学中出现了一门新的分支:微积分.在之后的一二百年中这一崭新学科获得了飞速发展并结出了丰硕成果.其推进速度之快使人来不及检查和巩固它的理论基础.十九世纪初,许多迫切问题得到解决后,出现了一场重建数学基础的运动.正是在这场运动中,康托尔开始探讨了前人从未碰过的实数点集,这是集合论研究的开端.到1874年康托尔开始一般地提出“集合”的概念.他对集合所下的定义是:把若干确定的有区别的(不论是具体的或抽象的)事物合并起来,看作一个整体,就称为一个集合,其中各事物称为该集合的元素.人们把康托尔于1873年12月7日给戴德金的信中最早提出集合论思想的那一天定为集合论诞生日.康托尔的不朽功绩前苏联数学家柯尔莫戈洛夫评价康托尔的工作时说:“康托尔的不朽功绩在于他向无穷的冒险迈进”.因而只有当我们了解了康托尔在对无穷的研究中究竟做出了些什么结论后才会真正明白他工作的价值之所在和众多反对之声之由来.数学与无穷有着不解之缘,但在研究无穷的道路上却布满了陷阱.因为这一原因,在数学发展的历程中,数学家们始终以一种怀疑的眼光看待无穷,并尽可能回避这一概念.但试图把握无限的康托尔却勇敢地踏上了这条充满陷阱的不归路.他把无穷集这一词汇引入数学,从而进入了一片未开垦的处女地,开辟出一个奇妙无比的新世界.对无穷集的研究使他打开了“无限”这一数学上的潘多拉盒子.下面就让我们来看一下盒子打开后他释放出的是什么.“我们把全体自然数组成的集合简称作自然数集,用字母N来表示.”学过集合那一章后,同学们应该对这句话不会感到陌生.但同学们在接受这句话时根本无法想到当年康托尔如此做时是在进行一项更新无穷观念的工作.在此以前数学家们只是把无限看作永远在延伸着的,一种变化着成长着的东西来解释.无限永远处在构造中,永远完成不了,是潜在的,而不是实在.这种关于无穷的观念在数学上被称为潜无限.十八世纪数学王子高斯就持这种观点.用他的话说,就是“……我反对将无穷量作为一个实体,这在数学中是从来不允许的.所谓无穷,只是一种说话的方式……”而当康托尔把全体自然数看作一个集合时,他是把无限的整体作为了一个构造完成了的东西,这样他就肯定了作为完成整体的无穷,这种观念在数学上称为实无限思想.由于潜无限思想在微积分的基础重建中已经获得了全面胜利,康托尔的实无限思想在当时遭到一些数学家的批评与攻击是无足为怪的.然而康托尔并未就此止步,他以完全前所未有的方式,继续正面探讨无穷.他在实无限观念基础上进一步得出一系列结论,创立了令人振奋的、意义十分深远的理论.这一理论使人们真正进入了一个难以捉摸的奇特的无限世界.最能显示出他独创性的是他对无穷集元素个数问题的研究.他提出用一一对应准则来比较无穷集元素的个数.他把元素间能建立一一对应的集合称为个数相同,用他自己的概念是等势.由于一个无穷集可以与它的真子集建立一一对应――例如同学们很容易发现自然数集与正偶数集之间存在着一一对应关系――也就是说无穷集可以与它的真子集等势,即具有相同的个数.这与传统观念“全体大于部分”相矛盾.而康托尔认为这恰恰是无穷集的特征.在此意义上,自然数集与正偶数集具有了相同的个数,他将其称为可数集.又可容易地证明有理数集与自然数集等势,因而有理数集也是可数集.后来当他又证明了代数数[注]集合也是可数集时,一个很自然的想法是无穷集是清一色的,都是可数集.但出乎意料的是,他在1873年证明了实数集的势大于自然数集.这不但意味着无理数远远多于有理数,而且显然庞大的代数数与超越数相比而言也只成了沧海一粟,如同有人描述的那样:“点缀在平面上的代数数犹如夜空中的繁星;而沉沉的夜空则由超越数构成.”而当他得出这一结论时,人们所能找到的超越数尚仅有一两个而已.这是何等令人震惊的结果!然而,事情并未终结.魔盒一经打开就无法再合上,盒中所释放出的也不再限于可数集这一个无穷数的怪物.从上述结论中康托尔意识到无穷集之间存在着差别,有着不同的数量级,可分为不同的层次.他所要做的下一步工作是证明在所有的无穷集之间还存在着无穷多个层次.他取得了成功,并且根据无穷性有无穷种的学说,对各种不同的无穷大建立了一个完整的序列,他称为“超限数”.他用希伯莱字母表中第一个字母“阿列夫”来表示超限数的精灵,最终他建立了关于无限的所谓阿列夫谱系 ,它可以无限延长下去.就这样他创造了一种新的超限数理论,描绘出一幅无限王国的完整图景.可以想见这种至今让我们还感到有些异想天开的结论在当时会如何震动数学家们的心灵了.毫不夸张地讲,康托尔的关于无穷的这些理论,引起了反对派的不绝于耳的喧嚣.他们大叫大喊地反对他的理论.有人嘲笑集合论是一种“疾病”,有人嘲讽超限数是“雾中之雾”,称“康托尔走进了超限数的地狱”.作为对传统观念的一次大革新,由于他开创了一片全新的领域,提出又回答了前人不曾想到的问题,他的理论受到激烈地批驳是正常的.当回头看这段历史时,或许我们可以把对他的反对看作是对他真正具有独创性成果的一种褒扬吧.公理化集合论的建立集合论提出伊始,曾遭到许多数学家的激烈反对,康托尔本人一度成为这一激烈论争的牺牲品.在猛烈的攻击下与过度的用脑思考中,他得了精神分裂症,几次陷于精神崩溃.然而集合论前后经历二十余年,最终获得了世界公认.到二十世纪初集合论已得到数学家们的赞同.数学家们为一切数学成果都可建立在集合论基础上的前景而陶醉了.他们乐观地认为从算术公理系统出发,借助集合论的概念,便可以建造起整个数学的大厦.在1900年第二次国际数学大会上,著名数学家庞加莱就曾兴高采烈地宣布“……数学已被算术化了.今天,我们可以说绝对的严格已经达到了.”然而这种自得的情绪并没能持续多久.不久,集合论是有漏洞的消息迅速传遍了数学界.这就是1902年罗素得出的罗素悖论.罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R.现在问R是否属于R?如果R属于R,则R满足R的定义,因此R 不应属于自身,即R 不属于R ;另一方面,如果R 不属于R,则R 不满足R 的定义,因此R 应属于自身,即R 属于R.这样,不论何种情况都存在着矛盾.这一仅涉及集合与属于两个最基本概念的悖论如此简单明了以致根本留不下为集合论漏洞辩解的余地.绝对严密的数学陷入了自相矛盾之中.这就是数学史上的第三次数学危机.危机产生后,众多数学家投入到解决危机的工作中去.1908年,策梅罗提出公理化集合论,后经改进形成无矛盾的集合论公理系统,简称ZF 公理系统.原本直观的集合概念被建立在严格的公理基础之上,从而避免了悖论的出现.这就是集合论发展的第二个阶段:公理化集合论.与此相对应,在1908年以前由康托尔创立的集合论被称为朴素集合论.公理化集合论是对朴素集合论的严格处理.它保留了朴素集合论的有价值的成果并消除了其可能存在的悖论,因而较圆满地解决了第三次数学危机.公理化集合论的建立,标志着著名数学家希耳伯特所表述的一种激情的胜利,他大声疾呼:没有人能把我们从康托尔为我们创造的乐园中赶出去.从康托尔提出集合论至今,时间已经过去了一百多年,在这一段时间里,数学又发生了极其巨大的变化,包括对上述经典集合论作出进一步发展的模糊集合论的出现等等.而这一切都是与康托尔的开拓性工作分不开的.因而当现在回头去看康托尔的贡献时,我们仍然可以引用当时著名数学家对他的集合论的评价作为我们的总结.它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一.超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一.这个成就可能是这个时代所能夸耀的最伟大的工作.康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一. 注:整系数一元n 次方程的根,叫代数数.如一切有理数是代数数.大量无理数也是代数数.如根号2.因为它是方程x 2-2=0的根.实数中不是代数数的数称为超越数.相比之下,超越数很难得到.第一个超越数是刘维尔于1844年给出的.关于π是超越数的证明在康托尔的研究后十年才问世.1.1.2集合间的基本关系【学习目标】1.理解集合之间的包含与相等的含义,能识别给定集合的子集;2.在具体情境中,了解全集与空集的含义.【预习指导】1.集合间有几种基本关系?2.集合的基本关系分别用哪些符号表示?怎样用Venn 图来表示?3.什么叫空集?它有什么特殊规定?4.集合之间关系的性质有哪些?【自主尝试】1.判断下列集合的关系①{}{}1,2,3,2,1,3A B ==②{}{},,,,A a b B a b c ==2.判断正误①{}0是空集 ② {}5的子集的个数为1【课堂探究】一、问题1我们知道实数有大、小或相等的关系,哪么集合间是不是也有类似的关系呢?1.{}{}1,2,3,1,2,3,4,5A B ==2.设集合A为新乐一中高一(2)班全体女生组成的集合,集合B为这个班全体学生组成的集合.3.设{}{}|,|C x x D x x ==是等边三角形是三角形.4.{}{}|,|213A x x D x x =≥=-≥2.观察上面的例子,指出给定两个集合中的元素有什么关系?问题2你还能举出有以上关系的例子吗?问题3①{}{}1,3,5,5,1,3A B ==②}|{D }|{是两条边相等的三角形,是等腰三角形x x x x C ==③{}{}1,|10A B x x ==-= ④131(,)|,(,)222x y A x y B x y ⎧+=⎫⎧⎧⎫==-⎨⎨⎬⎨⎬-=⎩⎭⎩⎩⎭ 上面的各对集合中,有没有包含关系?(归纳出集合相等的概念)问题4①{}{}2|10,|5A x x B x x =+==是身高在米以上的人观察上面给定的两个集合,归纳出空集的概念②总结以上规律,归纳集合间的基本关系:ⅰ任何集合是它本身的子集:A⊆Aⅱ对于集合A,B,C,如果A⊆B,且B⊆C,都有A⊆C(传递性)【典型例题】:1.写出下列各集合的子集及其个数{}{}{},,,,,,a a b a b c ∅2.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ⊆N,求k 的取值范围.3.已知含有3个元素的集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A=B,求20102010a b +的值.4.已知集合{}|03A x x =<<,{}|4B x m x m =<<-,且B A ⊆,求实数m 的取值范围.【课堂练习】:1.下列各式中错误的个数为( )①{}10,1,2∈ ②{}{}10,1,2∈ ③{}{}0,1,20,1,2⊆ ④{}{}0,1,22,0,1=A 1B 2C 3D 42.集合{}{}|12,|0A x x B x x a =<<=-<若A B,则a 的取值范围是___.3.已知集合{}{}2|560,|1A x x x B x mx =-+===,若B A 则实数m 所构成 的集合M=__________.4.若集合{}2|30A x x x a =++=为空集,则实数a 的取值范围是_______.【达标检测】一、选择题1.已知{}|22,M x R x a π=∈≥=,给定下列关系:①a M ∈,②{}a M ③a M ④{}a M ∈ 其中正确的是 ( )A①② B④ C③ D①②④2.若,x y R ∈,集合{}(,)|,(,)|1y A x y y x B x y x ⎧⎫====⎨⎬⎩⎭,则A,B的关系为( )A A=B B A⊆B C AB D BA3.若,A B A ⊆C,且A中含有两个元素,{}{}0,1,2,3,0,2,4,5B C ==则满足上述条件的集合A可能为( ).A {}0,1 B {}0,3 C {}2,4 D {}0,2 4.满足{}a M ⊆{},,,a b c d 的集合M共有( )A6个 B7个 C8个 D9个二、填空题5.已知{}{}{}A B C ===菱形正方形平行四边形,则集合A,B,C之间的关系为__________.6.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若B A,则实数a 的值为__. 7.已知集合{}{}|40,|12A x R x p B x x x A B =∈+≤=≤≥⊆或且,则实数p 的取值集合为_______.8.集合{}|21,A x x k k Z ==-∈,集合{}|21,B x x k k Z ==+∈,则A与B的关系为____________.9.已知A={},a b ,{}|B x x A =∈,集合A与集合B的关系为_________.三.解答题10.写出满足{},a b A ⊆{},,,a b c d 的所有集合A.11.已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.12.已知{}{}|25,|121A x x B x a x a =-≤≤=+≤≤-,B A ⊆,求实数a 的取值范围.1.1.3集合的基本运算(第一课时)【学习目标】1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.【预习指导】阅读教材并思考下列问题:1.集合有哪些基本运算?2.各种运算如何用符号和Venn 图来表示.3.集合运算与实数的运算有何区别与联系.【自主尝试】1.设全集{}|110,U x x x N =≤≤∈且,集合{}{}3,5,6,8,4,5,7,8A B ==,求A B ⋃,A B ⋂,()U C A B ⋃.2.设全集{}{}{}|25,|12,|13U x x A x x B x x =-<<=-<<=≤<集合,求A B ⋃,A B ⋂,()U C A B ⋂.3.设全集{}{}{}22|26,|450,|1U x x x Z A x x x B x x =-<<∈=--===且,求A B ⋃,A B ⋂,()U C A B ⋃.【典型例题】1.已知全集{}|U x x =是不大于30的素数,A,B 是U 的两个子集,且满足{}{}()5,13,23,()11,19,29U U A C B B C A ⋂=⋂=,{}()()3,7U U C A C B ⋂=,求集合A,B.2.设集合{}{}22|320,|220A x x x B x x ax =-+==-+=,若A B A ⋃=,求实数a 的取值集合.3. 已知{}{}|24,|A x x B x x a =-≤≤=< ① 若A B φ⋂=,求实数a 的取值范围; ② 若A B A ⋂≠,求实数a 的取值范围;③ 若A B A B A φ⋂≠⋂≠且,求实数a 的取值范围.4.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.【课堂练习】1.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃=( )A{}0,1,8,10 B {}1,2,4,6 C {}0,8,10D Φ2.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( ) A 1或0 B 1,0,或2 C 0,2或-2 D 1或2 3.若{}{}{}0,1,2,1,2,3,2,3,4A B C ===⋂⋃⋂则(A B)(B C)= ( ) A {}1,2,3 B{}2,3C{}2,3,4 D {}1,2,44.设集合{}{}|91,|32A x x B x x A B =-<<=-<<⋂=则 ( ) A{}|31x x -<< B{}|12x x << C{}|92x x -<< D{}|1x x < 【尝试总结】你能对本节课的内容做个总结吗? 1.本节课我们学习过哪些知识内容? 2.集合的运算应注意些什么?【达标检测】 一、选择题1.设集合{}{}|2,,|21,M x x n n Z N x x n n N ==∈==-∈则M N ⋂是 ( ) A Φ B M C Z D {}02.下列关系中完全正确的是 ( ) A {},a a b ⊂B{}{},,a b a c a ⋂=C{}{},,b a a b ⊆ D {}{}{},,0b a a c ⋂=3.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 ( ) A M B {}1,4 C {}1 D Φ4.若集合A,B,C满足,A B A B C C ⋂=⋃=,则A与C之间的关系一定是( ) A A C B C A C A C ⊆ D C A ⊆5.设全集{}{}|4,,2,1,3U x x x Z S =<∈=-,若u C P S ⊆,则这样的集合P共有( ) A 5个 B 6个 C 7个 D8个二、填空题6.满足条件{}{}1,2,31,2,3,4,5A ⋃=的所有集合A的个数是__________. 7.若集合{}{}|2,|A x x B x x a =≤=≥,满足{}2A B ⋂=则实数a =_______. 8.集合{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-,则集合B=_____. 9.已知{}{}1,2,3,4,5,1,3,5U A ==,则U C U =________________. 10.对于集合A,B,定义{}|A B x x A -=∈∉且B ,A⊙B=()()A B B A -⋃-, 设集合{}{}1,2,3,4,5,6,4,5,6,7,8,9,10M N ==,则M⊙N=__________.三、解答题11.已知全集{}|16U x N x =∈≤≤,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.12.已知全集U=R,集合{}{}|,|12A x x a B x x =<=<<,且()U A C B R ⋃=,求实数a 的取值范围13.设集合{}{}22|350,|3100A x x px B x x x q =+-==++=,且13A B ⎧⎫⋂=-⎨⎬⎩⎭求A B ⋃.1.1.3集合的基本运算(第二课时) 【学习目标】1.进一步巩固集合的三种运算.2.灵活运用集合的运算,解决一些实际问题. 【典型例题】1.已知集合{}{}2|15500,|10A x x x B x ax =-+==-=,若A B ⋂≠Φ,求a 的值.2.已知集合{}{}|23,|15A x a x a B x x x =≤≤+=<->或,若A B ⋂=Φ,求a 的取值范围.3.已知集合{}{}22|340,|220A x x x B x x ax =--==-+=若A B A ⋃=,求a 的取值集合.4.有54名学生,其中会打篮球的有36人,会打排球的人数比会打篮球的多4人,另外这两种球都不会的人数是都会的人数的四分之一还少1,问两种球都会打的有多少人.【课堂练习】1.设集合{}{}|32,|13M x Z x N n Z n =∈-<<=∈-≤≤,则M N ⋂= ( ) A{}0,1B{}1,0,1-C{}0,1,2D{}1,0,1,2-2.设U为全集,集合,M U N U N M ⊆⊆⊆且则 ( )A U U C N C M ⊆ B U M C ⊆N C U U C N C M = D ()U U C M C ⊆N 3.已知集合{}3|0,|31x M x N x x x +⎧⎫=<=≤-⎨⎬-⎩⎭,则集合{}|1x x ≥是 ( ) A N M ⋂ B N M ⋃ C ()M N ⋂U C D ()M N ⋃U C 4.设{}{},A B ==菱形矩形,则A B ⋂=___________.5.已知全集{}{}{}22,4,1,1,2,7U U a a A a C A a =-+=+==则_______. 【达标检测】 一、选择题1.满足{}{}1,31,3,5A ⋃=的所有集合A的个数 ( ) A 3 B 4 C 5 D 62.已知集合{}{}|23,|14A x x B x x x =-≤≤=<->或,则A B ⋂= ( ) A {}|34x x x ≤>或 B {}≤x|-1<x 3 C {}4≤<x|3x D {}1≤<-x|-2x 3.设集合{}{}|23,|8,S x x T x a x a S T R =->=<<+⋃=,则a 的取值范围是( ) A 31a -<<- B 31a -≤≤- C 31a a ≤-≥-或 D 31a a <->-或 4.第二十届奥运会于2008年8月8日在北京举行,若集合{}A =参加北京奥运会比赛的运动员{}B =参加北京奥运会比赛的男运动员,{}C =参加北京奥运会比赛的女运动员,则下列关系正确的是 ( )A A B ⊆ B B C ⊆ C A B C ⋂= D B C A ⋃= 5.对于非空集合M和N,定义M与N的差{}|M N x x M x N -=∈∉且,那么 M-(M-N)总等于 ( ) A N B M C M N ⋂ D M N ⋃ 二.填空题6.设集合{}{},(,)|1A B x y x y ==-=-(x,y)|x+2y=7,则A B ⋂=_______. 7.设{}{}2,|20,U A x x x N+==<∈x|x 是不大于10的正整数,则UCA =____.8.全集U=R,集合{}{}|0,|1X x x T y y =≥=≥,则U U C T C X 与的包含关系是__.9.设全集{}{},|U A x ==x|x 是三角形x 是锐角三角形,{}|B x =x 是钝角三角形,则U C A B⋃()=______________. 10.已知集合{}{}|2,M N y y x x R =∈==-∈y|y=-2x+1,x R ,则⋂M N =___. 三.解答题11.已知{}{}222190,|560A x ax a B x x x =-+-==-+=x|, {}2280C x x =+-=x| ①.若A B A B ⋂=⋃,求a 的值. ②.若A C C ⋂=,求a 的值.12.设U=R,M={1|≥x x },N={50|<≤x x },求U U C M C N ⋃. 13.设集合{}{}2|(2)()0,,|560A x x x m m R B x x x =--=∈=--=,求A B ⋃,A B ⋂.第一章集合与函数的概念 1.1.1集合的含义与表示 【课堂练习】1.D 2. C 3.B 4. 73,22⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭5. 150,1,x ±≠ 6.D 【达标检测】 选择题 1-5 BADCC填空题 6. ∈ ∉ ∈ 7. {}2,4,5 8. {}2|230x x x -+= 9.是 10. 6 解答题11.}4,2,1,0{=B 集合A 中的元素都在集合B 中。
集合的含义与表示【学习目标】1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力。
2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性。
【学习重难点】1.学习重点:集合的含义与表示方法,用集合语言表达数学对象或数学内容。
2.学习难点:区别元素与集合等概念及其符号表示。
【学习过程】1.元素与集合的概念(1)把研究对象统称为元素,通常用小写拉丁字母表示。
(2)把一些元素组成的总体叫做集合(简称为集),通常用大写拉丁字母表示。
2.集合中元素的特性:确定性、互异性、无序性。
3.集合相等:只要构成两个集合的元素是一样的,就说这两个集合是相等的。
4.元素与集合的关系:(1)如果A.是集合A的元素,就说A.属于集合A,记作A.∈A.(2)如果A.不是集合A的元素,就说A.不属于集合A,记作A.∉A.5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N +来表示。
一、集合的概念例1 考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2007年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体。
解(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以(6)不能构成集合。
1.1.1 集合的含义与表示一.教学目标1.知识与技能①通过实例,了解集合的含义,体会元素与集合的属于关系.②知道常用数集及其专用记号.③会用集合语言表示有关数学对象.2.过程与方法①让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.②让学生归纳整理本节所学的知识.3.情感、态度与价值观增强学生的社会责任感,增强学习的积极性.二.教学重点与难点1.重点:集合的含义与表示方法.2.难点:用描述法表示集合.三.教学设计(一)创设情境,揭示课题同学们看一下,这两个图形分别是什么?他们的定义是什么?那么,集合的含义是什么呢?我们这节课就来学习一下……(二)研探新知如果把昌江中学高一(1)班的每一个同学作为元素,这些元素的全体就是一个集合.请全体女生起立,如果把我们班的每一个女同学作为元素,这些元素的全体也是一个集合.思考:下面的例子也都能组成集合吗?他们的元素分别是什么?① 1~20以内的所有质数;②所有的正方形;③到直线L的距离等于定长d的所有的点;④方程x2+3x+2=0的所有实数根.1.集合的含义一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合(简称为集).给定一个集合,它的元素必须是确定的,例如,我们班的全体同学构成一个集合,你们每个同学都在这个集合中,隔壁班的同学不在这个集合中.“美女”能构成一个集合吗?不能.因为组成它的元素是不确定的.我们班有模样相同的两个同学吗?没有.说明集合中的元素是互不相同的.我们班每个星期都会换座位,我们班所有同学组成的集合改变了吗?没变.说明只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.思考:判断下列元素的全体是否组成集合,并说明理由:①大于3小于11的偶数;②我国的小河流;③中国的直辖市;④身材较高的人.2.元素与集合的关系通常用大写的拉丁字母A,B,C,…表示集合,小写的拉丁字母a,b,c,…表示集合中的元素.如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就a A.说a不属于集合A,记作如果用A表示“我们班的所有女生”组成的集合,xx属于A,xxx不属于A.3.集合的表示方法①自然语言②字母表示常见的数集及其记法:自然数集N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.记忆.随机提问③列举法:“我国的直辖市”组成的集合表示为{北京,天津,上海,重庆}像这样把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.注意:在花括号内不多,不漏,元素之间用“,”隔开.分组:男生一组,女生一组,分组讨论,比赛,输的一方要负责发动全校的同学为玉树地震灾区筹集资金.分组讨论:然后收集一些学生的答案,并分析.例1. 用列举法表示下列集合:①小于10的所有自然数组成的集合;②方程x2=x的所有实数根组成的集合;③由1~20以内的所有质数组成的集合.解:①{0,1,2,3,4,5,6,7,8,9}.②{0,1}.③{2,3,5,7,11,13,17,19}.思考:你能用列举法表示不等式x-7<3 的解集吗?不能,因为这个集合中的元素是列举不完的.但是我们可以用这个集合中元素所具有的共同特征来描述.④描述法:用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再划一条竖线,在竖线后写出这个集合中元素所具有的共同特征.注意:表示元素的符号及取值范围,共同特征.例2. 试分别用列举法和描述法表示下列集合:①方程x2-2=0的所有实数根组成的集合;②由大于10小于20的所有整数组成的集合.解:①用描述法表示为{ x∈R|x2-2=0}.用列举法表示为{2,-2}s②用描述法表示为{x∈Z|10<x<20}.用列举法表示为{11,12,13,14,15,16,17,18,19}通过例2,让学生发现,用描述法表示集合时,如果从上下文的关系来看,元素的取值范围是确定的,则可以省略范围,只写其元素.思考:试比较用列举法和描述法表示集合时,各自的特点和适用的对象.(三)巩固练习:选择适当的方法表示下列集合:1. 所有奇数组成的集合;2. 一次函数y=x+3与y=-2x+6的图像的交点组成的集合.(四)小结1.集合的含义.2.元素与集合.3.集合的表示:①自然语言;②字母表示;③列举法;④描述法.(五)作业: P5 练习1.2.四.板书1.1.1 集合的含义与表示1.集合的含义. 3.集合的表示:集合相等①自然语言;2.元素与集合②字母表示;a∈Aa A ④描述法.五.教学反思。
1.1.2集合的表示方法
教学目标:掌握集合的表示方法,能选择自然语言、图形语言、集合语言描述不同的问题. 教学重点、难点:用列举法、描述法表示一个集合.
教学过程:
一、复习引入:
1.回忆集合的概念
2.集合中元素有那些性质?
3.空集、有限集和无限集的概念
二、讲述新课:
集合的表示方法
1、大写的字母表示集合
2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.
例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}
注:(1)大括号不能缺失.
(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)
自然数集N :{1,2,3,4,…,n ,…}
(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素.
(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.
3、特征性质描述法:
在集合I 中,属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A 可以表示如下:
{x ∈I | p (x ) }
例如,不等式232
>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x , 所有直角三角形的集合可以表示为:}|{是直角三角形x x
注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}
(2)注意区别:实数集,{实数集}.
4、文氏图:用一条封闭的曲线的内部来表示一个集合.
例1:集合}1|),{(2+=x y y x 与集合}1|{2
+=x y y 是同一个集合吗?
答:不是.
集合}1|),{(2+=x y y x 是点集,集合}1|{2+=x y y =}1|{≥y y 是数集。
例2:(教材第7页例1)
例3:(教材第7页例2)
课堂练习:
(1) 教材第8页练习A 、B
(2) 习题1-1A :1,
小结:
本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种) 课后作业:10P 1,2。