初中数学知识点总结(一)
- 格式:doc
- 大小:53.00 KB
- 文档页数:6
初中数学知识点全总结第一章:整数1. 整数的概念整数是由零、正整数和负整数组成的数。
整数包括正整数、负整数和零三种。
正整数的数值范围是1、2、3,……,即1,2,3,4,5,……,可简记为N。
负整数的数值范围是-1,-2,-3……,即-1,-2,-3,-4,-5,…… ,可简记为- N。
集合N记作Z。
2. 整数的比大小相互比较的整数,有如下规律:(1)两个正整数比大小?可比大小。
(2)两个负整数比大小?可比大小。
两个正整数和一个负整数一起比大小时,零比任何负整数大,负整数的绝对值大的,数值小,大的,数值大。
(3)一个正整数和一个负整数一起比大小?不可比大小。
可比大小的整数按其数值大小确定大小关系,也就是绝对值大的数大,绝对值小的数小。
3. 整数的运算(1) 整数的加法:a + b = c(2) 整数的减法:a - b = c(3) 整数的乘法:a × b = c(4) 整数的除法:a ÷ b = c(5) 整数的乘方:a^n = b4. 整数的乘除法(1)两个正整数的乘积是正数(2)几个负整数的乘积是负数(3)两个正整数的商是正数(4)两个负整数的商是正数(5)一个正整数与一个负整数相乘是负数(6)一个正整数与一个负整数相除是负数(7)一个负整数与一个正整数相乘是负数(8)一个负整数与一个正整数相除是负数第二章:分数1. 分数的概念分数是整数和整数之间的比值关系。
分数一般形式: a/b分子a为分数的被除数,分母b为分数的除数,b≠02. 分数的化简分数的化简就是把一个分数约去其等于的分数3. 分数的加减法(1) 两个分数相加:a/b + c/d = (ad + bc)/bd(2) 两个分数相减:a/b - c/d = (ad - bc)/bd4. 分数的乘除法(1) 两个分数相乘:a/b × c/d = ac/bd(2) 两个分数相除:a/b ÷ c/d = a/b × d/c第三章:有理数1. 有理数的概念有理数指包括正整数、负整数和零在内的各种整数以及各种分数2. 有理数的比较(1) 两个有理数比较大小时跟整数一样(2) 两个正数比大小:数值大的,大(3) 两个负数比大小:数值小的,大(4) 正数和负数一起比大小:正数大3. 有理数的加减法(1) 有理数的加法:a + b = c(2) 有理数的减法:a - b = c4. 有理数的乘除法(1) 有理数的乘法:a × b = c(2) 有理数的除法:a ÷ b = c第四章:方程1. 一元一次方程一元一次方程指一个未知数的一次方程。
初中1数学知识点总结初中一年级数学课程是学生数学学习的重要阶段,它为后续的数学学习打下坚实的基础。
本文将对初中一年级数学的主要知识点进行总结,帮助学生更好地理解和掌握这些概念。
# 数与代数1. 有理数- 整数和小数的概念- 正数、负数和零的性质- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小和排序2. 整式与方程- 单项式和多项式的定义- 多项式的加减运算- 一元一次方程的解法- 方程的解的概念及其求解方法3. 因式分解- 公因式的概念- 提公因式法- 乘法公式的应用(如平方差公式、完全平方公式)4. 分数与小数- 分数的基本性质- 分数的加减乘除运算- 小数与分数的互化- 小数的四则运算# 几何1. 图形初步- 平面图形的认识- 点、线、面、体的基本性质- 直线、射线、线段的区分和性质2. 角- 角的定义及其表示方法- 角的度量单位- 角的分类(如锐角、直角、钝角、平角、周角) - 角的比较和运算(和、差、倍数关系)3. 几何图形的性质- 正方形、长方形、三角形的基本性质- 圆的基本性质和圆周角定理- 相似图形的概念和性质# 统计与概率1. 数据统计- 数据的收集和整理- 频数和频率的概念- 绘制和解读条形图、折线图、饼图2. 概率初步- 随机事件的概念- 可能性的初步认识- 简单事件的概率计算# 实际应用1. 解决实际问题- 运用所学数学知识解决日常生活中的问题- 理解数学在其他学科中的应用- 培养逻辑思维和问题解决能力# 总结初中一年级数学的学习内容涵盖了数与代数、几何、统计与概率等多个方面,学生需要掌握基本概念、运算规则和解题技巧。
通过不断的练习和应用,学生可以提高自己的数学素养,为以后的学习打下坚实的基础。
教师和家长应鼓励学生积极参与数学活动,培养他们的兴趣和自信心,帮助他们在数学学习中取得更好的成绩。
初中数学知识点总结文库一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的定义:整数与分数统称为有理数- 有理数的加法、减法、乘法、除法运算规则2. 整式与分式- 单项式:数字与字母的乘积- 多项式:若干个单项式的和- 同类项:所含字母相同,且相同字母的指数也相同的项- 分式的基本性质:分子分母同乘以或除以同一个非零数,分式的值不变- 分式的加减乘除运算规则3. 一元一次方程与不等式- 一元一次方程的定义:只含有一个未知数,且未知数的最高次数为一的方程- 解一元一次方程的步骤:去分母、去括号、移项、合并同类项、化系数为1- 不等式的性质:两边同加、同减、同乘、同除以正数,不等号方向不变;同乘、同除以负数,不等号方向改变4. 二元一次方程组- 代入法:将一个方程的解代入另一个方程求解- 加减消元法:通过两方程相加或相减消去一个未知数- 转述为一元一次方程:通过代入法或加减消元法将二元一次方程组转化为一元一次方程求解5. 函数及其图像- 函数的定义:从一个数集到另一个数集的映射- 函数的表示方法:列表法、图像法、解析式法- 线性函数、二次函数、反比例函数的图像和性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角、内错角- 三角形的分类:按边分类(等边、等腰、不等边三角形);按角分类(锐角、直角、钝角三角形)- 四边形的分类:平行四边形、矩形、菱形、正方形、梯形2. 图形的性质- 三角形的性质:三角形内角和定理、三角形外角性质- 四边形的性质:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质- 圆的性质:圆周角定理、垂径定理、圆的对称性3. 图形的变换- 平移:图形沿直线移动,大小和形状不变- 旋转:图形绕一点旋转一定角度,大小和形状不变- 轴对称:图形关于某条直线对称,称为轴对称图形4. 相似与全等- 全等三角形的判定:SSS(三边全等)、SAS(两边及其夹角全等)、ASA(两角及其夹边全等)、AAS(两角及其对边全等)、HL (直角三角形的斜边和一直角边全等)- 相似三角形的判定:SAS、ASA、SSS- 相似三角形的性质:对应角相等,对应边成比例5. 几何计算- 面积计算公式:三角形、四边形、圆、扇形的面积公式- 周长计算公式:多边形的周长公式- 体积与表面积计算公式:长方体、正方体、圆柱、圆锥的体积与表面积公式三、统计与概率1. 统计- 数据的收集与整理:普查、抽样调查- 数据的描述:平均数、中位数、众数、极差、方差- 频数分布表和直方图:数据的图形表示方法2. 概率- 随机事件:可能发生也可能不发生的事件- 概率的定义:事件发生的可能性大小- 计算简单事件的概率:等可能事件的概率计算公式- 条件概率与独立事件:事件之间相互独立的概率计算以上是初中数学的主要知识点总结,涵盖了数与代数、几何、统计与概率三个大的领域。
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
初中数学知识点总结5篇初中数学知识点总结【篇1】棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
棱锥的的性质:(1)侧棱交于一点。
侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。
各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。
且顶点在底面的射影为底面三角形的垂心。
初中数学知识点总结【篇2】幂函数的性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则_^(p/q)=q次根号(_的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则_=1/(_^k),显然_≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于_0,则a可以是任意实数;排除了为0这种可能,即对于_0_=0的所有实数,q不能是偶数;排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
初中数学知识点总结初中的数学知识点总结(通用11篇)大家都知道,初中数学学习是对学生逻辑计算能力的培养,想要学好初中数学,就要多总结所学知识。
熟读唐诗三百首,不会作诗也会吟,下面是小编为大伙儿整理的初中的数学知识点总结【通用11篇】,仅供参考,希望对大家有所启发。
初中数学知识点总结篇一一元一次方程定义通过化简,只含有一个未知数,且含有未知数的较高次项的次数是一的等式,叫一元一次方程。
通常形式是ax+b=0(a,b为常数,且a≠0)。
一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。
这里a是未知数的系数,b是常数,x的次数须是1.即一元一次方程须同时满足4个条件:⑴它是等式;⑴分母中不含有未知数;⑴未知数较高次项为1;⑴含未知数的项的系数不为0。
一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a 等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。
一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同,等式中含有等号,代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。
二、什么是方程,什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7等。
初中数学知识点总结人教版(精选7篇)初中数学知识点总结篇一1、一元一次方程根的情况△=b2-4ac当△0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
初中九年级数学知识点总结篇二第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a1;D.积为1.4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1.5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
初中数学考点知识总结(最新7篇)初中数学知识点总结篇一知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。
例如:0、3.4、9/10、π(圆周率)。
非负数非负数大于或等于0。
非负数中含有有理数和无理数。
非负数的和或积仍是非负数。
非负数的和为零,则每个非负数必等于零。
非负数的积为零,则至少有一个非负数为零。
非负数的定值等于本身。
常见的非负数实数的定值、实数的偶次幂、算术根等都是常见的非负数。
常见表现形式非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。
知识归纳:任何一个非负数乘以-1都会得到一个非正数。
初中数学知识点总结篇二平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上须相同。
③象限的规定:右上为一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
初中数学知识点全部归纳总结一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的概念:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算规则- 有理数的大小比较2. 整式与分式- 单项式:定义、同类项、合并同类项- 多项式:定义、加减运算、乘法运算- 分式:定义、值、加减运算、乘除运算、通分、约分3. 代数方程- 一元一次方程:解法、解的性质- 二元一次方程组:代入法、消元法- 一元二次方程:定义、解法(开平方法、配方法、公式法、因式分解法)4. 不等式- 不等式的概念:定义、基本性质- 一元一次不等式:解法、解集表示- 一元一次不等式组:解法、解集的确定5. 函数- 函数的概念:定义、函数图像- 线性函数:解析式、图像、性质- 二次函数:解析式、图像、顶点、对称轴、最值二、几何1. 平面图形- 点、线、面的基本性质- 角:分类、性质、角的计算- 三角形:分类、性质、内角和定理、海伦公式- 四边形:分类、性质、面积计算- 圆:基本概念、性质、圆周角定理、垂径定理、弧长计算2. 空间图形- 立体图形的基本概念- 柱、锥、台、球的体积和表面积计算- 棱柱、棱锥的体积计算3. 几何变换- 平移:定义、性质、坐标变化- 旋转:定义、性质、坐标变化- 轴对称:定义、性质、坐标变化4. 相似与全等- 全等三角形的判定条件- 相似三角形的判定条件- 相似比的概念及计算- 三角形的相似性质5. 解析几何- 坐标系:直角坐标系、坐标点的性质- 点的坐标表示、距离公式- 直线方程:点斜式、斜截式、两点式、一般式- 圆的方程:标准式、一般式三、统计与概率1. 统计- 数据的收集、整理、描述- 频数、频率、频数分布表- 平均数、中位数、众数的计算- 方差、标准差的计算2. 概率- 随机事件的概念- 事件的概率定义及计算- 等可能事件的概率- 条件概率、独立事件的概率四、数列1. 等差数列- 等差数列的定义- 通项公式、求和公式- 等差数列的性质2. 等比数列- 等比数列的定义- 通项公式、求和公式- 等比数列的性质以上是初中数学的主要知识点归纳总结。
目:“先化简下式,再求值:a+21-2a+a 其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+21-2a+a = a+(1-a)=1,小芳的解答:原式= a+(a -1)=2a -1=2×9-1=17 ⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质: ________4、计算:20012002(2-3)(2+3)5、我国1990年的人口出生数为23784659人。
保留三个有效数字的近似值是 人。
六、综合应用1、 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c满足a 2-6a+9+4|5|0b c -+-=,试判断△ABC 的形状.2、数轴上的点并不都表示有理数,如图l -2-2中数轴上的点P 所表示的数是2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代人法B .换无法C .数形结合D .分类讨论 3、(开放题)如图l -2-3所示的网格纸,每个小格均为正方形,且小正方形的边长为1,请在小网格纸上画出一个腰长为无理数的等腰三角形.4、如图1-2-4所示,在△ABC 中,∠B=90○,点P 从点B 开始沿BA 边向点A 以 1厘米/秒的宽度移动;同时,点Q 也从点B 开始沿 BC 边向点C 以 2厘米/秒的速度移动,问几秒后,△PBQ 的面积为36平方厘米?5、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为 A .20、29、30 B .18、30、26 C .18、20、26 D .18、30、28专题二 整式 一、考点扫描1、代数式的有关概念. (1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代人 2、整式的有关概念 (1)单项式:只含有数与字母的积的代数式叫做单项式. (2)多项式:几个单项式的和,叫做多项式 (3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷. 3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
初中数学知识点总结(一)
1-13知识点
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x 化为一般式为3x2-x-2=0. 知识点2:直角坐标系与点的位置
1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0.
3.直角坐标系中,点A (1,1)在第一象限.
4.直角坐标系中,点A (-2,3)在第四象限.
5.直角坐标系中,点A (-2,1)在第二象限.
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=
32-x 的值为1. 2.当x=3时,函数y=2
1
-x 的值为1. 3.当x=-1时,函数y=3
21-x 的值为1. 知识点4:基本函数的概念及性质
1.函数y=-8x 是一次函数.
2.函数y=4x+1是正比例函数.
3.函数x y 21-=是反比例函数.
4.抛物线y=-3(x-2)2-5的开口向下.
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).
7.反比例函数x y 2
=的图象在第一、三象限.
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.cos30°= 23
.
2.sin260°+ cos260°= 1.
3.2sin30°+ tan45°= 2.
4.tan45°= 1.
5.cos60°+ sin30°= 1.
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角.
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是
以定点为圆心,定长为半径的圆.
4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半.
6.同圆或等圆的半径相等.
7.过三个点一定可以作一个圆.
8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心.
3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心.
5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线.
8.圆的切线垂直于过切点的半径.
知识点9:圆与圆的位置关系
1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦.
3.两个圆有两个公共点时,叫做这两个圆相交.
4.两个圆内切时,这两个圆的公切线只有一条.
5.相切两圆的连心线必过切点.
知识点10:正多边形基本性质
1.正六边形的中心角为60°.
2.矩形是正多边形.
3.正多边形都是轴对称图形.
4.正多边形都是中心对称图形.
知识点11:一元二次方程的解
1.方程042=-x的根为 .
A.x=2 B.x=-2 C.x1=2,x2=-2 D.x=4 2.方程x2-1=0的两根为 .
A.x=1 B.x=-1 C.x1=1,x2=-1 D.x=2 3.方程(x-3)(x+4)=0的两根为 .
A.x1=-3,x2=4
B.x1=-3,x2=-4
C.x1=3,x2=4
D.x1=3,x2=-4
4.方程x(x-2)=0的两根为 .
A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
5.方程x2-9=0的两根为 .
A.x=3 B.x=-3 C.x1=3,x2=-3 D.x1=+3,x2=-3
知识点12:方程解的情况及换元法
1.一元二次方程02
x的根的情况是 .
+x
42=
3
-
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
2.不解方程,判别方程3x2-5x+3=0的根的情况是 .
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
3.不解方程,判别方程3x2+4x+2=0的根的情况是 .
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
4.不解方程,判别方程4x2+4x-1=0的根的情况是 .
A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根
D.没有实数根
5.不解方程,判别方程5x2-7x+5=0的根的情况是 .
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
6.不解方程,判别方程5x2+7x=-5的根的情况是 .
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
7.不解方程,判别方程x2+4x+2=0的根的情况是 .
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
8. 不解方程,判断方程5y2+1=25y的根的情况是
A.有两个相等的实数根
B. 有两个不相等的实数根
C.只有一个实数根
D. 没有实数根
9. 用 换 元 法 解方 程 4)3(5322=---x x x x 时, 令 32
-x x = y,于
是原方程变为 .
A.y 2-5y+4=0
B.y 2-5y-4=0
C.y 2-4y-5=0
D.y 2+4y-5=0
10. 用换元法解方程4)3(5322=---x x x x 时,令23x x -= y ,于是原方程变为 .
A.5y 2-4y+1=0
B.5y 2-4y-1=0
C.-5y 2-4y-1=0
D. -5y 2-4y-1=0
11. 用换元法解方程(1+x x )2-5(1+x x
)+6=0时,设1+x x
=y ,则
原方程化为关于y 的方程是 .
A.y2+5y+6=0
B.y2-5y+6=0
C.y2+5y-6=0
D.y2-5y-6=0。