第1部分 第二章 章末小结 知识整合与阶段检测
- 格式:ppt
- 大小:1.49 MB
- 文档页数:38
[对应学生用书P28]一、合情推理和演绎推理(1)归纳和类比是常用的合情推理,归纳推理是由部分特殊的对象得到一般性的结论的推理法,它在教学研究或数学学习中有着重要的作用:发现新知识、探索真理、预测答案、探索解题思路等.类比是由特殊到特殊的推理,它以比较为基础,有助于启迪思维、触类旁通、拓宽知识、发现命题等.合情推理的结论不一定正确,有待进一步证明,合情推理可以为演绎推理提供方向和思路.(2)演绎推理是由一般到特殊的推理方法,又叫逻辑推理,在前提和推理形式均正确的前提下,得到的结论一定正确,演绎推理的内容一般是通过合情推理获取.二、直接证明和间接证明1.直接证明包括综合法和分析法(1)综合法是“由因导果”.它是从已知条件出发,顺着推证,用综合法证明命题的逻辑关系是:A⇒B1⇒B2⇒…⇒B n⇒B(A为已知条件或已知的定义定理、公理,B为要证的命题).它的常见书面表达是“∵,∴”或“⇒”.(2)分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,已经学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B(结论)⇐B1⇐B2⇐…⇐B n⇐A(已知).它的常见书面表达是“要证……只需……”或“⇐”.2.间接证明主要是反证法反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法,反证法是间接证明的一种方法.反证法主要适用于以下两种情形:(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面考虑,只要研究一种或很少的几种情形.[对应学生用书P61](时间:90分钟,总分120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.自然数是整数,4是自然数,所以4是整数.以上三段论推理( ) A .正确B .推理形式不正确C .两个“自然数”概念不一致D .“两个整数”概念不一致解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A2.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2 C.n n -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 解析:观察分子中2+6=5+3=7+1=10+(-2)=8. 答案:A3.已知f (x +1)=2f (x )f (x )+2,f (1)=1(x ∈N +),猜想f (x )的表达式为( )A .f (x )=42x +2B .f (x )=2x +1C .f (x )=1x +1D .f (x )=22x +1解析:f (2)=22+1,f (3)=23+1,f (4)=24+1,猜想f (x )=2x +1.答案:B4.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足[f (x )]y =f (xy )”的是( )A .指数函数B .对数函数C .一次函数D .余弦函数解析:当函数f (x )=a x (a >0,a ≠1)时,对任意的x >0,y >0,有[f (x )]y =(a x )y =a xy =f (xy ),即指数函数f (x )=a x (a >0,a ≠1)满足[f (x )]y =f (xy ),可以检验,B ,C ,D 选项均不满足要求.答案:A5.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有:log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有:sin(x +y )=sin x +sin yC .把a (b +c )与a x +y 类比,则有a x +y =a x +a yD .把(a +b )+c 与(xy )z 类比,则有:(xy )z =x (yz ) 解析:(xy )z =x (yz )是乘法的结合律,正确. 答案:D6.(江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N +,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.答案:C7.已知结论:“在正△ABC 中,若D 是BC 的中点,G 是△ABC 外接圆的圆心,则AGGD=2”.若把该结论推广到空间,则有结论:“在正四面体ABCD 中,若M 是△BCD 的中心,O 为四面体ABCD 外接球的球心”,则AOOM =( ) A .2 B .2 2 C .3D .4解析:如图,易知球心O 在线段AM 上,不妨设正四面体ABCD 的棱长为1,外接球的半径为R ,则BM =32×23=33,AM = 12-⎝⎛⎭⎫332=63,R =⎝⎛⎭⎫63-R 2+⎝⎛⎭⎫332,解得R =64.于是,AO OM =6463-64=3.答案:C8.求证:2+3> 5.证明:因为2+3和5都是正数,所以为了证明2+3>5,只需证明(2+3)2>(5)2,展开得5+26>5,即26>0,此式显然成立,所以不等式2+3>5成立.上述证明过程应用了( )A .综合法B .分析法C .综合法及分析法D .间接证法解析:证明过程中的“为了证明……”,“只需证明……”这样的语句是分析法所特有的,是分析法的证明模式.答案:B9.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根解析:至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”.答案:A10.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2014等于( )A.12B.-1 C .2D .3解析:∵a 1=12,a n +1=1-1a n ,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N +,k ∈N +),∴a 2014=a 1+3×671=a 1=12.答案:A二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 11.“因为AC ,BD 是菱形ABCD 的对角线,所以AC ,BD 互相垂直且平分.”以上推理的大前提是.答案:菱形对角线互相垂直且平分12.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=113.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33214.观察下图:1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 …… ……则第行的各数之和等于2 0132.解析:观察知,图中的第n 行各数构成一个首项为n ,公差为1,共2n -1项的等差数列,其各项和为S n =(2n -1)n +(2n -1)(2n -2)2=(2n -1)n +(2n -1)(n -1)=(2n -1)2,令(2n -1)2=2 0132,得2n -1=2 013,∴n =1 007. 答案:1 007三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知等差数列{a n }的公差为d ,前n 项和为S n ,{a n }有如下性质:(m ,n ,p ,q ∈N +)①通项a n =a m +(n -m )d ;②若m +n =p +q ,则a m +a n =a p +a q ; ③若m +n =2p ,则a m +a n =2a p ;④S n ,S 2n -S n ,S 3n -S 2n 构成等差数列.类比上述性质,在等比数列{b n } 中,写出相类似的性质.解:在等比数列{b n }中,公比为λ(λ≠0),前n 项和为S ′n ,{b n }有如下性质:(m ,n ,p ,q ∈N +)①通项b n =b m ·λn -m ;②若m +n =p +q ,则b m ·b n =b p ·b q ;③若m +n =2p ,则b m ·b n =b 2p ;④S ′n ,S ′2n -S ′n ,S ′3n -S ′2n (S ′n ≠0)构成等比数列.16.(本小题满分12分)已知a ,b 均为实数,求证:1a 2+4b 2≥9a 2+b 2;证明:要证1a 2+4b 2≥9a 2+b 2成立,只需证⎝⎛⎭⎫1a 2+4b 2(a 2+b 2)≥9, 即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b2≥4.根据基本不等式,有b 2a 2+4a 2b2≥2b 2a 2·4a 2b 2=4成立,所以原不等式成立. 17.(本小题满分12分)已知函数f (x )=x 21+x 2.(1)分别求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13,f (4)+f ⎝⎛⎭⎫14的值; (2)归纳猜想一般性结论,并给出证明;(3)求值:f (1)+f (2)+f (3)+…+f (2 014)+f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫13+…+f ⎝⎛⎭⎫12 014. 解:(1)∵f (x )=x 21+x 2,∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=221+22+122+1=1,同理可得f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1.(2)由(1)猜想:f (x )+f ⎝⎛⎭⎫1x =1(x ≠0),证明:f (x )+f ⎝⎛⎭⎫1x =x21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=1. (3)由(2)可得,原式=f (1)+⎣⎡⎦⎤f (2)+f ⎝⎛⎭⎫12+⎣⎡⎦⎤f (3)+f ⎝⎛⎭⎫13+…+⎣⎡⎦⎤f (2 014)+f ⎝⎛⎭⎫12 014=f (1)+2 013=12+2 013=4 0272.18.(本小题满分14分)已知f (x )=x 2+bx +c . (1)求证:f (1)+f (3)-2f (2)=2;(2)求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.证明:(1)f (1)+f (3)-2f (2)=12+b +c +32+3b +c -2(22+2b +c )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<12+2×12+12=2,即|f (1)|+2|f (2)|+|f (3)|<2.①而由(1)知,|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2, 即|f (1)|+2|f (2)|+|f (3)|≥2,这与①矛盾,从而假设不成立,原结论成立,即|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.。
2017-2018学年高中数学人教B版选修4-5全册同步配套教学案目录第一章1.1 1.1.1不等式的基本性质第一章1.1 1.1.2一元一次不等式和一元二次不等式的解法第一章1.2 基本不等式第一章1.3绝对值不等式的解法第一章1.4绝对值的三角不等式第一章1.51.5.1比较法第一章1.51.5.2综合法和分析法第一章1.51.5.3反证法和放缩法第一章章末小结知识整合与阶段检测第二章2.1 柯西不等式第二章2.2 排序不等式第二章2.3~2.4 平均值不等式(选学)最大值与最小值问题优化的数学模型第二章章末小结知识整合与阶段检测第三章3.1 数学归纳法原理第三章3.2 用数学归纳法证明不等式贝努利不等式第三章章末小结知识整合与阶段检测1.1不等式的基本性质和一元二次不等式的解法 1.1.1 不等式的基本性质[对应学生用书P1][读教材·填要点]1.实数的大小的几何意义和代数意义之间的联系 设a ,b ∈R ,则 ①a >b ⇔a -b >0; ②a =b ⇔a -b =0; ③a <b ⇔a -b <0. 2.不等式的基本性质[小问题·大思维]1.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个不等式中,恒成立的不等式有哪些? 提示:令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,则∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推出②④恒成立. 即恒成立的不等式有②④. 2.若a <b ,一定有1a >1b吗?提示:不一定.如a =-1,b =2.事实上, 当ab >0时,若a <b ,则有1a >1b ;当ab <0时,若a <b ,则有1a <1b;当ab =0时,若a <b ,则1a 与1b 中有一个式子无意义.[对应学生用书P2][例1] x ∈R ,比较x 3-1与2x 2-2x 的大小.[思路点拨] 本题考查利用作差法比较两个代数式的大小.解答本题需要将作差后的代数式分解因式,然后根据各因式的符号判断x 3-1与2x 2-2x 的大小.[精解详析] (x 3-1)-(2x 2-2x ) =(x 3-x 2)-(x 2-2x +1) =x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)∵x 2-x +1=⎝⎛⎭⎫x -122+34≥34>0, ∴当x >1时,(x -1)(x 2-x +1)>0. 即x 3-1>2x 2-2x ;当x =1时,(x -1)(x 2-x +1)=0, 即x 3-1=2x 2-2x .当x <1时,(x -1)(x 2-x +1)<0, 即x 3-1<2x 2-2x .(1)用作差法比较两个数(式)的大小时,要按照“三步一结论”的程序进行,即:作差→变形→定号→结论,其中变形是关键,定号是目的.(2)在变形中,一般是变形得越彻底越有利于下一步的判断.变形的常用技巧有:因式分解、配方、通分、分母有理化等.(3)在定号中,若为几个因式的积,需每个因式均先定号,当符号不确定时,需进行分类讨论.1.当a ≠0时,比较(a 2+2a +1)(a 2-2a +1)与(a 2+a +1)(a 2-a +1)的大小. 解:两式作差得(a 2+2a +1)(a 2-2a +1)-(a 2+a +1)(a 2-a +1) =[(a 2+1)2-(2a )2]-[(a 2+1)2-a 2]=-a 2. ∵a ≠0,∴-a 2<0.∴(a 2+2a +1)(a 2-2a +1)<(a 2+a +1)(a 2-a +1).[例2] 下列命题中正确的是( ) (1)若a >b ,c >b ,则a >c ; (2)若a >b ,则lg ab >0;(3)若a >b ,c >d ,则ac >bd ; (4)若a >b >0,则1a <1b ;(5)若a c >bd,则ad >bc ;(6)若a >b ,c >d ,则a -d >b -c . A .(1)(2) B .(4)(6) C .(3)(6)D .(3)(4)(5)[思路点拨] 本题考查对不等式的性质的理解,解答本题需要利用不等式的性质或利用特殊值逐项判断.[精解详析] (1)错误.因为当取a =4,b =2,c =6时,有a >b ,c >b 成立,但a >c 不成立.(2)错误.因为a 、b 符号不确定,所以无法确定a b >1是否成立,从而无法确定lg ab >0是否成立.(3)错误.此命题当a 、b 、c 、d 均为正数时才正确.(4)正确.因为a >b ,且a 、b 同号,所以ab >0,两边同乘以1ab ,得1a <1b .(5)错误.只有当cd >0时,结论才成立.(6)正确.因为c >d ,所以-d >-c ,又a >b , 所以a -d >b -c . 综上可知(4)(6)正确. [答案] B运用不等式的性质时要注意条件,如倒数法则要求两数同号;两边同乘一个数,不等号方向是否改变要视此数的正负而定;同向不等式可以相加,异向不等式可以相减.2.若m ,n ∈R ,则1m >1n 成立的一个充要条件是( )A .m >0>nB .n >m >0C .m <n <0D .mn (m -n )<0解析:1m >1n ⇔1m -1n >0⇔n -m mn >0⇔mn (n -m )>0⇔mn (m -n )<0.答案:D[例3] 已知π<α+β<4π3,-π<α-β<-π3,求2α-β的取值范围.[思路点拨] 解答本题时,将α+β,α-β看作整体,再求出2α-β的取值范围. [精解详析] 设2α-β=A (α+β)+B (α-β), 则2α-β=(A +B )α+(A -B )β.比较两边系数得⎩⎪⎨⎪⎧A +B =2,A -B =-1⇒⎩⎨⎧A =12,B =32.∴2α-β=12(α+β)+32(α-β).∵π2<12(α+β)<23π, -3π2<32(α-β)<-π2, ∴-π<2α-β<π6.故2α-β∈⎝⎛⎭⎫-π,π6.(1)若已知某两个代数式的取值范围,求另一个代数式的取值范围时,应利用待定系数法把所求代数式用已知的两代数式表示,进而利用同向不等式的可加性求其范围,否则可能导致所求代数式范围变大.(2)同一问题中应用同向不等式相加性质时,不能多次使用,否则可能导致范围扩大.3.若已知二次函数y =f (x )的图象过原点,且1≤f (-1)≤2,3≤f (1)≤4.求f (-2)的范围. 解:法一:∵f (x )过原点,∴可设f (x )=ax 2+bx .∴⎩⎪⎨⎪⎧f (1)=a +b ,f (-1)=a -b . ∴⎩⎨⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1). ∵1≤f (-1)≤2,3≤f (1)≤4. ∴6≤f (-2)≤10. 法二:设f (x )=ax 2+bx , 则f (1)=a +b ,f (-1)=a -b .令m (a +b )+n (a -b )=f (-2)=4a -2b ,∴⎩⎪⎨⎪⎧ m +n =4,m -n =-2.∴⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,3≤f (1)≤4, ∴6≤f (-2)≤10.[对应学生用书P3]一、选择题1.已知a ,b ,c ,d 为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:由⎩⎪⎨⎪⎧ a -c >b -d ,c >d ⇒a >b ;而当a =c =2,b =d =1时,满足⎩⎪⎨⎪⎧a >b ,c >d ,但a -c >b -d 不成立,所以“a >b ”是“a -c >b -d ”的必要而不充分条件.答案:B2.已知a ,b ,c ∈R ,且ab >0,则下面推理中正确的是( ) A .a >b ⇒am 2>bm 2 B .a c >bc ⇒a >bC .a 3>b 3⇒1a <1bD .a 2>b 2⇒a >b解析:对于A ,若m =0,则不成立;对于B ,若c <0,则不成立;对于C ,a 3-b 3>0⇒(a -b )(a 2+ab +b 2)>0,∵a 2+ab +b 2=(a +b 2)2+34b 2>0恒成立,∴a -b >0.∴a >b .又∵ab >0,∴1a <1b .∴C 成立.对于D ,a 2>b 2⇒(a -b )(a +b )>0,不能说a >b . 答案:C3.设a ,b ∈R ,若a -|b |>0,则下列不等式正确的是( ) A .b -a >0 B .a 3+b 3<0 C .a 2-b 2<0D .b +a >0解析:∵a -|b |>0,∴a >|b |>0.∴不论b 取任何实数不等式a +b >0都成立. 答案:D4.如果a ∈R ,且a 2+a <0,那么a ,a 2,-a ,-a 2的大小关系是( ) A .a 2>a >-a 2>-a B .-a >a 2>-a 2>a C .-a >a 2>a >-a 2D .a 2>-a >a >-a 2解析:∵a 2+a <0,即a (a +1)<0,可得,-1<a <0, ∴-a >a 2>0,∴0>-a 2>a . 综上有-a >a 2>-a 2>a . 答案:B 二、填空题5.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是f (x )________g (x ). 解析:f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f (x )>g (x ). 答案:>6.已知12<a <60,15<b <36,则a -b 的取值范围分别是________. 解析:∵12<a <60,-36<-b <-15,∴-24<a -b <45. 答案:(-24,45)7.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中能推出log b 1b <log a1b <log a b 成立的条件的序号是________.(填所有可能的条件的序号)解析:∵log b 1b =-1,若1<a <b ,则1b <1a<1<b ,∴log a 1b <log a 1a =-1,故条件①不可以;若0<a <b <1,则b <1<1b <1a .∴log a b >log a 1b >log a 1a =-1=log b 1b ,故条件②可以;若0<a <1<b ,则0<1b <1,∴log a 1b>0,log a b <0,条件③不可以.故应填②. 答案:②8.设x =a 2b 2+5,y =2ab -a 2-4a ,若x >y ,则实数a ,b 满足的条件是________________. 解析:∵x >y ,∴a 2b 2+5-2ab +a 2+4a =a 2+4a +4+a 2b 2-2ab +1 =(a +2)2+(ab -1)2>0. ∴ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-2. 三、解答题9.已知-π2≤α<β≤π2,求α+β2,α-β2的范围.解:∵-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4. 因而两式相加得-π2<α+β2<π2.又∵-π4<β2≤π4,∴-π4≤-β2<π4.∴-π2≤α-β2<π2.又∵α<β,∴α-β2<0.∴-π2≤α-β2<0.即α+β2∈⎝⎛⎭⎫-π2,π2,α-β2∈⎣⎡⎭⎫-π2,0. 10.已知a ,b ∈{正实数}且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:∵⎝⎛⎭⎫a 2b +b 2a -(a +b )=a 2b -b +b2a -a =a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝⎛⎭⎫1b -1a =(a 2-b 2)(a -b )ab ,=(a -b )2(a +b )ab ,又∵a >0,b >0,且a ≠b , ∴(a -b )2>0,a +b >0,ab >0, ∴a 2b +b 2a>a +b . 11.已知α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=λ(α+β)+u (α+2β) =(λ+u )α+(λ+2u )β.比较α,β的系数,得⎩⎪⎨⎪⎧ λ+u =1,λ+2u =3,⇒⎩⎪⎨⎪⎧λ=-1,u =2.由题意得-1≤-α-β≤1,2≤2α+4β≤6, 两式相加,得1≤α+3β≤7. 故α+3β的取值范围是[1,7].1.1.2一元一次不等式和一元二次不等式的解法[对应学生用书P4][读教材·填要点]1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.二次函数、二次方程、二次不等式之间的关系[小问题·大思维]1.“若ax2+bx+c<0(a≠0)的解集是空集,则a、b、c满足的关系是b2-4ac<0且a>0”是否正确?提示:当Δ=0时,易知ax2+bx+c<0(a>0)的解集也是∅,从而满足的条件应为“a>0且b2-4ac≤0”.2.当a<0时,若方程ax2+bx+c=0有两个不等实根α,β且α<β,则不等式ax2+bx+c>0的解集是什么?提示:借助函数f(x)=ax2+bx+c的图象可知,不等式的解集为{x|α<x<β}.3.一元二次不等式与二次函数有什么关系?提示:一元二次不等式ax2+bx+c>0(a>0)的解集,就是二次函数y=ax2+bx+c(a>0)的图象在x轴上方的点的横坐标x的集合,ax2+bx+c<0(a>0)的解集,就是二次函数y=ax2+bx+c(a>0)的图象在x轴下方的点的横坐标x的集合.[对应学生用书P5][例1] 不等式x -2x 2-1<0的解集为( )A .{x |1<x <2}B .{x |x <2且x ≠1}C .{x |-1<x <2且x ≠1}D .{x |x <-1或1<x <2}[思路点拨] 根据不等式性质把ba <0转化为ab <0,再求解.[精解详析] 因为不等式x -2x 2-1<0,等价于(x +1)(x -1)(x -2)<0,所以该不等式的解集是{x |x <-1或1<x <2}. [答案] D解分式不等式总的原则是利用不等式的同解原理将其转化为整式不等式(组)求解.即f (x )g (x )≥0⇒⎩⎪⎨⎪⎧f (x )·g (x )≥0g (x )≠0⇒f (x )·g (x )>0或f (x )=0.f (x )g (x )>0⇒⎩⎪⎨⎪⎧f (x )>0g (x )>0或⎩⎪⎨⎪⎧f (x )<0g (x )<0⇒f (x )·g (x )>0.1.解不等式:x +1x -2≤2.解:∵x +1x -2≤2,∴x +1x -2-2≤0.即-x +5x -2≤0.∴x -5x -2≥0.∴⎩⎪⎨⎪⎧(x -5)(x -2)≥0,x -2≠0,∴x <2或x ≥5. 即原不等式的解集为{x |x <2或x ≥5}.[例2] 解关于x 的不等式:ax 2-(a +1)x +1<0. [思路点拨] 由于a ∈R ,故分a =0,a >0,a <0讨论. [精解详析] 若a =0,原不等式可化为-x +1<0,即x >1.若a <0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, 即x <1a或x >1.若a >0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)<0 (*)其解的情况应由1a 与1的大小关系决定,故(1)当a =1时,由(*)式可得x ∈∅; (2)当a >1时,由(*)式可得1a <x <1;(3)当0<a <1时,由(*)式可得1<x <1a.综上所述:当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.解含参数的一元二次不等式时要注意对参数分类讨论.讨论一般分为三个层次,第一层次是二次项系数为零和不为零;第二层次是有没有实数根的讨论,即判别式Δ>0,Δ=0,Δ<0;第三层次是根的大小的讨论.2.若k ∈R ,求解关于x 的不等式:x 22-x <(k +1)x -k2-x.解:不等式x 22-x <(k +1)x -k2-x 可化为x 2-(k +1)x +k 2-x <0,即(x -2)(x -1)(x -k )>0.当k <1时,x ∈(k,1)∪(2,+∞); 当k =1时,x ∈(2,+∞);当1<k <2时,x ∈(1,k )∪(2,+∞); 当k ≥2时,x ∈(1,2)∪(k ,+∞).[例3] 国家为了加强对烟酒生产的宏观调控,实行征收附加税政策,现知某种酒每瓶70元,不加收附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税R 元(叫做税率R %),则每年的销售将减少10R 万瓶,要使每年在此项经营中所收附加税金不少于112万元,问R 应怎样确定?[思路点拨] 由题意求出在此项经营中所收附加税金,建立不等关系转化为不等式问题求解.[精解详析] 设产销量为每年x 万瓶,则销售收入为每年70x 万元, 从中征收的税金为70x ·R %万元,其中x =100-10R , 由题意得70(100-10R )R %≥112, 整理,得R 2-10R +16≤0.∵Δ=36>0,方程R 2-10R +16=0的两个实数根为x 1=2,x 2=8.然后画出二次函数y =R 2-10R +16的图象,由图象得不等式的解集为{R |2≤R ≤8}. 答:当2≤R ≤8时,每年在此项经营中所收附加税金不少于112万元.解一元二次不等式应用题的关键在于构造一元二次不等式模型,即分析题目中有哪些未知量,然后选择其中起关键作用的未知量,设此未知量为x ,用x 来表示其他未知量,再根据题目中的不等关系列不等式.3.据调查,湖南某地区有100万从事传统农业的农民,人均年收入3 000元.为了增加农民的收入,当地政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作.据估计,如果有x (x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x %,而进入企业工作的农民人均年收入为3 000a 元(a >0为常数).(1)在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的年总收入,求x 的取值范围;(2)在(1)的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大?解:(1)根据题意,得(100-x )·3 000·(1+2x %)≥100×3 000, 即x 2-50x ≤0,解得0≤x ≤50. 又x >0,故x 的取值范围是(0,50]. (2)设这100万农民的人均年收入为y 元,则 y =(100-x )×3 000×(1+2x %)+3 000ax 100=-60x 2+3 000(a +1)x +300 000100=-35[x -25(a +1)]2+3 000+375(a +1)2(0<x ≤50).①若0<25(a +1)≤50,即0<a ≤1, 则当x =25(a +1)时,y 取最大值; ②若25(a +1)>50,即a >1, 则当x =50时,y 取最大值.答:当0<a ≤1时,安排25(a +1)万人进入加工企业工作,当a >1时,安排50万人进入加工企业工作,才能使这100万人的人均年收入最大.[对应学生用书P6]一、选择题1.已知全集U =R ,集合M ={x |x 2-2x -3≤0},则∁U M =( ) A .{x |-1≤x ≤3} B .{x |-3≤x ≤1} C .{x |x <-3或x >1}D .{x |x <-1或x >3}解析:因为M ={x |-1≤x ≤3},全集U =R , 所以∁U M ={x |x <-1或x >3}. 答案:D2.关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是( )A .2B .1C .0D .-1解析:方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a |≤9,即-1≤a ≤1. 答案:C3.不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解析:由题意得⎩⎪⎨⎪⎧a <0,-2+1=1a ,-2×1=-c a,解得a =-1,c =-2, 则函数y =f (-x )=-x 2+x +2. 答案:C4.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞)D .(1,3)解析:把不等式的左端看成关于a 的一次函数, 记f (a )=(x -2)a +(x 2-4x +4), 则f (a )>0对于任意的a ∈[-1,1]恒成立, 有f (-1)=x 2-5x +6>0,① 且f (1)=x 2-3x +2>0,② 联立①②解得x <1或x >3.故选C. 答案:C 二、填空题5.若不等式-x 2+2x -m >0在x ∈[-1,0]上恒成立,则m 的取值范围是________. 解析:由m <-x 2+2x 知m 只需小于u =-x 2+2x ,x ∈[-1,0]的最小值即可. 又∵u 在[-1,0]上递增, ∴u min =-1-2=-3. ∴m <-3.答案:(-∞,-3)6.已知x =1是不等式k 2x 2-6kx +8≥0(k ≠0)的解,则k 的取值范围是______________. 解析:由题意知,k 2-6k +8≥0, 即(k -2)(k -4)≥0,∴k ≥4或k ≤2,又∵k ≠0,∴k 的取值范围是(-∞,0)∪(0,2]∪[4,+∞). 答案:(-∞,0)∪(0,2]∪[4,+∞)7.若不等式2x -1>m (x 2-1)对满足-2≤m ≤2的所有m 都成立,则x 的取值范围为________________.解析:(等价转化法)将原不等式化为: m (x 2-1)-(2x -1)<0. 令f (m )=m (x 2-1)-(2x -1),则原问题转化为当-2≤m ≤2时,f (m )<0恒成立,只需⎩⎪⎨⎪⎧ f (-2)<0,f (2)<0即可,即⎩⎪⎨⎪⎧-2(x 2-1)-(2x -1)<0,2(x 2-1)-(2x -1)<0,解得-1+72<x <1+32.答案:⎝⎛⎭⎪⎫-1+72,1+328.已知方程x 2+(2m -3)x +m 2-15=0的两个根一个大于-2,一个小于-2,则实数m 的取值范围为________.解析:设函数f (x )=x 2+(2m -3)x +m 2-15, 则由题意:⎩⎪⎨⎪⎧Δ=(2m -3)2-4(m 2-15)>0,f (-2)<0, 即⎩⎪⎨⎪⎧-12m +69>0,m 2-4m -5<0. ∴-1<m <5. 答案:(-1,5) 三、解答题9.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R? 解:(1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧1-a <0,41-a=-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0, 即为2x 2-x -3>0, 解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-1或x >32.(2)ax 2+bx +3≥0,即为3x 2+bx +3≥0. 若此不等式解集为R ,则b 2-4×3×3≤0, ∴-6≤b ≤6.10.一个服装厂生产风衣,日销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂日产量多大时,日利润不少于1 300元?(2)当日产量为多少时,可获得最大利润,最大利润是多少? 解:(1)由题意知,日利润y =px -R , 即y =(160-2x )x -(500+30x ) =-2x 2+130x -500, 由日利润不少于1 300元, 得-2x 2+130x -500≥1 300, 即x 2-65x +900≤0,解得20≤x ≤45.故当该厂日产量在20~45件时,日利润不少于1 300元. (2)由(1)得,y =-2x 2+130x -500 =-2⎝⎛⎭⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当日产量为32或33件时,可获得最大利润,最大利润为1 612元. 11.已知二次函数f (x )=ax 2+x ,若对任意x 1,x 2∈R ,恒有2f ⎝⎛⎭⎫x 1+x 22≤f (x 1)+f (x 2)成立,不等式f (x )<0的解集为A .(1)求集合A ;(2)设集合B ={x ||x +4|<a },若集合B 是集合A 的子集,求a 的取值范围.解:(1)对任意的x 1,x 2∈R , f (x 1)+f (x 2)-2f ⎝⎛⎭⎫x 1+x 22=12a (x 1-x 2)2≥0,要使上式恒成立,所以a ≥0.由f (x )=ax 2+x 是二次函数知a ≠0,故a >0. 由f (x )=ax 2+x =ax ⎝⎛⎭⎫x +1a <0, 解得A =⎝⎛⎭⎫-1a ,0. (2)解得B =(-a -4,a -4),因为集合B 是集合A 的子集,所以a -4≤0,且-a -4≥-1a. 解得0<a ≤-2+ 5.即a 的取值范围是(0,-2+5].1.2基本不等式[对应学生用书P7][读教材·填要点]1.定理1设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2(基本不等式或平均值不等式)如果a ,b a =b 时,等号成立.即:两个正数的算术平均不小于(即大于或等于)它们的几何平均.3.定理3(三个正数的算术—几何平均值不等式)如果a ,b ,c 为正数,则a +b +c 3≥a =b =c 时,等号成立.4.定理4(一般形式的算术—几何平均值不等式) 如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a nn≥ 并且当且仅当a 1=a 2=…=a n 时,等号成立.[小问题·大思维]1.在基本不等式a +b2≥ab 中,为什么要求a ,b ∈(0,+∞)?提示:对于不等式a +b2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,而且a ,b 至少有一个为0时,不能称ab 为几何平均(或等比中项),因此规定a ,b ∈(0,+∞).2.满足不等式a +b +c 3≥3abc 成立的a ,b ,c 的范围是什么?提示:a ,b ,c 的范围为a ≥0,b ≥0,c ≥0.[对应学生用书P8][例1] 已知a ,b ,c 为正实数,且abc =1 求证:(a +b )(b +c )(c +a )≥8.[思路点拨] 本题考查基本不等式在证明不等式中的应用,解答本题需要分析不等式的特点,先对a +b ,b +c ,c +a 分别使用基本不等式,再把它们相乘.[精解详析] ∵a ,b ,c 为正实数, ∴a +b ≥2ab >0, b +c ≥2bc >0, c +a ≥2ca >0, 由上面三式相乘可得 (a +b )(b +c )(c +a ) ≥8ab ·bc ·ca =8abc . 即(a +b )(b +c )(c +a )≥8.(1)用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形形式进行证明.(2)本题证明过程中多次用到基本不等式,然后利用同向不等式的可加性得出所证的不等式.1.已知a ,b ∈(0,+∞),求证:(a +b )⎝⎛⎭⎫1a +1b ≥4. 证明:∵a >0,b >0,∴a +b ≥2ab >0,① 当且仅当a =b 时取等号. 1a +1b≥21ab>0,② 当且仅当1a =1b ,即a =b 时取等号.①×②,得(a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时取等号. ∴(a +b )⎝⎛⎭⎫1a +1b ≥4.[例2] (1)已知a ,b ,c ∈R +,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.(2)设a 1,a 2,a 3均为正数,且a 1+a 2+a 3=m ,求证:1a 1+1a 2+1a 3≥9m.[思路点拨] 本题考查平均不等式的应用.解答(1)题时可重复使用均值不等式,(2)题需要先观察求证式子的结构,然后通过变形转化为用平均不等式证明.[精解详析] (1)a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2 ≥33a 2b 2c 2+931a 2·1b 2·1c 2≥233a 2b 2c 2·931a 2·1b 2·1c 2=63,当且仅当a =b =c =43时等号成立. (2)∵⎝⎛⎭⎫1a 1+1a 2+1a 3·m =(a 1+a 2+a 3)·⎝⎛⎭⎫1a 1+1a 2+1a 3≥33a 1·a 2·a 3·3 31a 1·1a 2·1a 3=9·3a 1·a 2·a 3·1a 1·1a 2·1a 3=9.当且仅当a 1=a 2=a 3=m3时等号成立.又∵m >0,∴1a 1+1a 2+1a 3≥9m.三个正数的算术—几何平均不等式定理,是根据不等式的意义、性质和比较法证出的,因此,凡是可以利用该定理证明的不等式,一般都可以直接应用比较法证明,只是在具备条件时,直接应用该定理会更简便.若不直接具备“一正二定三相等”的条件,要注意经过适当的恒等变形后再使用定理证明.连续多次使用平均值不等式定理时要注意前后等号成立的条件是否保持一致.2.已知a ,b ,c ∈R +,证明⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27. 证明:∵a ,b ,c ∈R +, ∴a +b +c ≥33abc >0.∴(a +b +c )2≥93a 2b 2c 2 又1a 2+1b 2+1c 2≥331a 2b 2c2>0, ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥331a 2b 2c 2·93a 2b 2c 2 =27.当且仅当a =b =c 时,等号成立. ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27.[对应学生用书P9]一、选择题1.设x 、y 为正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .x +y ≤2(2+1) C .x +y ≤(2+1)2D .x +y ≥(2+1)2解析:x >0,y >0,xy -(x +y )=1⇒xy =1+(x +y )⇒1+(x +y )≤⎝⎛⎭⎫x +y 22⇒x +y ≥2(2+1).答案:A2.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A .V ≥π B .V ≤π C .V ≥18πD .V ≤18π解析:设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3, 于是有V =πr 2h ≤π·⎝⎛⎭⎫r +r +h 33=π⎝⎛⎭⎫333=π,当且仅当r =h 时取等号. 答案:B3.设x ,y ,z ∈R +且x +y +z =6,则lg x +lg y +lg z 的取值范围是( ) A .(-∞,lg 6] B .(-∞,3lg 2] C .[lg 6,+∞) D .[3lg 2,+∞) 解析:∵lg x +lg y +lg z =lg(xyz ),而xyz ≤⎝⎛⎭⎫x +y +z 33,∴lg(xyz )≤lg 8=3lg 2(当且仅当x =y =z =2时,等号成立). 答案:B4.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,则x 的取值范围为( )A.⎣⎡⎭⎫0,18 B.⎣⎡⎭⎫18,1 C .[1,8)D .[8,+∞)解析:∵x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 =1-a a ·1-b b ·1-c c =(b +c )·(c +a )·(a +b )abc ≥2bc ·2ca ·2ababc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案:D 二、填空题5.已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.解析:因为x >0,y >0, 所以x 3+y 4≥2x 3·y 4= xy3,即 xy3≤1,解得xy ≤3,所以其最大值为3. 答案:36.设a >1,t >0,则12log a t 与log a t +12的大小关系为12log a t ________log a t +12(填“<”“≥”或“≤”).解析:因为12log a t =log a t ,又t >0又t +12≥ t . 而a >1,∴log a t +12≥log a t ,故填“≤”.答案:≤7.函数y =x 2x 4+9(x ≠0)有最大值________,此时x =________.解析:∵x ≠0,∴x 2>0.∴y =x 2x 4+9=1x 2+9x2≤12x 2·9x2=16, 当且仅当x 2=9x 2,即x 4=9,x =±3时取等号,即当x =±3时,y max =16.答案:16±38.已知a >0,b >0,c >0,且a +b +c =1,则abc 的最大值是________. 解析:∵a ,b ,c ∈(0,+∞),∴1=a +b +c ≥33abc . 0<abc ≤⎝⎛⎭⎫133=127,当且仅当a =b =c =13时取等号.答案:127三、解答题9.求函数y =2x 2+3x (x >0)的最小值.解:由x >0知2x 2>0,32x >0,则y =2x 2+3x =2x 2+32x +32x≥332x 2·32x ·32x =3392.当且仅当2x 2=32x ,即x =334时,y min =3392=32336.10.已知a ,b 为正实数,a +b =1. 求证:⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 证明:∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab ≥4.∵a +b 2≤a 2+b 22,∴a 2+b 22≥⎝⎛⎭⎫a +b 22.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥2⎣⎢⎡⎦⎥⎤a +1a +b +1b 22=⎝⎛⎭⎫1+1a +1b 22≥⎝⎛⎭⎫1+21ab 22≥252.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 当且仅当a =b =12时等号成立.11.设a ,b ,c 为正实数, 求证:1a 3+1b 3+1c3+abc ≥2 3.证明:因为a ,b ,c 为正实数,由算术—几何平均不等式可得 1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3, 即1a 3+1b 3+1c 3≥3abc (当且仅当a =b =c 时,等号成立). 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc+abc ≥23abc·abc =23(当且仅当a 2b 2c 2=3时,等号成立), 所以1a 3+1b 3+1c 3+abc ≥23(当且仅当a =b =c =63时,等号成立).1.3绝对值不等式的解法[对应学生用书P10][读教材·填要点]1.含绝对值的不等式|x|≤a与|x|≥a的解集2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法(1)|ax+b|≤c⇔-c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法(1)分区间讨论法:以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负进而去掉绝对值符号是解题关键.(2)图象法:构造函数,结合函数的图象求解.(3)几何法:利用绝对值不等式的几何意义求解.[小问题·大思维]1.|x|以及|x-a|±|x-b|表示的几何意义是什么?提示:|x|的几何意义是数轴上表示数x的点到原点O的距离;|x-a|±|x-b|的几何意义是数轴上表示数x的点与表示数a,b的点的距离之和(差).2.如何解|x-a|<|x-b|、|x-a|>|x-b|(a≠b)型的不等式的解集?提示:可通过两边平方去绝对值符号的方法求解.[对应学生用书P10][例1]解下列不等式:(1)1<|x-2|≤3;(2)|2x +5|>7+x ; (3)1x 2-2≤1|x |. [思路点拨] 本题考查较简单的绝对值不等式的解法.解答本题(1)可利用公式转化为|ax +b |>c (c >0)或|ax +b |<c (c >0)型不等式后逐一求解,也可利用绝对值的定义分两种情况去掉绝对值符号,还可用平方法转化为不含绝对值的不等式.(2)可利用公式法转化为不含绝对值的不等式. (3)可分类讨论去掉分母和绝对值.[精解详析] (1)法一:原不等式等价于不等式组⎩⎪⎨⎪⎧ |x -2|>1,|x -2|≤3,即⎩⎪⎨⎪⎧x <1或x >3,-1≤x ≤5,解得-1≤x <1或3<x ≤5,所以原不等式的解集为{x |-1≤x <1或3<x ≤5}. 法二:原不等式可转化为:①⎩⎪⎨⎪⎧ x -2≥0,1<x -2≤3,或②⎩⎪⎨⎪⎧x -2<0,1<-(x -2)≤3,由①得3<x ≤5,由②得-1≤x <1,所以原不等式的解集是{x |-1≤x <1或3<x ≤5}. (2)由不等式|2x +5|>7+x ,可得2x +5>7+x 或2x +5<-(7+x ), 整理得x >2或x <-4.∴原不等式的解集是{x |x <-4或x >2}. (3)①当x 2-2<0且x ≠0,即当-2<x <2, 且x ≠0时,原不等式显然成立. ②当x 2-2>0时,原不等式与不等式组⎩⎨⎧|x |>2,x 2-2≥|x |等价,x 2-2≥|x |即|x |2-|x |-2≥0, ∴|x |≥2,∴不等式组的解为|x |≥2, 即x ≤-2或x ≥2. ∴原不等式的解集为(-∞,-2]∪(-2,0)∪(0,2)∪[2,+∞).含一个绝对值不等式的常见类型及其解法:(1)形如|f (x )|<a ,|f (x )|>a (a ∈R )型不等式 此类不等式的简单解法是等价命题法,即 ①当a >0时,|f (x )|<a ⇒-a <f (x )<a . |f (x )|>a ⇔f (x )>a 或f (x )<-a . ②当a =0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )≠0.③当a <0时,|f (x )|<a 无解. |f (x )|>a ⇔f (x )有意义.(2)形如|f (x )|<g (x ),|f (x )|>g (x )型不等式 此类不等式的简单解法是等价命题法,即 ①|f (x )|<g (x )⇔-g (x )<f (x )<g (x ),②|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x )(其中g (x )可正也可负). 若此类问题用分类讨论法来解决,就显得较复杂. (3)形如a <|f (x )|<b (b >a >0)型不等式 此类问题的简单解法是利用等价命题法,即 a <|f (x )|<b (0<a <b )⇔a <f (x )<b 或-b <f (x )<-a . (4)形如|f (x )|<f (x ),|f (x )|>f (x )型不等式 此类题的简单解法是利用绝对值的定义,即 |f (x )|>f (x )⇔f (x )<0, |f (x )|<f (x )⇔x ∈∅.1.设函数f (x )=|2x -a |+5x ,其中a >0. (1)当a =3时,求不等式f (x )≥5x +1的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解:(1)当a =3时,不等式f (x )≥5x +1可化为|2x -3|≥1, 由此可得x ≥2或x ≤1.故不等式f (x )≥5x +1的解集为{x |x ≤1或x ≥2}.(2)由f (x )≤0得|2x -a |+5x ≤0,此不等式可化为不等式组⎩⎪⎨⎪⎧x ≥a 2,2x -a +5x ≤0或⎩⎪⎨⎪⎧x <a 2,-(2x -a )+5x ≤0,即⎩⎨⎧x ≥a 2,x ≤a7或⎩⎨⎧x <a 2,x ≤-a3,因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x | x ≤-a 3.由题设可得-a3=-1,故a =3.[例2] 解不等式|x +7|-|3x -4|+3-22>0. [思路点拨] 先求出零点即x =-7,43,再分段讨论.[精解详析] 原不等式化为 |x +7|-|3x -4|+2-1>0,当x >43时,原不等式为x +7-(3x -4)+2-1>0,得x <5+22,即43<x <5+22; 当-7≤x ≤43时,原不等式为x +7+(3x -4)+2-1>0, 得x >-12-24,即-12-24<x ≤43;当x <-7时,原不等式为 -(x +7)+(3x -4)+2-1>0, 得x >6-22,与x <-7矛盾; 综上,不等式的解为-12-24<x <5+22.(1)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.(2)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的图象解法和画出函数f (x )=|x -a |+|x -b |-c 的图象是密切相关的,其图象是折线,正确地画出其图象的关键是写出f (x )的分段表达式.不妨设a <b ,于是f (x )=⎩⎪⎨⎪⎧-2x +a +b -c , (x ≤a ),b -a -c , (a <x <b ),2x -a -b -c , (x ≥b ).这种图象法的关键是合理构造函数,正确画出函数的图象,求出函数的零点,体现了函数与方程结合、数形结合的思想.(3)形如|f (x )|<|g (x )|型不等式此类问题的简单解法是利用平方法,即 |f (x )|<|g (x )|⇔[f (x )]2<[g (x )]2 ⇔[f (x )+g (x )][f (x )-g (x )]<0.2.设函数f (x )=|2x +1|-|x -3|. (1)解不等式f (x )≥4; (2)求函数y =f (x )的最小值.解:(1)由题意得,f (x )=|2x +1|-|x -3| =⎩⎪⎨⎪⎧-x -4, x <-12,3x -2, -12≤x ≤3,x +4, x >3,所以不等式f (x )≥4,等价于⎩⎪⎨⎪⎧ x <-12,-x -4≥4或⎩⎪⎨⎪⎧-12≤x ≤3,3x -2≥4或⎩⎪⎨⎪⎧x >3,x +4≥4,解得x ≤-8或x ≥2.所以原不等式的解集为{x |x ≤-8或x ≥2}. (2)由(1)知,当x <-12时,f (x )=-x -4,所以f (x )在⎝⎛⎭⎫-∞,-12上单调递减; 当-12≤x ≤3时,f (x )=3x -2,所以f (x )在⎣⎡⎦⎤-12,3上单调递增; 当x >3时,f (x )=x +4,所以f (x )在(3,+∞)上单调递增.故当x =-12时,y =f (x )取得最小值,此时f (x )min =-72.[例3] 设函数f (x )=|x -1|+|x -a |. 如果∀x ∈R ,f (x )≥2,求a 的取值范围.[思路点拨] 本题考查绝对值不等式的解法.解答本题应先对a 进行分类讨论,求出函数f (x )的最小值,然后求a 的取值范围.[精解详析] 若a =1,f (x )=2|x -1|,不满足题设条件. 若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤a ,1-a , a <x <1,2x -(a +1), x ≥1,f (x )的最小值为1-a .若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1, x ≤1,a -1, 1<x <a ,2x -(a +1), x ≥a ,f (x )的最小值为a -1.所以∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,从而a 的取值范围为(-∞,-1]∪[3,+∞).含有参数的不等式的求解问题分两类,一类不需要对参数进行讨论,另一类如本例,对参数a 进行讨论,得到关于参数a 的不等式(组),进而求出参数的取值范围.3.(辽宁高考)已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. 解:(1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6, x ≤2,2, 2<x <4,2x -6, x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4, 解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4, 解得x ≥5.所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=⎩⎪⎨⎪⎧-2a , x ≤0,4x -2a , 0<x <a ,2a , x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2}, 所以⎩⎨⎧a -12=1,a +12=2,于是a =3.[对应学生用书P12]一、选择题1.若不等式|ax +2|<6的解集为(-1,2),则实数a 的取值为( ) A .8 B .2 C .-4D .-8解析:原不等式化为-6<ax +2<6, 即-8<ax <4. 又∵-1<x <2,∴验证选项易知a =-4适合. 答案:C2.如果1x <2和|x |>13同时成立,那么x 的取值范围是( )A.⎩⎨⎧⎭⎬⎫x | -13<x <12 B.⎩⎨⎧⎭⎬⎫x | x >12或x <-13C.⎩⎨⎧⎭⎬⎫x | x >12 D.⎩⎨⎧⎭⎬⎫x | x <-13或x >13解析:解不等式1x <2得x <0或x >12;解不等式|x |>13得x >13或x <-13.如图所示:∴x 的取值范围为⎩⎨⎧⎭⎬⎫x | x >12或x <-13.答案:B3.如果关于x 的不等式|x -a |+|x +4|≥1的解集是全体实数,则实数a 的取值范围是( )A .(-∞,3]∪[5,+∞)B .[-5,-3]C .[3,5]D .(-∞,-5]∪[-3,+∞)解析:在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3. 答案:D4.若关于x 的不等式|x +1|≥kx 恒成立,则实数k 的取值范围是( ) A .(-∞,0] B .[-1,0] C .[0,1]D .[0,+∞)解析:作出y =|x +1|与l1;y =kx 的图象如图,当k <0时,直线一定经过第二、四象限,从图看出明显不恒成立;当k =0时,直线为x 轴,符合题意;当k >0时,要使|x +1|≥kx 恒成立,只需k ≤1.综上可知k ∈[0,1]. 答案:C 二、填空题5.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x | x >146.不等式|x +1||x +2|≥1的实数解集为________.解析:|x +1||x +2|≥1⇔|x +1|≥|x +2|,x +2≠0⇔(x +1)2≥(x +2)2,x ≠-2⇔x ≤-32,x ≠-2.答案:(-∞,-2)∪⎝⎛⎦⎤-2,-327.若不等式| x +1x | >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是________.解析:∵|x +1x |≥2,∴|a -2|+1<2,即|a -2|<1,解得1<a <3.答案:1<a <38.若关于x 的不等式|x -1|+|x -a |≥a 的解集为R (其中R 是实数集),则实数a 的取值范围是________.解析:不等式|x -1|+|x -a |≥a 恒成立, a 不大于|x -1|+|x -a |的最小值, ∵|x -1|+|x -a |≥|1-a |,∴|1-a |≥a,1-a ≥a 或1-a ≤-a ,解得a ≤12.答案:⎝⎛⎦⎤-∞,12 三、解答题9.解不等式|2x -4|-|3x +9|<1. 解:(1)当x >2时,原不等式可化为⎩⎪⎨⎪⎧x >2,(2x -4)-(3x +9)<1, 解得x >2.(2)当-3≤x ≤2时,原不等式可化为⎩⎪⎨⎪⎧ -3≤x ≤2,-(2x -4)-(3x +9)<1, 解得-65<x ≤2.(3)当x <-3时,原不等式可化为⎩⎪⎨⎪⎧x <-3,-(2x -4)+(3x +9)<1, 解得x <-12.综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-12或x >-65.10.已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,原不等式可化为|2x -1|+|x -2|≤3,当x >2时,得3x -3≤3,则x ≤2,无解;当12≤x ≤2时,得x +1≤3,则x ≤2,所以12≤x ≤2; 当x <12时,得3-3x ≤3,则x ≥0,所以0≤x <12.综上所述,原不等式的解集为[0,2]. (2)原不等式可化为|x -2a |≤3-|2x -1|, 因为x ∈[1,2],所以|x -2a |≤4-2x , 即2x -4≤2a -x ≤4-2x ,故3x -4≤2a ≤4-x 对x ∈[1,2]恒成立.当1≤x ≤2时,3x -4的最大值为2,4-x 的最小值为2, 所以a 的取值范围为1.11.已知函数f (x )=|x +3|+|x -a |(a >0). (1)当a =4时,已知f (x )=7,求x 的取值范围; (2)若f (x )≥6的解集为{x |x ≤-4或x ≥2},求a 的值.解:(1)因为|x +3|+|x -4|≥|x +3-x +4|=7,当且仅当(x +3)(x -4)≤0时等号成立. 所以f (x )=7时,-3≤x ≤4,故x ∈[-3,4]. (2)由题知f (x )=⎩⎪⎨⎪⎧a -3-2x , x ≤-3,a +3, -3<x <a ,2x +3-a , x ≥a ,当a +3≥6时,不等式f (x )≥6的解集为R ,不合题意;当a +3<6时,不等式f (x )≥6的解为⎩⎪⎨⎪⎧ x ≤-3,a -3-2x ≥6或⎩⎪⎨⎪⎧x ≥a ,2x +3-a ≥6,即⎩⎪⎨⎪⎧ x ≤-3,x ≤a -92或⎩⎪⎨⎪⎧x ≥a ,x ≥a +32.又因为f (x )≥6的解集为{x |x ≤-4或x ≥2}, 所以a =1.1.4绝对值的三角不等式[对应学生用书P13][读教材·填要点]绝对值的三角不等式(1)定理1:若a ,b 为实数,则|a +b |≤|a |+|b |. 当且仅当ab ≥0时,等号成立.(2)定理2:设a ,b ,c 为实数,则|a -c |≤|a -b |+|b -c |,等号成立⇔(a -b )(b -c )≥0,即b 落在a ,c 之间.①推论1:||a |-|b ||≤|a +b | ②推论2:||a |-|b ||≤|a -b |[小问题·大思维]1.|a +b |与|a |-|b |,|a -b |与|a |-|b |及|a |+|b |分别具有什么关系? 提示:|a |-|b |≤|a +b |,|a |-|b |≤|a -b |≤|a |+|b |.2.不等式|a |-|b |≤|a ±b |≤|a |+|b |中“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0,且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.绝对值不等式|a -c |≤|a -b |+|b -c |的几何解释是什么?提示:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C ,当点B 在点A ,C 之间时,|AC |=|AB |+|BC |;当点B 不在点A ,C 之间时,|AC |<|AB |+|BC |.[对应学生用书P13][例1] (1)以下四个命题:①若a ,b ∈R ,则|a +b |-2|a |≤|a -b |; ②若|a -b |<1,则|a |<|b |+1; ③若|x |<2,|y |>3,则|x y |<23;④若AB ≠0,则lg |A |+|B |2≥12( lg|A |+lg|B |).其中正确的命题有( )A .4个B .3个C .2个D .1个(2)不等式|a +b ||a |-|b |≥1成立的充要条件是________.[思路点拨] 本题考查绝对值的三角不等式定理的应用及充要条件等问题.解答问题(1)可利用绝对值的三角不等式定理,结合不等式的性质、基本定理等一一验证;解答问题(2)应分|a |>|b |与|a |<|b |两类讨论.[精解详析] (1)|a +b |=|(b -a )+2a |≤|b -a |+2|a | =|a -b |+2|a |,∴|a +b |-2|a |≤|a -b |,①正确; 1>|a -b |≥|a |-|b |,∴|a |<|b |+1,②正确; |y |>3,∴1|y |<13.又∵|x |<2,∴|x ||y |<23.③正确;⎝⎛⎭⎫|A |+|B |22=14(|A |2+|B |2+2|A ||B |), ≥14(2|A ||B |+2|A ||B |)=|A ||B |, ∴2lg |A |+|B |2≥lg|A ||B |.∴lg|A |+|B |2≥12(lg|A |+lg|B |),④正确. (2)当|a |>|b |时,有|a |-|b |>0, ∴|a +b |≥||a |-|b ||=|a |-|b |. ∴必有|a +b ||a |-|b |≥1.即|a |>|b |是|a +b ||a |-|b |≥1成立的充分条件. 当|a +b ||a |-|b |≥1时,由|a +b |>0, 必有|a |-|b |>0. 即|a |>|b |,故|a |>|b |是|a +b ||a |-|b |≥1成立的必要条件. 故所求为:|a |>|b |. [答案] (1)A (2)|a |>|b |。