一种自动识别最优阈值的图像分割方法
- 格式:pdf
- 大小:128.40 KB
- 文档页数:2
医疗图像分析中的病灶分割算法使用方法病灶分割算法在医疗图像分析中扮演着重要的角色。
医疗图像分析是一门快速发展的领域,通过使用病灶分割算法,可以帮助医生更准确地检测和诊断患者的疾病。
本文将详细介绍病灶分割算法的使用方法,以帮助读者了解如何在医疗图像分析中应用这些算法。
首先,我们需要了解病灶分割算法的基本原理。
病灶分割算法旨在从医疗图像中准确提取和分割出患者的病灶区域。
这些算法通常基于图像处理和计算机视觉技术,使用机器学习的方法来训练模型,并通过对图像进行像素级的分类和分割来实现病灶的识别。
下面我们将介绍几种常见的病灶分割算法和它们的使用方法。
1. 基于阈值的分割算法:这是最简单和最常用的分割方法之一。
它基于设定一个阈值,将图像中像素灰度值与该阈值进行比较,并将低于阈值的像素标记为背景,高于阈值的像素标记为病灶。
这个过程通常需要根据具体的应用场景进行参数调整以获得最佳的结果。
2. 区域生长算法:区域生长算法是一种基于种子点的像素分类方法。
它从一个或多个种子像素开始,根据一定的准则将相邻的像素逐渐合并到同一类别中。
这个准则可以通过像素间的灰度差异、纹理特征或其他图像特征来定义。
区域生长算法通常可以得到较为准确的分割结果,但是对于图像中存在强烈纹理变化或边界模糊的情况下,其结果可能不稳定。
3. 基于图割的分割算法:图割算法是一种基于图论的分割方法,它将图像视为一个图,并使用最小割算法在图的节点之间进行切割。
图割算法考虑了像素之间的相似性和关联性,能够比较好地处理图像中存在的复杂纹理和边界问题。
然而,由于算法的复杂性,它的计算效率相对较低,需要较长的时间来完成分割。
4. 深度学习算法:最近,深度学习算法在医疗图像分割中取得了很大的成功。
深度学习算法利用神经网络模型,通过对大量训练数据的学习,能够自动学习到特定病灶的特征,并进行准确的分割。
常见的深度学习模型包括全卷积神经网络(FCNN)、U-Net 等。
这些模型通常具有较高的准确率和鲁棒性,但是需要大量的训练数据和计算资源。
医学图像处理中的分割与分类算法研究随着医学成像技术的不断发展,医学图像处理在临床诊断中发挥越来越重要的作用。
而在医学图像处理中,分割和分类算法是非常重要的一部分。
分割算法可以帮助医生将图像中的不同组织和结构分开,从而更容易进行诊断。
而分类算法可以将不同的病例或者不同的病变分开,从而更容易进行病例分析和治疗方案的制定。
本文将重点讨论医学图像处理中的分割和分类算法。
一、分割算法医学图像中常见的分割算法包括阈值分割、区域生长分割、边缘检测分割、水平线分割、聚类分割、基于形状的分割等。
其中,阈值分割是最简单的一种分割方法,通过设置一个像素灰度值阈值,将像素点按照其灰度级别分为两部分,从而进行分割。
阈值分割方法的优点是比较快速和简单,常用于二值化的分割,如将背景分割出来等。
然而,阈值分割的缺点是,对于灰度级别变化比较复杂和不均匀的图像来说,效果并不理想。
区域生长分割是一种将像素点按照它们在图像中的相似度分为不同区域的分割方法。
该方法需要用户先选定一个种子像素,然后将相邻像素按照一定的相似度和位置分为同一区域内的像素。
区域生长分割算法优点是可以自动识别和合并不同的区域,并且有较高的准确性。
缺点是对于一些比较复杂的图像,需要大量的操作和调整才能获得最佳分割效果。
边缘检测分割通过检测图像中的边缘和轮廓,将图像分割成自然对象。
该方法通过检测灰度值变化的区域来找到边缘,然后对边缘进行滤波,从而进行分割。
边缘检测分割算法优点是可以比较准确地找到不同组织和结构之间的边界。
缺点是对于一些边界模糊或者变化较大的图像,效果不够理想。
水平线分割是一种将每一像素点到图像下沿的欧几里得距离近似使用边界值作为整幅图像分割的方法。
该方法适用于裸眼检查,如眼底拍照等。
水平线分割算法优点是速度快,因为对于每个像素点而言,距离计算只需要在横边对应的垂直线段判断即可获得距离,从而降低了计算的耗时。
缺点是不适用于所有的医学图像,如CT图像等。
聚类分割是一种通过计算像素点之间的相似度进行分割的方法。
第六章医学图像分割医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。
医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。
本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。
第一节医学图像分割的意义、概念、分类和研究现状医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。
如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。
在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。
这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。
这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。
通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。
所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。
自动阈值算法是一种用于二值化图像的算法,它可以自动地确定图像中的像素值应该是1还是0。
这种算法通常被用于数字图像处理中的图像分割、目标识别和特征提取等任务。
自动阈值算法的基本思想是通过统计图像中像素的灰度值分布情况来确定阈值。
常用的自动阈值算法有以下几种:
1. Otsu算法:Otsu算法是最常用的自动阈值算法之一。
它通过计算图像中像素的灰度值分布直方图来确定阈值,使图像中两个类别(1和0)的类间方差最小。
Otsu算法的优点是快速且准确,但对于噪声较多的图像可能会出现误分类的情况。
2. 均值漂移算法:均值漂移算法是一种基于局部均值的图像分割算法。
它可以自动地确定阈值,将图像中的像素分成两个类别。
该算法的优点是可以处理噪声较多的图像,但对于复杂的图像可能会出现误分类的情况。
3. 基于支持向量机的算法:基于支持向量机的算法是一种基于机器学习的自动阈值算法。
它可以通过训练支持向量机模型来确定阈值,将图像中的像素分成两个类别。
该算法的优点是可以处理复杂的图像,但需要大量的计算资源和时间。
4. 基于神经网络的算法:基于神经网络的算法是一种基于人工神经网络的自动阈值算法。
它可以通过训练神经网络模型来确定阈值,将图像中的像素分成两个类别。
该算法的优点是可以处理复杂的图像,但需要大量的计算资源和时间。
总之,自动阈值算法可以帮助我们快速地对大量的二值化图像进行分类和处理,但需要根据具体的应用场景选择合适的算法。
otsu大津法阈值分割图像处理中的阈值分割是将图像分成两个或多个部分的一种方法,其中关键是选择适当的阈值。
Otsu大津法阈值分割是一种自动阈值选取算法,能够有效地辨识图像背景和前景,被广泛应用于各种图像分割任务。
一、Otsu大津法的原理及步骤Otsu大津法是基于最大类间方差的阈值选取算法。
其原理是通过找到使得类间方差最大的阈值来实现图像的分割。
这种方法被广泛应用于简单的图像分割任务,其步骤如下:1.计算图像的灰度直方图,获得各个灰度级下的像素数量。
2.根据像素数量计算各个灰度级的占比。
3.在灰度级范围内循环迭代,计算每个灰度级作为阈值分割后的类间方差。
4.选取使得类间方差最大的灰度级作为最优阈值。
5.根据最优阈值对图像进行二值化处理,将图像分为两个部分:背景和前景。
二、Otsu大津法的优点Otsu大津法有以下几个优点:1.自动化:Otsu大津法能够自动选择最佳阈值,无需人工干预,大大减少了人工处理的工作量。
2.可靠性:Otsu大津法通过最大化类间方差选择阈值,使得图像分割结果更加准确可靠。
3.适应性:Otsu大津法适用于各种类型的图像,无论是单一目标或多目标,都能有效实现分割。
三、Otsu大津法的应用领域Otsu大津法广泛应用于图像处理领域的各个方面,包括但不限于以下几个方面:1.医学图像分割:在医学影像学中,Otsu大津法常用于对CT、MRI 等图像进行分割,辅助医生进行病变诊断。
2.人脸识别:在人脸识别中,Otsu大津法可以将人脸与背景分离,提取人脸特征,以用于人脸识别算法中。
3.字符识别:在光学字符识别(OCR)中,Otsu大津法常用于图像的二值化处理,提高字符识别的准确性。
4.物体检测:在计算机视觉中,Otsu大津法可以实现物体的前景与背景的分割,用于物体检测与跟踪。
5.图像增强:Otsu大津法能够提取图像的前景与背景,为后续的图像增强算法提供更好的处理基础。
四、Otsu大津法的改进和扩展虽然Otsu大津法在图像分割任务中表现出色,但也存在一些限制。
图像阈值分割和边缘检测技术原理和比较摘要图像分割是一种重要的图像分析技术。
对图像分割的研究一直是图像技术研究中的热点和焦点。
医学图像分割是图像分割的一个重要应用领域,也是一个经典难题,至今已有上千种分割方法,既有经典的方法也有结合新兴理论的方法。
医学图像分割是医学图像处理中的一个经典难题。
图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。
阈值分割是一种利用图像中要提取的目标物与其背景在灰度特性上的差异,把图像视为具有不同灰度级的两类区域(目标和背景)的组合,选取一个合适的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生对应的二值图像。
本文先介绍各种常见图像阈值分割和边缘检测方法的原理和算法,然后通过MATLAB 程序实现,最后通过比较各种分割算法的结果并得出结论。
关键词:图像分割;阈值选择;边缘检测;目录1.概述 (4)2.图像阈值分割和边缘检测原理 (4)2.1.阈值分割原理 (4)2.1.1.手动(全局)阈值分割 (5)2.1.2.迭代算法阈值分割 (6)2.1.3.大津算法阈值分割 (6)2.2.边缘检测原理 (6)2.2.1.roberts算子边缘检测 (7)2.2.2.prewitt算子边缘检测 (7)2.2.3.sobel算子边缘检测 (7)2.2.4.高斯laplacian算子边缘检测 (8)2.2.5.canny算子边缘检测 (8)3.设计方案 (9)4.实验过程 (10)4.1.阈值分割 (12)4.1.1.手动(全局)阈值分割 (12)4.1.2.迭代算法阈值分割 (12)4.1.3.大津算法阈值分割 (12)4.2.边缘检测 (13)4.2.1.roberts算子边缘检测 (13)4.2.2.prewitt算子边缘检测 (13)4.2.3.sobel算子边缘检测 (13)4.2.4.高斯laplacian算子边缘检测 (13)4.2.5.canny算子边缘检测 (14)5.试验结果及分析 (14)5.1.实验结果 (14)5.1.1.手动(全局)阈值分割 (14)5.1.2.迭代算法阈值分割 (17)5.1.3.大津算法阈值分割 (18)5.1.4.roberts算子边缘检测 (19)5.1.5.prewitt算子边缘检测 (20)5.1.6.sobel算子边缘检测 (21)5.1.7.高斯laplacian算子边缘检测 (22)5.1.8.canny算子边缘检测 (23)5.2. 实验结果分析和总结 (24)参考文献 (24)1.概述图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同[37].简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。
图像分割技术在医学图像诊断中的应用在医学领域,图像分割技术是一种非常重要的技术。
它可以将医学图像中的不同部位或组织分离开来,进而辅助医生进行诊断和治疗。
本文将介绍图像分割技术在医学图像中的应用,包括其原理、方法和优劣势等方面。
一、图像分割技术基础原理图像分割是将一幅图像分成若干个部分的过程,这些部分相互之间具有边界或分界线。
图像分割技术实际上是在对医学图像进行“分块”,将图像中的信息提取出来,从而辅助医生进行诊断和治疗。
图像分割技术基础原理包括两个方面:一是图像特征提取,二是图像分类。
图像特征提取涉及到从图像中提取出一些特征,这些特征可以用来区分不同的区域。
比如说,我们可以根据像素点的颜色、亮度、纹理等特征来将图像分成多个部分。
图像分类是指将图像中的各个部分进行分类细化,使得区分出的不同部分可以更精确地描述图像的特征。
相对于前者,图像分类更为复杂,是要将基本的特征细化到更加具体的层次。
二、图像分割技术方法在医学图像领域,常用的图像分割技术方法有很多,这里我们仅列举一些常见的方法:1. 基于阈值分割基于阈值分割是最简单的一种图像分割方法,它通过设置灰度值阈值将图像分割成两个部分。
一种常见的阈值分割方法是OTSU阈值算法,这种方法可以根据图像的灰度特征自动调整阈值。
2. 基于边缘检测的分割这种分割方法是基于边缘检测算法的,它通过检测图像中的边缘来划分不同区域。
常用的边缘检测算法包括Sobel算法、Laplace算法、Canny算法等。
3. 基于区域生长的分割这种分割方法是基于图像灰度值相似性的,它将图像分割成若干个区域,每个区域内的灰度值差异比较小。
常用的区域生长算法包括分水岭算法、区域生长算法等。
4. 基于聚类的分割这种分割方法是基于聚类算法的,它将图像分割成若干个聚类簇,每个簇内的像素点性质相似。
常用的聚类算法包括K-means 聚类算法、期望最大算法、模糊聚类算法等。
以上这些方法都有各自的优缺点,具体选择哪种方法需要根据具体的应用场景和需求来决定。
第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06052604基于阈值的图像分割算法研究综述:原理㊁分类及典型算法杨林蛟(沈阳师范大学化学化工学院,沈阳110034)摘要:随着计算机技术的飞速发展,图像处理技术在各个领域都得到了广泛应用,如产品质量检测㊁医学图像处理㊁军事目标的定位与跟踪等㊂作为图像处理技术和计算机视觉技术的研究基础,图像分割技术目前已出现了大量不同类型的算法,并在各个领域的应用中发挥着重要的作用㊂其中,基于阈值的图像分割算法因具有简单有效㊁计算量小㊁性能稳定等优点而受到了人们的普遍青睐㊂首先,对图像分割技术按照不同的划分方式进行了简单的分类;其次,对阈值分割算法的基本原理㊁分类及最典型的O t s u算法的基本思想进行了详尽的介绍;最后,对阈值分割算法目前存在的问题进行了阐述,并对算法未来的发展趋势进行了展望㊂研究工作可为图像处理技术的进一步发展提供理论借鉴㊂关键词:图像处理;阈值分割;阈值选取;算法中图分类号:T P391文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.007A r e v i e w o ft h r e s h o l d-b a s e di m a g es e g m e n t a t i o n a l g o r i t h m s:P r i n c i p l e s,c l a s s i f i c a t i o na n d t y p i c a l a l g o r i t h m sY A N GL i n j i a o(C o l l e g e o fC h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:W i t h t h e r a p i dd e v e l o p m e n t o f c o m p u t e r t e c h n o l o g y,i m a g e p r o c e s s i n g t e c h n o l o g y h a sb e e n w i d e l y u s e di nv a r i o u s f i e l d s,s uc ha s p r od u c t q u a l i t y de t e c t i o n,m e d i c a l i m a g e p r o c e s s i n g,m i l i t a r y t a r g e t p o s i t i o n i n g a n d t r a c k i n g.A s t h e b a s i s o f i m a g e p r o c e s s i n g t e c h n o l o g y a n d c o m p u t e rv i s i o nt e c h n o l o g y,al a r g e n u m b e r o f d i f f e r e n tt y p e s o fa l g o r i t h m s h a s e m e r g e d,a n d t h e s ea l g o r i t h m s p l a y a ni m p o r t a n t r o l e i nv a r i o u s f i e l d so fa p p l i c a t i o n.A m o n g t h e m,t h r e s h o l db a s e di m a g e s e g m e n t a t i o na l g o r i t h m h a sb e e n w e l c o m e db e c a u s eo f i t sa d v a n t a g e so fs i m p l e,e f f e c t i v e,l i t t l e c o m p u t a t i o na n ds t a b l e p e r f o r m a n c e.F i r s t l y,t h e i m a g es e g m e n t a t i o nt e c h n o l o g y i ss i m p l yc l a s s i f i e da c c o rd i n g t o t he d if f e r e n t p a r t i t i o n i ng w a y s.S e c o n d l y,th eb a si c p r i n c i p l e,c l a s s i f i c a t i o n,a n d t h eb a s i ci d e ao ft h e m o s tt y p ic a lO t s ua l g o r i t h m o ft h r e s h o l ds e g m e n t a t i o na l g o r i t h m a r ei n t r o d u c e di n d e t a i l.A tl a s t,t h ee x i s t i n g p r o b l e m s o ft h r e s h o l d s e g m e n t a t i o n a l g o r i t h m a r ed e s c r i b e d,a n dt h ef u t u r ed e v e l o p m e n tt r e n d o ft h i sa l g o r i t h m a r ef o r e c a s t e d.T h i s w o r kc a np r o v i d e t h e o r e t i c a l r e f e r e n c e f o r t h e f u r t h e r d e v e l o p m e n t o f i m a g e p r o c e s s i n g t e c h n o l o g y.K e y w o r d s:i m a g e p r o c e s s i n g;t h r e s h o l d s e g m e n t a t i o n;t h r e s h o l d s e l e c t i o n;a l g o r i t h m 图像处理技术一般是指利用计算机对图像进行分析,以达到所需结果的技术,又可称为影像处理㊂收稿日期:20230929基金项目:辽宁省教育厅科学研究经费项目(L J C202004,L J C202005)㊂作者简介:杨林蛟(1976 ),男,青海西宁人,沈阳师范大学高级实验师,硕士㊂图像处理技术主要包括图像的数字化㊁图像的增强和复原㊁图像的分割和识别㊁图像的数据编码等㊂其中,图像分割在计算机视觉中起着至关重要的作用,是图像处理技术的基础㊂图像分割的目的是使图像得到简化或改变图像的表示形式,图像经过分割后会形成一些特定的㊁具有独特性质的区域,这里的独特性质一般指像素的灰度㊁颜色和纹理等㊂其过程就好比把图像中的每一个像素打上一个特定的标签,使得具有相同标签的像素具有相同的视觉特性,从而用来定位图像的物体和边界㊂图像分割技术一直是计算机视觉研究的热点之一,历经数十年的发展,大量的分割算法被人们相继提出并得到广泛应用[1]㊂其中,基于阈值的图像分割算法因具有实时㊁有效㊁自动㊁应用广泛等优点而受到人们的广泛关注㊂本文首先对现有的图像分割技术进行了简单的划分,接着对基于阈值的分割算法的原理㊁分类及最典型的O t s u 算法进行了系统的介绍,以期为图像处理技术的进一步发展提供理论借鉴㊂1 图像分割技术的分类目前,人们对图像分割技术进行了大量的研究,并取得了卓有成效的研究成果,开发出了很多算法㊂如图1所示,如果按照图像类型划分,图像分割技术可分为灰度图像分割和彩色图像分割,灰度图像分图1 图像分割技术的7种不同划分方式F i g .1 S e v e nd i f f e r e n tw a y s o f i m a g es e g m e n t a t i o n t e c h n o l o g y割主要用于处理非自然图像,彩色图像分割则主要用于处理自然图像;按照是否存在用户交互,可将图像分割技术分为监督式分割和非监督式分割,监督式分割主要用于对图像和视频进行编辑,非监督式分割则主要用于处理图像背景较为单一的文本图像㊁工业图像等;按照表示方式的不同,图像分割技术又可分为基于像素级的分割和超像素级的分割,目前大多数的分割算法属于基于像素级的分割技术,其通常具有较高的处理精度;按照图像的另一种表示方式,图像分割技术则分为单一尺度的分割和多尺度分割,单一尺度的分割是在原始尺度空间上构建相关的分割模型,而多尺度分割则可充分挖掘图像的基本信息;从属性来划分,图像分割技术可分为单一属性的分割和多属性分割,前者只对灰度㊁颜色㊁纹理等特征中的一种属性进行分割,后者则能综合运用图像的多种属性;从操作空间来划分,图像分割技术可分为利用图像特征信息的分割和利用空间位置信息的分割,其中前者主要包括阈值分割算法和聚类算法等,后者主要包括水平集分割算法㊁活动轮廓算法等;从驱动方式划分,图像分割技术可分为基于边缘的分割和基于区域的分割㊂2 阈值分割算法阈值分割算法主要利用图像的特征信息对图像进行分割,目前已有上百种算法被陆续提出㊂其主要思想是不同的目标具有不同的诸如颜色㊁灰度㊁轮廓等特征,根据特征间的细小差别,通过选取特定的阈值将目标物与背景划分开来,进而实现快速的图像分割㊂2.1 阈值分割算法的基本原理阈值法的基本原理是先确定一个阈值[2],然后将所有像素按照其特征值与阈值的大小关系划分为2个类别㊂当特征值大于阈值时,该像素被归为目标类;反之,被归为背景类㊂通过选择合适的阈值,可以实现对图像目标与背景的有效分离㊂设原始图像为f (x ,y ),在f (x ,y )中找出特征值T ,将原始图像分割为2个部分,得到分割后的图像为g (x ,y )=b 0,f (x ,y )<t b 1,f (x ,y )ȡ{t725 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法若取b 0=0(黑),b 1=1(白),即为图像的二值化㊂2.2 阈值分割算法的分类根据利用信息种类的不同,可将阈值分割算法分为以下几类:1)基于直方图形状的方法㊂该类方法主要根据直方图的形状属性来划分像素,其又可分为 凸壳 法㊁ 峰谷 法和形状建模法3类㊂1997年,C a r l o t t o [3]对图像的概率密度进行了多尺度分析,并以此估计最佳阈值;1998年,C a i 和L i u [4]利用P r o n y 谱分析法得到了图像多重指数信号能量谱的近似值;之后,G u o 和P a n d i t [5]提出了一个全极模型㊂2)基于熵的方法㊂该类方法利用灰度分布的熵信息来划分像素㊂J o h a n n s e n 和B i l l e [6]最早对熵算法进行了研究㊂之后,很多学者对这一算法进行了改进,如P a l [7]在交叉熵的基础上建立了一种对前景和背景后验概率密度的模型;S u n [8]依靠 模糊事件熵 的最大化,采用了Z a d e h 的S 隶属度函数㊂3)基于聚类的阈值分割方法㊂该类方法又可分为迭代法㊁聚类法㊁最小误差法和模糊聚类4类,其主要通过对灰度数据进行聚类分析来获取阈值㊂其中,聚类法是通过将前景和背景的加权方差最小化来获得最佳阈值,是阈值分割算法中较为经典的算法之一㊂L i u 和L i [9]将聚类法扩展到了二维,景晓军等[10]将聚类法扩展到了三维㊂4)基于对象属性的方法㊂该类方法通过度量原始图像与二值图像间的诸如灰度片段㊁形状紧密性㊁纹理等的属性特性来选取阈值㊂基于对象属性的方法可分为片段保存法㊁边缘匹配法㊁模糊相似法㊁拓扑固定态法㊁最大信息法和模糊紧密性增强法6类㊂5)基于空间的方法㊂该类方法又可分为同现方法㊁高次熵法㊁基于随机集合的方法和二维模糊划分法4类,其选取阈值的方式是度量灰度分布和邻域内像素的相关性㊂C h a n g 等[11]在确保源图像与二值图像的同现概率以最低程度发散的条件下建立了阈值;B r i n k [12]认为空间熵可由二元熵在所有可能间隔的总和来计算㊂6)局部自适应方法㊂局部自适应方法可以克服其他阈值算法的许多缺陷,受到了人们的普遍关注,其主要的2种形式分别为邻域法和分块法㊂邻域法一般会受到邻域范围的制约,因而对文字等狭长目标比较敏感,但对平坦的大块前景或背景容易造成误分;分块法的适用范围会更广,但分块之间结果的不连续是该方法的缺陷之一㊂2.3 典型阈值分割算法介绍O t s u 阈值分割算法,也可称为最大类间方差算法,是最常用的一类阈值分割算法,也是阈值分割领域各类文献中被引用数量最多的算法之一㊂该算法选取使得类间方差最大的灰度值作为划分背景和前景的最佳阈值,其基本思想如下:在一幅灰度图像中,假设其灰度级为L ,用n i 表示灰度级为i 的像素个数,N 表示总像素的个数,则N =n 0+n 1+ +n L -1㊂用p i 表示灰度图像中灰度值i 的像素点出现的概率,则有p i =n i N ㊂设有阈值t 将图像分为前景和背景2个部分,分别用C 0={0,1, ,t }和C 1={t +1,t +2, ,L -1}表示㊂设ω0为C 0出现的概率,ω1为C 1出现的概率,则有ω0=ðt i =0p i ,ω1=ðL -1i =t +1p i ,且ω0+ω1=1㊂则C 0和C 1的平均灰度μ0和μ1为μ0=ðt i =0i ㊃p i ω0=μ(t )ω0,μ1=ðL -1i =t +1i ㊃p i ω1=μ-μ(t )1-ω0用σ2B 表示类间方差,其表达式为σ2B =ω0(μ0-μ)2+ω1(μ1-m )2=ω0㊃ω1(μ0-μ1)2最佳分割阈值t *即为使得类间方差σ2B 最大的阈值t :t *=a r g m a x t ɪ{0,1, L -1}σ2B 上述O t s u 算法又称一维O t s u 算法,它在不对概率密度函数做出假设的情况下,以均值和方差的概率密度为基础对图像的分割状态进行描述,可以在很大程度上提高算法的运算速度㊂后来,人们又发展了二维O t s u 阈值分割方法,它是在原来一维算法灰度值的基础上加入了像素邻域平均灰度作为第825沈阳师范大学学报(自然科学版) 第41卷二维,因而提高了一维算法的抗噪声能力㊂O t s u 阈值分割算法的分割效果如图2所示㊂(a )原始图像(b )O t u s 法阈值选择图2 O t s u 阈值分割算法的分割效果F i g .2 S e g m e n t a t i o ne f f e c t o f O t s u t h r e s h o l d s e g m e n t a t i o na l g o r i t h m 2.4 阈值分割算法目前存在的问题虽然阈值分割算法在国内外研究者们数十年的努力下已经取得了长足的进步,但目前仍然存在着如不均匀光照㊁噪声干扰㊁文本图像 劣化 等问题亟待解决㊂其中,不均匀光照会使直方图中的目标波峰与背景波峰混杂在一起,从而降低直方图阈值法的效果;噪声对图像处理的整个过程都有影响,去噪已成为图像分割领域的一个研究重点;长时间保存的纸质文档会出现背面字迹浸透㊁字迹污染等现象,从而造成分割时产生大量的误分㊂3 结论与展望图像分割是计算机视觉的基础技术,分割效果将直接影响如目标定位㊁目标识别㊁目标跟踪㊁场景分析等的后续处理㊂在众多的图像分割算法中,阈值分割算法一直以其实时㊁高效等特点受到人们的普遍关注㊂但从目前来看,阈值分割算法仍面临着许多难以解决的困难,可行的解决方法是从更高的图像语义出发,对图像内容进行抽象分析,然后指导低层次的图像分割,重复这样的操作若干次,可以逐步提高分割的精度㊂目前,对该种分割方式的研究仍处于探索阶段㊂参考文献:[1]S E Z G I N M ,S A N K U RB .S u r v e y o v e r i m a g e t h r e s h o l d i n g t e c h n i qu e s a n d q u a n t i t a t i v e p e r f o r m a n c e e v a l u a t i o n [J ].J E l e c t r o n I m a g i n g ,2004,13(1):146168.[2]阴国富.基于阈值法的图像分割技术[J ].现代电子技术,2007(23):107108.[3]C A R L O T T O M J .H i s t o g r a m a n a l y s i su s i n g as c a l e -s p a c ea p p r o a c h [J ].I E E E T r a n sP a t t e r n A n a l M a c hI n t e l l ,1997,9(1):121129.[4]C A I J ,L I UZQ.An e wt h r e s h o l d i n g a l g o r i t h m b a s e do na l l -p o l em o d e l [C ]ʊP r o c e e d i n g so f t h e14t hI n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n i t i o n .B r i b a n e :I E E E ,1998:3436.[5]G U O R ,P A N D I TS M.A u t o m a t i c t h r e s h o l ds e l e c t i o nb a s e do nh i s t o gr a m m o d e sa n dad i s c r i m i n a n t c r i t e r i o n [J ].M a c hV i s i o nA p p l ,1998,10:331338.[6]J OHA N N S E N G ,B I L L EJ .At h r e s h o l ds e l e c t i o n m e t h o du s i n g i n f o r m a t i o n m e a s u r e s [C ]ʊP r o c e e d i n gso f t h e6t h I n t e r n a t i o n a l C o n f e r e n c e o nP a t t e r nR e c o g n .M u n i c h :G e r m a n y ,1982:140143.[7]P A L N R.O nm i n i m u mc r o s s -e n t r o p y t h r e s h o l d i n g [J ].P a t t e r nR e c o g n ,1996,29(4):575580.[8]S U NCY.An o v e lf u z z y e n t r o p y a p p r o a c h t o i m ag e e nh a n c e m e n t a n d t h r e s h o l di n g [J ].S i gn a l P r o c e s s ,1999,75:277301.[9]L I UJZ ,L I W Q.T h ea u t o m a t i ct h r e s h o l d i n g o f g r a y -l e v e l p i c t u r e sv i at w o -d i m a n s i o n a lO t s u me t h o d [J ].A c t a A u t o m a t i c aS i n ,1993,19:101105.[10]景晓军,李剑峰,刘郁林.一种基于三维最大类间方差的图像分割算法[J ].电子学报,2003,31(9):12811285.[11]C HA N GC ,C H E N K ,WA N GJ ,e t a l .Ar e l a t i v e e n t r o p y b a s e d a p p r o a c h i n i m a g e t h r e s h o l d i n g [J ].P a t t e r nR e c o gn ,1994,27(9):12751289.[12]B R I N K A D.M i n i m u ms p a t i a l e n t r o p y t h r e s h o l d s e l e c t i o n [J ].I E E EP r o c e e d i n g s ,1995,142(3):128132.925 第6期 杨林蛟:基于阈值的图像分割算法研究综述:原理㊁分类及典型算法。