广西2020学年高二数学上学期期末考试试题理
- 格式:doc
- 大小:2.59 MB
- 文档页数:6
广西桂林市2024-2025学年高二数学下学期期末考试试题理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数,则()A. 0B. 1C.D.2.设复数,则的实部为()A. -1B. 2C. -2D.3.用反证法证明“ 是无理数”时,正确的假设是()A. 不是无理数B. 是整数 C. 不是有理数 D. 是无理数4.5个人排成一排照相,其中的甲乙两人要相邻,则有不同的排法种数为()A. 24种B. 36种 C. 48种 D. 72种5.()A. B.C.D.6.在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率是()A. 0.4B.0.3 C. 0 .2 D. 0.1 7.向量,向量,若,则实数()A. B.1 C. -2 D.8.从1,2,3,4,5中任取2个不同的数,记事务A为“取到的2个数之和为偶数”,记事务B为“取到的两个数均为偶数”,则()A. B. C.D.9.若随机变量X的分布列如下表所示,则a的值为()X 1 2 3P 0.2 a 3aA. 0.1B.0.2 C. 0 .3 D. 0.410.正方体中,与平面所成角的余弦值为()A. B.C.D.11.已知随机变量听从正态分布,且,则()A. 0.0799B. 0.1587C. 0.3D. 0.341312.若函数有两个不同的极值点,则实数的取值范围是()A. B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.某校有学生4500人,其中高三学生1500人,为了解学生的身体素养状况,采纳按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为________.14.已知为虚数单位,则 ________.15. ________.16.在中,,,,是斜边上一点,以为棱折成二面角,其大小为60°,则折后线段的最小值为________.三、解答题:本题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.在的绽开式中,求(1)含的项;(2)绽开式中的常数项.18.已知函数.(1)当时,求的图象在点处的切线方程;(2)设是的极值点,求的微小值.19.如图,长方体的底面是正方形,点在棱上,.(1)证明:平面;(2)若,,求二面角的余弦值.20.已知数列的前项和.(1)计算,,,,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.21.在某校组织的一次篮球定点投篮竞赛中,两人一对一竞赛规则如下:若某人某次投篮命中,则由他接着投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮竞赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲起先投篮,假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数学期望.22.已知函数.(1)若在单调递增,求实数的取值范围;(2)若,且仅有一个极值点,求实数的取值范围,并证明:.答案解析部分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.函数,则()A. 0B. 1C.D.【答案】 B【考点】导数的运算【解析】【解答】解:由题意得f'(x)=e x,则f'(0)=e0=1.故答案为:B【分析】依据导数的运算求解即可.2.设复数,则的实部为()A. -1B. 2C. -2D.【答案】 B【考点】复数的基本概念【解析】【解答】解:依据复数的概念得z的实部为2.故答案为:B【分析】依据复数的概念干脆求解即可.3.用反证法证明“ 是无理数”时,正确的假设是()A. 不是无理数B. 是整数 C. 不是有理数 D. 是无理数【答案】 A【考点】反证法【解析】【解答】解:依据反证法,正确的假设是:不是无理数.故答案为:A【分析】依据反证法干脆求解即可.4.5个人排成一排照相,其中的甲乙两人要相邻,则有不同的排法种数为()A. 24种B. 36种 C. 48种 D. 72种【答案】 C【考点】排列、组合的实际应用,排列、组合及简洁计数问题【解析】【解答】解:依据捆绑法,先把甲乙开成一个元素,再与另外3人排列,则共有种.故答案为:C【分析】依据捆绑法干脆求解即可.5.()A. B.C.D.【答案】 A【考点】二项式定理的应用【解析】【解答】解:依据二项式定理得1+3x+3x2+x3=x3+3x2+3x+1=故答案为:A【分析】依据二项式定理干脆求解即可.6.在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率是()A. 0.4B.0.3 C. 0 .2 D. 0.1 【答案】 A【考点】频率分布直方图【解析】【解答】解:由题意易知各小长方形的面积的比从左往右依次为2:4:3则可设s1:s2:s3s4=2s:4s:3s:s则2s+4s+3s+s=1解得则第2组的频率是4s=0.4故答案为:A【分析】依据频率分布直方图的性质求解即可.7.向量,向量,若,则实数()A. B.1 C. -2 D.【答案】 C【考点】向量的数量积推断向量的共线与垂直【解析】【解答】解:∵∴2×1+4×2+5t=0解得t=-2故答案为:C【分析】依据向量垂直的充要条件求解即可.8.从1,2,3,4,5中任取2个不同的数,记事务A为“取到的2个数之和为偶数”,记事务B为“取到的两个数均为偶数”,则()A. B . C.D.【答案】 B【考点】古典概型及其概率计算公式,条件概率与独立事务【解析】【解答】解:,∵∴∴故答案为:B【分析】依据古典概型,结合条件概率求解即可.9.若随机变量X的分布列如下表所示,则a的值为()X 1 2 3P 0.2 a 3aA. 0.1B.0.2 C. 0 .3 D. 0.4【答案】 B【考点】离散型随机变量及其分布列【解析】【解答】解:由题意得0.2+a+3a=1,解得a=0.2故答案为:B【分析】依据离散型随机变量的分布列的性质求解即可.10.正方体中,与平面所成角的余弦值为()A. B.C.D.【答案】 D【考点】直线与平面所成的角【解析】【解答】解:因为BB1// DD1,所以BB1与平面ACD1所成的角等于DD1与平面ACD1所成的角,在三棱锥D-ACD1中,由三条侧棱两两垂直得点D在平面ACD1的射影为等边三角形ACD1的垂心(即中心0) ,连结DO,D1O,则∠DD1O为DD1与平面ACD1所成的角,设正方体的棱长为a, 则故答案为:D【分析】依据直线与平面所成角的定义,利用几何法干脆求解即可.11.已知随机变量听从正态分布,且,则()A. 0.0799B. 0.1587C. 0.3D. 0.3413【答案】 B【考点】正态分布曲线的特点及曲线所表示的意义【解析】【解答】解:∵X 听从正态分布,且∴故答案为:B【分析】依据正态分布的性质求解即可.12.若函数有两个不同的极值点,则实数的取值范围是()A. B.C.D.【答案】 A【考点】利用导数探讨函数的单调性,利用导数探讨函数的极值,利用导数求闭区间上函数的最值【解析】【解答】解:由题意可得,f'(x)=e x-4ax=0有2个不同的实数根,即有2个不同的实数根,令,则令g'(x)>0,可得x>1;令g'(x)<0,可得x<1,所以g(x)在(-∞,1)上单调递减,在(1, +∞)上单调递增,所以g(x)的最小值为故故答案为:A【分析】依据化归思想,将函数有两个不同的极值点等价转化为方程有两个不同的实数根,运用数形结合思想,结合利用导数探讨函数的单调性与最值求解即可.二、填空题:本题共4小题,每小题5分,共20分.13.某校有学生4500人,其中高三学生1500人,为了解学生的身体素养状况,采纳按年级分层抽样的方法,从该校学生中抽取一个300人的样本.则样本中高三学生的人数为________.【答案】 100【考点】分层抽样方法【解析】【解答】解:依据分层抽样,易得样本中高三学生的人数为故答案为:100【分析】依据分层抽样干脆求解即可.14.已知为虚数单位,则 ________.【答案】【考点】复数代数形式的混合运算【解析】【解答】解:(2-3i)(i+1)=2i+2-3i2-3i=5-i故答案为:5-i【分析】依据复数的运算干脆求解即可.15. ________.【答案】 1【考点】定积分【解析】【解答】易知 .故 .【分析】由于,利用微积分基本定理,干脆求得定积分的值.16.在中,,,,是斜边上一点,以为棱折成二面角,其大小为60°,则折后线段的最小值为________.【答案】【考点】向量的线性运算性质及几何意义,与二面角有关的立体几何综合题,二面角的平面角及求法,同角三角函数基本关系的运用,运用诱导公式化简求值【解析】【解答】解:如图,过C,B作AD的垂线,垂足分别为E,F,故BF⊥EF,EC⊥EF,所以以AD为棱折叠后,则有故因为以D为棱折成60°的二面角C-AD-B所以与的夹角为120°令∠BAD=α,则∠CAE=90°-α,在Rt△ABF中,BF=ABsinα=6sinα,AF=6cosα,在Rt△ACE中,EC=ACsin(90°-α)=8cosα,AE=ACcos(90°-α)=8sinα,故EF=AE-AF=8sinα-6cosα,所以故当α=45°时,有最小值28故线段BC最小值为故答案为:【分析】依据向量的线性运算,结合二面角的定义以及同角三角函数的基本关系、诱导公式求解即可.三、解答题:本题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.17.在的绽开式中,求(1)含的项;(2)绽开式中的常数项.【答案】(1)由题意知,,1,2,3,4,5,6;令,得,所以含的项为.(2)由(1)知,得,所以常数项为.【考点】二项式系数的性质,二项式定理的应用【解析】【分析】(1)(2)依据二项绽开式通项公式求解即可;18.已知函数.(1)当时,求的图象在点处的切线方程;(2)设是的极值点,求的微小值.【答案】(1)即,;则,,故所求切线方程为,即.(2),由题知,解得,则,,当时,当时所以当时取微小值.【考点】导数的几何意义,利用导数探讨函数的极值,利用导数探讨曲线上某点切线方程【解析】【分析】(1)利用导数的几何意义求解即可;(2)依据函数极值的性质,结合利用导数探讨函数的极值干脆求解即可.19.如图,长方体的底面是正方形,点在棱上,.(1)证明:平面;(2)若,,求二面角的余弦值.【答案】(1)由已知得,平面,平面,故又,所以平面(2)由(1)知.由题设知,所以,故,以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,则,,,,,,设平面的法向量为,则即所以可取设平面的法向量为,则,即可取于是所以,二面角的余弦值为.【考点】直线与平面垂直的判定,直线与平面垂直的性质,用空间向量求平面间的夹角【解析】【分析】(1)依据直线与平面垂直的判定定理与性质定理求证即可;(2)利用向量法干脆求解即可.20.已知数列的前项和.(1)计算,,,,并猜想的通项公式;(2)用数学归纳法证明(1)中的猜想.【答案】(1)当时,,∴ ;当时,,∴ ;当时,,∴ ;当时,,∴ .由此猜想.(2)证明:①当时,,猜想成立.②假设(且)时,猜想立,即,那么时,,∴ .∴当时,猜想成立.由①②知猜想成立.【考点】数列递推式,数学归纳法【解析】【分析】(1)依据a n与s n的关系干脆求解,(2)依据数学归纳法干脆证明即可.21.在某校组织的一次篮球定点投篮竞赛中,两人一对一竞赛规则如下:若某人某次投篮命中,则由他接着投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮竞赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲起先投篮,假设每人每次投篮命中与否均互不影响.(1)求3次投篮的人依次是甲、甲、乙的概率;(2)若投篮命中一次得1分,否则得0分,用表示甲的总得分,求的分布列和数学期望.【答案】(1)记“3次投篮的人依次是甲,甲,乙”为事务,依题意,得∴3次投篮的人依次是甲、甲、乙的概率是.(2)由题意可能取值为0,1,2,3,则,,,;所以,分布列为0 1 2 3所以的期望.【考点】相互独立事务的概率乘法公式,离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(1)依据独立事务的概率干脆求解即可;(2)依据独立事务,结合离散型随机变量的分布列与期望求解即可.22.已知函数.(1)若在单调递增,求实数的取值范围;(2)若,且仅有一个极值点,求实数的取值范围,并证明:.【答案】(1)在单调递增,∴ 在恒成立∴ 在恒成立,∴ .(2)设,,①当时,令得:,,,单调递增,,,单调递减,若,恒成立,无极值;若,,而,,此时有两个极值点;故不符合题意.②当时,,,单调递减,,,单调递增,所以有唯一微小值点,.③当时,恒成立,单调递增;取满意且时,,而,此时由零点存在定理知:有唯一的零点,只有一个极值点,且,由题知,又,∴ ,∴ ,设,,当,,单调递减,∴ ,∴ 成立综上,只有一个极值点时,的取值范围为,且.【考点】利用导数探讨函数的单调性,利用导数求闭区间上函数的最值,函数零点的判定定理【解析】【分析】(1)依据化归思想,将函数的单调性问题等价转化为不等式恒成立问题,再转化为求函数的最值问题即可;(2)构造函数g(x)=h'(x),利用导数g'(x)探讨函数g(x)的单调性与最值,再结合分类探讨思想与零点存在定理求解即可.。
镇海中学(zhōngxué)2021学年第一学期期末考试高二年级数学试卷第I卷〔选择题〕一、选择题.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.,,那么〔〕A. B. C. D.或者【答案】C【解析】【分析】求解出集合的取值范围,利用交集定义求解.【详解】由得:或者,即或者那么此题正确选项:【点睛】此题主要考察集合运算中的交集运算,属于根底题.,,那么〔〕A. B.C. D.【答案】D【解析】【分析】根据(gēnjù)单调性,可得,再验证可得最终结果.【详解】在上单调递增,即又又此题正确选项:【点睛】此题考察与对数函数有关的比拟大小类问题,属于根底题.在点〔1,0〕处切线的倾斜角为,那么〔〕A. 2B.C. -1D. 0 【答案】A【解析】【分析】求导得,代入,可得切线斜率,即的值.【详解】由题意得:代入,可得切线斜率又,得此题正确选项:【点睛】此题考察导数的几何意义、直线斜率与倾斜角的关系,属于根底题.R上的函数的图像是连续的,且其中的四组对应值如下表,那么在以下区间中,函数不一定存在零点的是〔〕x 1 2 3 53 -1 2 0A. B. C. D.【答案(dá àn)】D【解析】【分析】根据零点存在定理,依次判断各个选项。
又为的子集,那么区间有零点,那么区间也必有零点;上有零点,那么上必有零点;由此可得结果.【详解】由题意可得:在上必有零点又,在上必有零点在上必有零点又,在上必有零点在上不一定存在零点此题正确选项:【点睛】此题主要考察零点存在定理,关键在于需要明确当,不能得到区间内一定无零点的结论,需要进一步判断.,假设,那么〔〕A. 1B. -1C. -2D. 3【答案】B【解析(jiě xī)】【分析】判断的奇偶性,通过奇偶性求得函数的值.【详解】由题意得:即定义域为,关于原点对称又可得:为奇函数此题正确选项:【点睛】此题考察通过函数奇偶性求函数值。
2015-2016学年某某某某市高二(上)期末数学试卷(理科)一、选择题1.正三棱柱的左视图如图所示,则该正三棱柱的侧面积为()A.4 B.12 C.D.242.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交 B.相切 C.相离 D.无法确定3.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}4.已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i5.若l、a、b表示直线,α、β表示平面,下列命题正确的是()A.l∥α,a⊂α⇒l∥a B.a∥α,a∥b⇒b∥αC.a∥α,b⊥α⇒a⊥b D.a∥α,α∥β⇒a∥β6.过点P(2,3)且在两坐标轴上截距相等的直线方程为()A.3x﹣2y=0 B.x+y﹣5=0C.3x﹣2y=0或x+y﹣5=0 D.2x﹣3y=0或x+y﹣5=07.将球的半径变为原来的两倍,则球的体积变为原来的()A.2倍B.8倍C.4倍D.0.5倍8.若幂函数f(x)=x a在(0,+∞)上是增函数,则()A.a>0 B.a<0 C.a=0 D.不能确定9.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个B.3个C.2个D.1个10.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外11.关于斜二侧画法,下列说法正确的是()A.三角形的直观图可能是一条线段B.平行四边形的直观图一定是平行四边形C.正方形的直观图是正方形D.菱形的直观图是菱形12.多面体的直观图如图所示,则其正视图为()A.B.C.D.二、填空题13.函数f(x8)=log2x,则f(16)的值是.14.设a=sin(sin2008°),b=sin(cos2008°),c=cos(sin2008°),d=cos(cos2008°).则a,b,c,d从小到大的顺序是.15.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.16.已知数列{log2(a n﹣1)},(n∈N*)为等差数列,且a1=3,a3=9(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.17.一物体受到与它运动方向相同的力:的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于.18.空间直角坐标系中两点A(0,0,1),B(0,1,0),则线段AB的长度为.三、解答题19.已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(﹣a,b).(1)若直角坐标平面上的点M、A(0,﹣b),B(a,0)满足=(+),求点M的坐标;(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=﹣,证明:E为CD的中点;(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值X围.20.在数列{a n}中,a1=1,a n+1=(1+)a n+,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.21.在三角形ABC中,,求三角形ABC的面积S.22.对某电子元件进行寿命追踪调查,情况如下:寿命/小时100~200 200~300 300~400 400~500 500~600个数20 30 80 40 30(1)完成频率分布表;分组频数频率100~200200~300300~400400~500500~600合计(2)完成频率分布直方图;(3)估计电子元件寿命在100~400小时以内的概率;(4)估计电子元件寿命在400小时以上的概率.23.求出函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.2015-2016学年某某某某市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题1.正三棱柱的左视图如图所示,则该正三棱柱的侧面积为()A.4 B.12 C.D.24【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】通过左视图,判断几何体的数据,然后求解侧面积.【解答】解:∵正三棱柱的左视图为:,正三棱柱的底面是正三角形,由图知底面正三角形的高为,∴易求得正三角形的边长为2,∴正三棱柱的侧面积为:2×2×3=12.故选:B.【点评】本题考查三视图侧面积的求法,考查学生的视图能力以及计算能力.2.直线l:x+y﹣4=0与圆C:x2+y2=4的位置关系是()A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【专题】直线与圆.【分析】根据圆心C到直线l的距离正好等于半径,可得直线和圆相切.【解答】解:由于圆心C(0,0)到直线l:x+y﹣4=0的距离为=2,正好等于半径,故直线和圆相切,故选:B.【点评】本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,属于中档题.3.已知全集U=R,集合A={x|x2﹣2x<0},B={x|x﹣1≥0},那么A∩∁U B=()A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}【考点】交、并、补集的混合运算.【专题】集合.【分析】分别求出A与B中不等式的解集,确定出A与B,找出A与B补集的交集即可.【解答】解:由A中的不等式变形得:x(x﹣2)<0,解得:0<x<2,即A={x|0<x<2},由B中的不等式解得:x≥1,即B={x|x≥1},∵全集U=R,∴∁U B={x|x<1},则A∩(∁U B)={x|0<x<1}.故选:A.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.4.已知复数z=,则z的共轭复数是()A.1﹣i B.1+i C.i D.﹣i【考点】复数代数形式的乘除运算;复数的基本概念.【专题】计算题.【分析】复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可得到选项.【解答】解:复数z==所以它的共轭复数为:1﹣i故选A【点评】本题是基础题,考查复数代数形式的乘除运算,复数的基本概念,考查计算能力,常考题型.5.若l、a、b表示直线,α、β表示平面,下列命题正确的是()A.l∥α,a⊂α⇒l∥a B.a∥α,a∥b⇒b∥αC.a∥α,b⊥α⇒a⊥b D.a∥α,α∥β⇒a∥β【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【专题】空间位置关系与距离.【分析】A.根据线面平行的性质定理进行判断.B.根据线面平行的判定定理进行判断.C.根据线面垂直的性质定理进行判断.D.根据线面平行的性质进行判断.【解答】解:A.根据线面平行的性质可知,l∥a不一定成立,有可能是异面直线.B.当b⊄α,结论成立,当b⊂α,则结论不成立.C.根据线面垂直和线面平行的性质可知,若a∥α,b⊥α,则a⊥b成立.D.若a∥α,α∥β,则a∥β或a⊂β,∴结论不成立.故选:C.【点评】本题主要考查空间直线和平面位置关系的判断,要求熟练掌握平行或垂直定理的内容及应用.6.过点P(2,3)且在两坐标轴上截距相等的直线方程为()A.3x﹣2y=0 B.x+y﹣5=0C.3x﹣2y=0或x+y﹣5=0 D.2x﹣3y=0或x+y﹣5=0【考点】直线的截距式方程.【专题】计算题;分类讨论.【分析】分两种情况:当直线在两坐标轴上的截距都为0时,设直线l的方程为y=kx,把P 的坐标代入即可求出k的值,得到直线l的方程;当直线在两坐标轴上的截距不为0时,设直线l的方程为x+y=a,把P的坐标代入即可求出a的值,得到直线l的方程.【解答】解:①当直线在两坐标轴上的截距都为0时,设直线l的方程为:y=kx把点P(2,3)代入方程,得:3=2k,即所以直线l的方程为:3x﹣2y=0;②当直线在两坐标轴上的截距都不为0时,设直线l的方程为:把点P(2,3)代入方程,得:,即a=5所以直线l的方程为:x+y﹣5=0.故选C【点评】本题题考查学生会利用待定系数法求直线的解析式,直线方程的截距式的应用,不要漏掉截距为0的情况的考虑,考查了分类讨论的数学思想,是一道中档题7.将球的半径变为原来的两倍,则球的体积变为原来的()A.2倍B.8倍C.4倍D.0.5倍【考点】球的体积和表面积.【专题】规律型;空间位置关系与距离.【分析】根据“球的体积V=πr3”进行推导,进而得出结论.【解答】解:设球的半径为r,则原来的体积S=πr3,当半径变为原来的2倍时,即半径为2r,则体积V=π(2r)3=πr3×8,即这个球的体积就变为原来的8倍.故选B.【点评】解答此题要明确球的半径扩大n倍,其周长扩大n倍,面积扩大n2倍,体积扩大n3倍.8.若幂函数f(x)=x a在(0,+∞)上是增函数,则()A.a>0 B.a<0 C.a=0 D.不能确定【考点】幂函数的性质.【专题】计算题.【分析】由幂函数的性质可判断α的取值,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求【解答】解:由幂函数的性质可知,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求∵f(x)=x a在(0,+∞)上是增函数∴a>0故选A【点评】本题主要考查了幂函数的单调性的应用,解题中要注意α的符号对函数单调性的影响.属于基础试题9.已知集合A={1,2},集合B满足A∪B={1,2},则这样的集合B有()A.4个B.3个C.2个D.1个【考点】并集及其运算.【专题】计算题.【分析】根据题意得到集合B是集合A的子集,所以求出集合A子集的个数即为集合B的个数.【解答】解:因为A∪B={1,2}=A,所以B⊆A,而集合A的子集有:∅,{1},{2},{1,2}共4个,所以集合B有4个.故选A【点评】本题重在理解A∪B=A表明B是A的子集,同时要求学生会求一个集合的子集.10.在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外【考点】平面的基本性质及推论.【专题】计算题.【分析】由EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,知P在两面的交线上,由AC是两平面的交线,知点P必在直线AC上.【解答】解:∵EF属于一个面,而GH属于另一个面,且EF和GH能相交于点P,∴P在两面的交线上,∵AC是两平面的交线,所以点P必在直线AC上.故选A.【点评】本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答.11.关于斜二侧画法,下列说法正确的是()A.三角形的直观图可能是一条线段B.平行四边形的直观图一定是平行四边形C.正方形的直观图是正方形D.菱形的直观图是菱形【考点】平面图形的直观图.【专题】对应思想;定义法;空间位置关系与距离.【分析】根据斜二侧直观图的画法法则,直接判断选项的正确性即可.【解答】解:对于A,三角形的直观图仍然是一个三角形,命题A错误;对于B,平行四边形的直观图还是平行四边形,命题B正确;对于C,正方形的直观图不是正方形,应是平行四边形,命题C错误;对于D,菱形的直观图不是菱形,应是平行四边形,命题D错误.故选:B.【点评】本题考查了斜二侧画直观图的应用问题,注意平行x,y轴的线段,仍然平行坐标轴,不平行坐标轴的线段,只看它们的始点和终点,是基础题.12.多面体的直观图如图所示,则其正视图为()A.B.C.D.【考点】简单空间图形的三视图.【专题】计算题;规律型;空间位置关系与距离.【分析】直接利用三视图的画法,判断选项即可.【解答】解:应用可知几何体的正视图为:.故选:A.【点评】本题考查简单几何体的三视图,是基础题.二、填空题13.函数f(x8)=log2x,则f(16)的值是.【考点】函数的值.【专题】计算题.【分析】令x8=16,利用指数知识求得x=,再代入解析式右端求出即可.【解答】解:令x8=16,x8=24=8,解得x=,所以f(16)=log2=故答案为:【点评】本题考查函数值求解,要对函数的概念及表示方法有准确的理解和掌握.14.设a=sin(sin2008°),b=sin(cos2008°),c=cos(sin2008°),d=cos(cos2008°).则a,b,c,d从小到大的顺序是b<a<d<c.【考点】三角函数的化简求值.【专题】计算题;规律型;转化思想;三角函数的求值.【分析】先应用诱导公式化简sin2008°=﹣sin28°,cos2008°=﹣cos28°=﹣sin62°,从而a=﹣sin(sin28°),b=﹣sin(sin62°),c=cos(sin28°),d=cos(sin62°),再根据正弦、余弦函数的单调性即可判断a,b,c,d的大小.【解答】解:∵2012°=5×360°+208°,∴a=sin(sin2008°)=sin(sin208°)=sin(﹣sin28°)=﹣sin(sin28°)<0,b=sin(cos2008°)=sin(cos208°)=sin(﹣cos28°)=﹣sin(cos28°)<0,c=cos(sin2008°)=cos(sin208°)=cos(﹣sin28°)=cos(sin28°)>0,d=cos(cos2008°)=cos(cos208°)=cos(﹣cos28°)=cos(cos28°)>0,∵cos28°=sin62°,∴<sin32°<<sin62°,∴c>d,﹣b>﹣a,∴b<a<d<c故答案为:b<a<d<c.【点评】本题考查正弦函数、余弦函数的单调性及应用,注意单调区间,同时考查诱导公式的应用,是一道中档题.15.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.【考点】不等关系与不等式.【专题】计算题.【分析】根据“甜度”的定义,先表示出“甜度”为的b千克糖水中加入m(m>0)千克糖时的“甜度”:是,再由“糖水会更甜”,可知此时糖水的“甜度”大于原来糖水的“甜度”,即.【解答】解:∵b千克糖水中含a千克糖(0<a<b)时,糖水的“甜度”为,∴若在该糖水中加入m(c>0)千克糖,则此时的“甜度”是,又∵糖水会更甜,∴故答案为:【点评】本题考查生活常识中出现的不等式及运用不等式求解,易错点是得到加糖后糖的质量和糖水的质量.16.已知数列{log2(a n﹣1)},(n∈N*)为等差数列,且a1=3,a3=9(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.【考点】等差数列的前n项和.【专题】转化思想;综合法;等差数列与等比数列.【分析】(1)利用等差数列的通项公式及其对数的运算性质即可得出;(2)利用等比数列的前n项和公式即可得出.【解答】解:(1)设等差数列 {log2(a n﹣1)},(n∈N*)的公差为d.由且a1=3,a3=9,可得:log2(9﹣1)=log2(3﹣1)+2d,∴3=1+2d,解得d=1.∴log2(a n﹣1)=1+(n﹣1)=n,∴a n=2n+1.(2)由a n=2n+1.∴数列{a n}的前n项和S n=+n=2n+1﹣2+n.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.17.一物体受到与它运动方向相同的力:的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于.【考点】定积分在求面积中的应用.【专题】计算题;规律型;转化思想.【分析】本题是一个求变力做功的问题,可以利用积分求解,由题意,其积分区间是[0,1],被积函数是力的函数表达式,由积分公式进行计算即可得到答案【解答】解:由题意,的作用,(x 的单位:m,F的单位:N),则它从x=0运动到x=1时F(x)所做的功等于又===综上知,从x=0运动到x=1时F(x)所做的功等于故答案为【点评】本题考查定积分的应用,物理中的变力所做的功用定积分求解是定积分在物理中的重要应用,正确解答本题的关键是理解功与定积分的对应,用代数方法求解物理问题是一个学科之间结合的问题,在近几个的高考改革中,此类问题渐成热点18.空间直角坐标系中两点A(0,0,1),B(0,1,0),则线段AB的长度为.【考点】空间两点间的距离公式.【专题】计算题;空间位置关系与距离.【分析】根据空间两点之间的距离公式,将A、B两点坐标直接代入,可得本题答案.【解答】解:∵点A(0,0,1),点B(0,1,0),∴根据空间两点之间的距离公式,可得线段AB长|AB|==故答案为:【点评】本题给出空间两个定点,求它们之间的距离,着重考查了空间两点之间距离求法的知识,属于基础题.三、解答题19.已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(﹣a,b).(1)若直角坐标平面上的点M、A(0,﹣b),B(a,0)满足=(+),求点M的坐标;(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=﹣,证明:E为CD的中点;(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值X围.【考点】直线与圆锥曲线的综合问题.【专题】计算题;证明题;压轴题.【分析】(1)设M(x,y)根据=(+)分别用三点的坐标表示出三个向量,进而解得x和y,则M点坐标可得.(2)直线l1与椭圆方程联立消去y,根据判别式求得,a2k12+b2﹣p2>0,设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),利用韦达定理可求得x1+x2的表达式,进而求得x0,代入直线方程求得y0,两直线方程联立根据直线l2的斜率求得x=x0,y=y0进而判断出E为CD的中点;(3)先求出PQ的中点的坐标,进而求出直线OE的斜率,再由+=,知E为CD的中点,根据(2)可得CD的斜率,直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.欲使P1、P2存在,必须点E在椭圆内,进而求得q的取值X围.【解答】解:(1)设M(x,y)∵=(+),∴2(x+a,y﹣b)=(a,﹣2b)+(2a,﹣b)∴,解得x=y=﹣M点坐标为(,﹣)(2)由方程组,消y得方程(a2k′1+b2)x2+2a2k1px+a2(p2﹣b2)=0,因为直线l1:y=k1x+p交椭圆于C、D两点,所以△>0,即a2k12+b2﹣p2>0,设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),则x0==﹣,y0=k1x0+p=,由方程组,消y得方程(k2﹣k1)x=p,又因为k2=﹣,所以x==x0,y=k2x=y0故E为CD的中点;(3)求作点P1、P2的步骤:1°求出PQ的中点E(﹣,),2°求出直线OE的斜率k2==,3°由+=,知E为CD的中点,根据(2)可得CD的斜率k1=,4°从而得直线P1P2的方程:y﹣=(x+),5°将直线CD与椭圆Γ的方程联立,方程组的解即为点P1、P2的坐标.欲使P1、P2存在,必须点E在椭圆内,所以+<1,化简得sinθ﹣cosθ<,∴sin(θ﹣)<,又0<q<p,所以﹣<θ﹣<arcsin,故q的取值X围是(0,+arcsin)【点评】本题主要考查了直线与圆锥曲线的综合问题.解题的前提是要求学生对基础知识有相当熟练的把握.20.在数列{a n}中,a1=1,a n+1=(1+)a n+,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n.【考点】数列递推式.【专题】计算题;函数思想;数学模型法;等差数列与等比数列.【分析】(Ⅰ)把已知数列递推式变形,得到,然后利用累加法求数列的通项公式;(Ⅱ)分组后利用等差数列的前n项和及错位相减法求数列{a n}的前n项和S n.【解答】解(Ⅰ)由a n+1=(1+)a n+,得,∴,,,…,累加得:=.∴;(Ⅱ)=,令,则,=,∴,则.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,训练了累加法求数列的通项公式,是中档题.21.在三角形ABC中,,求三角形ABC的面积S.【考点】正弦定理的应用.【专题】计算题.【分析】先根据cosB求出sinB的值,再由两角和与差的正弦公式求出sinA的值,由余弦定理求出c的值,最后根据三角形的面积公式求得最后答案.【解答】解:由题意,得为锐角,,,由正弦定理得,∴.【点评】本题主要考查两角和与差的正弦公式和三角形面积公式的应用,属基础题.寿命/小时100~200 200~300 300~400 400~500 500~600个数20 30 80 40 30分组频数频率100~200200~300300~400400~500500~600合计(2)完成频率分布直方图;(3)估计电子元件寿命在100~400小时以内的概率;(4)估计电子元件寿命在400小时以上的概率.【考点】互斥事件的概率加法公式;频率分布直方图.【专题】计算题;作图题.【分析】(1)由题意知,本题已经对所给的数据进行分组,并且给出了每段的频数,根据频数和样本容量做出频率,填出频率分布表(2)结合前面所给的频率分布表,画出坐标系,选出合适的单位,画出频率分步直方图.(3)由累积频率分布图可以看出,寿命在100~400h内的电子元件出现的频率为0.65,我们估计电子元件寿命在100~400h内的概率为0.65.(4)由频率分布表可知,寿命在400h以上的电子元件出现的频率,我们估计电子元件寿命在400h以上的概率为0.35.【解答】解:(1)完成频率分布表如下:分组频数频率100~200 20 0.10200~300 30 0.15300~400 80 0.40400~500 40 0.20500~600 30 0.15合计200 1(2)完成频率分布直方图如下:(3)由频率分布表可知,寿命在100~400小时的电子元件出现的频率为0.10+0.15+0.40=0.65,所以估计电子元件寿命在100~400小时的概率为0.65(4)由频率分布表可知,寿命在400小时以上的电子元件出现的频率为0.20+0.15=0.35,所以估计电子元件寿命在400小时以上的概率为0.35【点评】本题在有些省份会作为高考答题出现,画频率分布条形图、直方图时要注意纵、横坐标轴的意义.通过本题可掌握总体分布估计的各种方法和步骤.23.求出函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.【考点】正弦函数的单调性.【专题】转化思想;转化法;三角函数的图像与性质.【分析】y=sin(﹣x)=﹣sin(x﹣),利用复合三角函数的单调性转化为求y=sin (x﹣),x∈[﹣2π,2π]的单调递减区间.【解答】解:y=sin(﹣x)=﹣sin(x﹣),要求函数y=sin(﹣x),x∈[﹣2π,2π]的单调递增区间.即求y=sin(x﹣),x∈[﹣2π,2π]的单调递减区间.∴由2kπ+≤x﹣≤+2kπ(k∈Z)得:4kπ+≤x≤+4kπ(k∈Z),∴y=sin(﹣x)的递增区间为[4kπ+,+4kπ](k∈Z),又x∈[﹣2π,2π],∴y=sin(﹣x)在x∈[﹣2π,2π]上的递增区间为[﹣2π,﹣]和[,2π].【点评】本题考查复合三角函数的单调性,由2kπ+≤x﹣≤+2kπ(k∈Z)求得y=sin(﹣x)的递增区间是关键,也是易错点,属于中档题.。
高二数(Shu)学上学期期末考试试题及答案高(Gao)二数学(理(Li))试(Shi)题第(Di)Ⅰ卷(选择题(Ti) 共60分)一(Yi)、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个(Ge)选项中,只有一项是符合题目要求的.1、命题“若”的逆否命题是()A.若 B.C.若D.2、命题,若是真命题,则实数的取值范围是()A. B. C.D.3、下列各数中最大的数为()A.101111(2) B.1210(3) C.112(8) D.69(12)4、如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A. B. C. D.5、从某小学随机抽取200名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取36人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( ).A.3 B.6 C.9 D.12(第4题图)(第5题图)6、袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是()A.“至少(Shao)有一个黑球”和“没有黑球” B.“至少(Shao)有一个白球”和“至少有一个红球”C.“至少有一个白(Bai)球”和“红球黑球各有一个” D.“恰有一个白球(Qiu)”和“恰有一个黑球”7、利用随机数表法对一个容量为500编号(Hao)为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第4列(Lie)的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是()A.584 B.114 C.311 D.1608、是空(Kong)间的一个单位正交基底,在基(Ji)底{},,a b c下的坐标为,则p在基底下的坐标为()A. B. C.D.9、假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A. B. C. D.10、已知是双曲线的左、右焦点,过的直线与的左、右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()A.4 B. C. D.11、已知定义域为的奇函数的导函数为,当时,,若,,,则的大小关系正确的是()A. B. C. D.12、已知是抛物线的焦点,直线与该抛物线交于第一象限内的两点A ,B ,若,则的值是( )A .B .C .D .第(Di)Ⅱ卷(非选择题 共90分)二.填空题:本(Ben)大题共4小题,每小题5分,共20分,把答案填在题中横线上.13、由曲(Qu)线,直(Zhi)线及(Ji)轴所围成的图(Tu)形的面积为 .14、椭(Tuo)圆与(Yu)直线交于两点,过原点与线段中点的直线的斜率为,则的值为 .15、下列命题:①命题“”的否命题为“”;②命题“”的否定是“” ③对于常数,“”是“方程表示的曲线是双曲线”的充要条件;④“”是“”的必要不充分条件;⑤已知向量不共面,则向量可以与向量和向量构成空间向量的一个基底.其中说法正确的有 (写出所有真命题的编号). 16、设定义域为的单调函数,对任意的,都有,若是方程的一个解,且,则实数.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17、(本小题满分10分) 设关于的一元二次方程.(1)若a 是从1,2,3,4四个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有两个不等实根的概率;(2)若a 是从区间任取的一个数,b 是从区间任取的一个数,求上述方程有实根的概率.18、(本小题满分12分) 某厂采用新技术改造后生产甲产品的产量x (吨)与相应的生产成本y (万元)的几组对照数据.x 3 4 5 6 y33.54.55(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)已知该厂技改前生产50吨甲产品的生产成本为40万元.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产成本比技改前降低多少万元?(参考(Kao)数据(Ju):,)19、(本小题(Ti)满分12分)如图(Tu):四棱锥中(Zhong),底面是(Shi)平行四边(Bian)形,且,,,,点(Dian)F是的中点,点在边上移动.(1)证明:当点E在边BC上移动时,总有;(2)当等于何值时,与平面所成角的大小为45°.20、(本小题满分12分)已知函数,(1)若)(xf的一个极值点为1,求a的值;(2)设在上的最大值为b,当时,恒成立,求a的取值范围.21、(本小题满分12分)已知中心在原点,焦点在x轴的椭圆过点,且焦距为2,过点分别作斜率为的椭圆的动弦,设分别为线段,AB CD的中点.(1)求椭圆的标准方程;(2)当,直线是否恒过定点?如果是,求出定点坐标.如果不是,说明理由.22、(本小题满分12分)设函数(1)求函数)(xf的最小值;(2)设,讨论函数的单调性;(3)在第二问的基础上,若方程,()有两个不相等的实数根,求证:.高(Gao)二数学(理)参考答(Da)案DCDAB CCACB DA13. 14. 15. ③⑤ 16. 217. 解:设事件A 为“方程(Cheng)有实根”.当a >0,b >0时,方程(Cheng)有实根的充要条件为a>b(1)由题意知本题是一个古典概型,试验(Yan)发生包含的基本事件共12个: (1,0)(1,1)(1,2)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)(4,0)(4,1)(4,2) ………………2分(Fen) 其中第一个数表示(Shi)a 的取值,第二个数表示b 的取值.事件A 中包(Bao)含9个基本事件, ………………4分∴事件A 发生的概率为 ………………5分(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为{(a ,b )|1≤a≤4,0≤b≤2}满足条件的构成事件A 的区域为{(a ,b )|1≤a≤4,0≤b≤2,a≥b}………………8分∴所求的概率是 ………………10分18. 解(1)略 ………………2分(2)由已知42186ii x==∑42166.5ii y==∑4175.5i ii x y==∑所以,由最小二乘法确定的回归方程的系数为:b ^=………………5分a ^=y -b ^x =4-0.7×4.5=0.85 ………………7分 因此,所求的线性回归方程为y ^=0.7x +0.85 ………………8分(3)由(2)的回归方(Fang)程及技改前生产50吨甲产(Chan)品的生产成(Cheng)本,得降低的生(Sheng)产成(Cheng)本为(Wei):40-(0.7×50+0.85)=4.15(万(Wan)元). (12)分(Fen)19. 解解:(1)分别以AD、AB、AP所在直线为x、y、z轴,建立如图所示空间坐标系则可得P(0,0,1),B(0,1,0),F(0,,),D(,0,0)设BE=x,则E(x,1,0)∴=(x,1,﹣1)得=x•0+1×+(﹣1)×=0可得,即AF⊥PE成立;………………5分(2)求出=(,0,﹣1),设平面PDE的一个法向量为则,得………………7分∵PA与平面PDE所成角的大小为45°,=(0,0,1)∴sin45°==,得=………………9分解之得x=或x=∵BE=x,………………11分∴BE=,即当CE等于时,PA与平面PDE所成角的大小为45°.……………12分20. 解: (1),令,则a=1………………3分经检验,当a=1时,1是)(xf的一个极值点………………4分(2) ,所以()g x在[1,2]上是增函数,[2,4]上是减函数………………7分在[)1,x∈+∞上恒成立,由x∈[1,+∞)知,x+ln x>0,………………8分所以f(x)≥0恒成立等价于a≤x2x+ln x在x∈[e,+∞)时恒成立,………………9分令h (x )=x2x +ln x ,x ∈[1,+∞),有h ′(x )=xx -1+2ln xx +ln x 2>0,………………10分所(Suo)以h (x )在[1,+∞)上是(Shi)增函数,有h (x )≥h (1)=1,所(Suo)以a ≤1 ………………12分(Fen)21. 解(Jie):(1)由题(Ti)意知设右(You)焦点………………2分(Fen)椭圆方程为 ………………4分(2)由题意,设直线,即代入椭圆方程并化简得………………5分………………7分同理 ………………8分当时, 直线MN 的斜率………………9分直线MN 的方程为………………10分又 化简得 此时直线过定点(0,)当时,直线MN 即为y 轴,也过点(0,32-)………………12分 综上,直线过定点(0,32-) 22. (1)解:f′(x )=lnx+1(x >0),令f′(x )=0,得.……………2分∵当时,f′(x)<0;当时,f′(x)>0∴当(Dang)时(Shi),.………………3分(Fen)(2)F′(x)=2x﹣(a﹣2)﹣(x>0).当a≤0时(Shi),F′(x)>0,函数F(x)在(0,+∞)上单调递增,函数F(x)的单调增区间为(0,+∞).当a>0时,由(You)F′(x)>0,得x>;由(You)F′(x)<0,得0<x<.所以函数F(x)的单(Dan)调增区间为,单调减(Jian)区间为. (7)分(3)证明:因为x1、x2是方程F(x)=m的两个不等实根,由(1)知a>0.不妨设0<x1<x2,则﹣(a﹣2)x1﹣alnx1=c,﹣(a﹣2)x2﹣alnx2=c.两式相减得﹣(a﹣2)x1﹣alnx1﹣+(a﹣2)•x2+alnx2=0,即+2x1﹣﹣2x2=ax1+alnx1﹣ax2﹣alnx2=a(x1+lnx1﹣x2﹣lnx2).所以a=.因为F′=0,即证明x1+x2>,即证明﹣+(x1+x2)(lnx1﹣lnx2)<+2x1﹣﹣2x2,即证明ln <.设t=(0<t<1).令g(t)=lnt﹣,则g′(t)=.因为t>0,所以g′(t)≥0,当且仅当t=1时,g′(t)=0,所以g(t)在(0,+∞)上是增函数.又g(1)=0,所以当t∈(0,1)时,g(t)<0总成立.所以原题得证………………12分。
高二数学上学期期末考试试卷 高二年级数学试题(理)命题人:江国新一、选择题(5分×10=50分)1.已知α,β,γ是两两相交的三个平面,则α∩β∩γ等于A .一个点B .一条直线C .φD .以上三种情况均有可能2.空间四边形ABCD 中,AB=CD ,AB 与CD 成30°角,E 、F 分别为BC 、AD 的中点,则EF 和AB 所成角为A .15°B .75°C .15°或75°D .30° 3.给出以下四个命题①过空间一点有且只有一个平面与两条异面直线都平行②过两条异面直线中的一条有且只有一个平面与另一条直线平行 ③过两条异面直线中的一条有且只有一个平面与另一条直线垂直 ④与两条异面直线都相交的两条直线是异面直线 其中真命题的个数为A .4B .3C .2D .1 4.已知A(1,-2,11),B(4,2,3),C(6,-1,4),则△ABC 是A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形 5.关于直线m ,n 与平面α、β,有下列四个命题:①若m//α,n//β且α//β,则m//n ②若m ⊥α,n ⊥β且α⊥β,则m ⊥n ③若m ⊥α,n//β且α//β,则m ⊥n ④若m//α,n ⊥β且α⊥β,则n//m 其中真命题的个数为A .1B .2C .3D .4 6.若)21,1,2(),,,1(2=-=b a λλλ,且b a 与的夹角为锐角,则λ的取值范围为A .-1<λ<4B .-1<λ<21 C .21<λ<4 D .-1<λ<21或21<λ<47.双曲线C :)0,0(12222>>=-b a by a x 与直线l :mx+ny+t=0的公共点个数可能为①0个 ②1个 ③2个 ④3个 ⑤4个 其中命题正确的个数为A .2B .3C .4D .58.在正方体ABCD —A 1B 1C 1D 1中,M 为DD 1的中点,O 为ABCD 的中心,P 为棱A 1B 1上的任一点,则直线OP 与AM 所成角为A .30°B .45°C .60°D .90° 9.对于四面体ABCD ,给出下列四个命题①若AB=AC ,DB=DC ,则AD=BC ②若AB=CD ,AC=BD ,则BC ⊥AD ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD 其中真命题的个数为A .1B .2C .3D .410.长方体ABCD —A 1B 1C 1D 1中,P 为底面ABCD 内的一动点,P 到点B 的距离与P 到直线DD 1的距离之比为e(0<e<1),则点P 的轨迹是A .椭圆的一部分B .双曲线的一部分C .圆的一部分D .线段 二、填空题(5分×5=25分)11.过点P(1,2)且在两坐标轴上的横纵截距互为相反数的直线方程为____________.12.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,则(x -6)2+y 2的最小值为_______________.13.已知)2,0,1(),1,1,1(-==b a ,则b a 在方向上的正射影为_______________.14.设矩形ABCD(AB>AD)的周长为12,把它关于AC 折起来,AB 折过去后,交DC 于点P ,则△ADP 的最大面积为______________.15.已知四面体PABC 中,PA=3,PB=4,PC=5,∠APB=∠BPC=∠APC=60°,则AP 与平面PBC 所成角为_______________,||PC PB PA ++=____________.高二数学上学期期末考试试卷 高二年级数学试题(理)答题卷二、填空题答题卡11._________________ 12.________________ 13.________________ 14.________________ 15.________________ ___________________三、解答题 16.(本小题12分)已知空间四边形OABC 中,OA=OB ,CA=CB ,E 、F 分别为OA 、OB的中点(1)若G 、H 分别为BC 、AC 的中点,求证:四边形EFGH 是矩形; (2)若G 、H 分别为BC 、AC 上的点,且32==CA CH CB CG ,求证三条直线FG 、HE 、OC 交于一点.17.(本小题12分)已知关于x 的不等式2222+-+>++-x x ax x x a x (1)若不等式的解集为R ,求实数a 的取值范围; (2)是否存在实数a 使不等式的解集为(-1,1)?18.(本小题12分)在矩形ABCD 中,AB=3,BC=1,沿对角线BD 将△BCD 折起,使点C 移到C '点,且C '点在平面ABD 上的射影O 恰在AB 上(1)求证:B C '⊥平面A C 'D ;(2)求直线AB 与平面B C 'D 所成角的大小.19.(本小题12分)已知圆C的方程为x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R) (1)求圆C的面积的取值范围;(2)过点P(3,4t2)的直线l与圆C的公共点的个数为0或1或2,求t的取值范围.20.(本小题13分)已知矩形ABCD中,AB=a,BC=2,PA⊥平面ABCD,且PA=1 (1)若M、N分别为BC、PD的中点,求证:MN//平面PAB;(2)若BC边上有且只有一个点Q,使PQ⊥DQ,试求异面直线QN与CD所成的角.21.(本小题14分)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题. 例如:原来问题是“在平面直角坐标系xOy中,求点P(2,1)到直线3x+4y=0的距离”,求出距离2后,它的一个“逆向”问题可以是“求到直线3x+4y=0的距离为2的点的轨迹方程”;也可以是“若点P(2,1)到直线l:ax+by=0的距离为2,求直线l的方程.”试给出问题“过抛物线C:y2=2px(p>0)焦点F的一条直线与抛物线C交于两点P、Q,经过点P和抛物线顶点的直线交准线于点M,求证:MQ//x轴”的一个有意义的“逆向”问题,并解答你所给出的“逆向”问题.。
桂林市2019~2020学年度下学期期末质量检测高二年级 数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个选项是符合题目要求的.1. 23A =( )A. 3B. 6C. 9D. 12【答案】B 【解析】 【分析】直接根据排列数公式计算即可得答案.【详解】解:根据排列数公式()()()121mn A n n n n m =---+得:23326A =⨯=.故选:B.【点睛】本题考查排列数公式的计算,是基础题. 2. i (1+i )=( ) A. 1i -+ B. 1i -- C. 1i + D. 1i -【答案】A 【解析】 【分析】根据复数的乘法运算得到结果.【详解】根据复数的乘法运算得到:原式i (1+i )=i-1. 故选A .【点睛】这个题目考查了复数的乘法运算,题目简单基础. 3. 函数()ln f x x =的导数是( ) A. x B.1xC. ln xD. x e【答案】B 【解析】 【分析】根据导数公式直接计算即可得答案. 【详解】解:因为()1ln 'x x=, 所以()1'f x x=. 故选:B.【点睛】本题考查导数的公式,是基础题. 4.212xdx =⎰( )A. 3B. 2C. 1D.32【答案】A 【解析】 【分析】直接利用微积分基本定理求解即可.【详解】222112|413xdx x ==-=⎰. 故选:A .【点睛】本题考查微积分基本定理的应用,考查计算能力,属于基础题. 5. 5(12)x +的展开式中的常数项为( ) A. -1 B. 1C. 92D. 93【答案】B 【解析】 【分析】利用二项展开式的通项公式求出展开式的通项,令x 的指数为0,求出r ,可得展开式的常数项.【详解】5(12)x +的展开式的通项为155(2)2r r r r rr T C x C x +==, 当0r =时,可得5(12)x +的展开式中的常数项为00521C =.故选:B .【点睛】本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题6. 用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时,应假设( )A. a b <B. a b ≤C. a b >D. a b ≥【答案】B 【解析】 【分析】直接利用命题的否定,写出假设即可.【详解】用反证法证明命题“在ABC 中,若A B ∠>∠,则a b >”时, 假设就是命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定, 命题“ABC 中,若A B ∠>∠,则a b >”的结论的否定是:a b . 故选:B .【点睛】本题考查反证法的定义以及命题的否定,基本知识的考查. 7. 关于函数3()f x x x =+,下列说法正确的是( ) A. 没有最小值,有最大值 B. 有最小值,没有最大值 C. 有最小值,有最大值 D. 没有最小值,也没有最大值【答案】D 【解析】 【分析】 利用()'fx 研究函数()f x 的最值.【详解】依题意()'2310f x x =+>,所以()f x 在R 上递增,没有最小值,也没有最大值.故选:D【点睛】本小题主要考查利用导数研究函数的最值,属于基础题. 8. 已知随机变量X 的分布列是则a b +=( ) A.23B.32C. 1D.34【解析】 【分析】直接根据离散型随机变量的分布列的性质求解即可得答案.【详解】解:根据离散型随机变量的分布列的概率和为1得:113a b ++=, 所以23a b +=. 故选:A.【点睛】本题考查分布列的性质,是基础题. 9. 已知随机变量ξ服从正态分布()23,N σ,且(4)0.68P ξ≤=,则(2)P ξ≤=( )A. 0.84B. 0.68C. 0.32D. 0.16【答案】C 【解析】 【分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果. 【详解】解:根据随机变量ξ服从正态分布()23,N σ,所以密度曲线关于直线3x =对称, 由于()40.68P ξ≤=,所以()410.680.32P ξ≥=-=, 所以()20.32P ξ≤=. 故选:C.【点睛】本题考查正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10. 在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A 5-B.5C. 5- D.5【解析】 【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1 n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则()110n =-,,, ∴10cos ,5n BE n BE n BE⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==,故选B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题.11. 根据上级扶贫工作要求,某单位计划从5名男干部和6名女干部中选出1名男干部和2名女干部组成一个扶贫小组,派到某村开展“精准扶贫”工作,那么不同的选法有( )A. 60种B. 70种C. 75种D. 150种【答案】C 【解析】 【分析】根据题意,先在5名男干部中任选1人,再从6名女干部中选出2人,由分步计数原理计算可得答案.【详解】根据题意,先在5名男干部中任选1人,有155C =种选法, 再从6名女干部中选出2人,有2615C =种选法,则有51575⨯=种不同的选法; 故选:C .【点睛】本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.12. 定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()f x f x '>,且()02f =,则不等式()2xf x e <的解集为( )A. (),0-∞B. (),2-∞C. ()0,∞+D. ()2,+∞【答案】C 【解析】【详解】构造函数()()x f x g x e=,根据()()f x f x '>可知()0g x '<,得到()g x 在R 上单调递减;根据()()002f g e==,可将所求不等式转化为()()0g x g <,根据函数单调性可得到解集.【解答】令()()x f x g x e =,则()()()()()20x x x xf x e f x e f x f xg x e e ''--'==< ()g x ∴在R 上单调递减 ()02f = ()()002f g e∴== 则不等式()2xf x e >可化为()2xf x e<等价于()2g x <,即()()0g x g < 0x ∴> 即所求不等式的解集为:()0,∞+ 本题正确选项:C【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数()()xf xg x e =,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系. 二、填空题:本大题共4小题,每小题5分,共20分.13. 已知i 是虚数单位,复数2z i =+,则z =__________.【解析】 【分析】直接根据复数的模的计算公式计算即可得答案.【详解】解:根据复数模的计算公式得:z =【点睛】本题考查复数模的计算,是基础题. 14. 已知()12P B A =,3()10P AB =,则()P A =__________. 【答案】35【解析】 【分析】直接根据条件概率公式计算即可得答案. 【详解】解:根据条件概率公式()()()P AB P B A P A =和已知条件()12P B A =,3()10P AB =, 所以()()()3310152P AB P A P B A ===. 故答案为:35【点睛】本题考查条件概率公式的应用,是基础题.15. 经过圆221x y +=上一点()00,x y 的切线方程为001x x y y +=,则由此类比可知:经过椭圆22221x y a b+=上一点()00,x y 的切线方程为______. 【答案】00221x x y ya b+= 【解析】 【分析】根据圆的切线方程形式,类比推理出椭圆的切线方程.【详解】解:圆的性质中,经过圆上一点()00,M x y 的切线方程就是将圆的方程中的一个x 和y 分别用()00,M x y 的横坐标与纵坐标替换,故可得椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b +=上一点()00,x y 的切线方程为00221x x y ya b+=. 故答案为:00221x x y ya b+=.【点睛】考查了类比推理的数学思想,是基础题.16. 函数()cos f x x x =-在区间[0,]π上的最大值为__________. 【答案】1π+ 【解析】 【分析】求出导函数()f x ',[0x ∈,]π,利用导数研究函数()f x 的单调性,根据单调性可得结果. 【详解】数()cos f x x x =-, ()1sin f x x '=+, [0x ∈,]π,()0f x ∴'>,当[0x ∈,]π时,函数()f x 单调递增;∴函数()f x 在区间[0,]π上的最大值为:()1f ππ=+.故答案为:1π+.【点睛】本题考查了利用导数研究函数的单调性与最值,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共6小题,共70分解答应给出文字说眀、证明过程及演算步骤.17. 在91x x ⎛⎫- ⎪⎝⎭展开式中,求: (1)含x 的项; (2)含3x 的项的系数.【答案】(1)126x ;(2)84-. 【解析】 【分析】(1)写出二项展开式的通项,令x 的指数为1,求得参数的值,代入通项可求得结果;(2)写出二项展开式的通项,令x 的指数为3,求得参数的值,进而可求得展开式中含3x 的项的系数.【详解】(1)91x x ⎛⎫- ⎪⎝⎭展开式的通项为()99219911rr r rr r r T C xC x x --+⎛⎫=-=- ⎝⋅⋅⋅⋅⎪⎭, 令921r -=,得4r =,所以含x 的项为()4491126C x x -=⋅;(2)由(1),令923r -=,得3r =,所以含3x 的项的系数为()339184C ⋅-=-.【点睛】本题考查利用二项式定理求指定项或指定项的系数,考查计算能力,属于基础题. 18. 已知函数1()ln 2f x x x ax =++在(1, (1))f 处的切线方程为2210x y --=. (1)求实数a 的值;(2)求()f x 的单调区间.【答案】(1)0a =;(2)减区间为10,e ⎛⎫ ⎪⎝⎭,增区间为1,e ⎛⎫+∞ ⎪⎝⎭. 【解析】 【分析】(1)求导得()1f x lnx a '=++,利用f '(1)1=,列出关于a 的方程,解之即可. (2)由(1)可知,()1(0)f x lnx x '=+>,令()0f x '=,则1=x e,然后根据原函数的单调性与导函数的正负性之间的联系判断即可得解.【详解】(1)1()2f x xlnx ax =++,()1f x lnx a '∴=++, ()f x 在点(1,f (1))处的切线方程为2210x y --=,f '∴(1)1=,即011a ++=,解得0a =.(2)由(1)可知,1()2f x xlnx =+,()1(0)f x lnx x '∴=+>, 当1(0,)∈x e时,()0f x '<,()f x 单调递减;当1(x e ∈,)+∞时,()0f x '>,()f x 单调递增,故()f x 的单调递减区间为1(0,)e,单调递增区间为1(e ,)+∞.【点睛】本题考查利用导数研究函数的切线方程、单调性,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题. 19. 在数列{}n a 中,已知11a =,112nn na a a +=+.(1)计算2a ,3 a ,4a ;(2)根据计算结果猜想出{}n a 的通项公式n a ,并用数学归纳法证明你的结论. 【答案】(1)213a =,315a =,417a =;(2)121n a n =-,证明见解析.【解析】 【分析】(1)利用()*11112nn na a a n N a +==∈+,,n 分别取234,,可求出234,,a a a ,并由此猜想数列{}n a 的通项公式n a 的表达式;(2)根据计算结果猜想数列{}n a 的通项公式n a 的表达式,用数学归纳法证明①当1n =时,111211a ==⨯-,猜想成立;②假设n k =成立,利用()*112n n n a a n N a +=∈+,可证得当1n k =+时猜想也成立,故可得结论.【详解】(1)∵111,(1,2,3,)12nn a a a n a+===⋅⋅⋅+, ∴1211123a a a ==+,同理可得:315a =,417a =. (2)由(1)计算结果猜想121n a n =-, 下面用数学归纳法证明: ①当1n =时,111211a ==⨯-,猜想成立,②假设当()*1n k k N=+∈时,猜想成立,即:121kak =-. 则当()*1n k k N =+∈时,111121212212(1)1121k k k a k a a k k k +-====+++-+-,所以,当1n k =+时,猜想成立. 根据①②可知猜想对任何*n N ∈都成立.【点睛】本题主要考查了以数列递推式为载体,考查了数列的通项的猜想与证明,解题的关键是利用数学归纳法证明,尤其第二步的证明.属于中档题. 20. 在四棱锥P ABCD -中,已知底面ABCD正方形,PA ⊥底面ABCD ,且2PA AD ==,E 为PD 中点.(1)求证://PB 平面ACE ; (2)求二面角A BE C --的余弦值. 【答案】(1)证明见解析;(2)105- 【解析】 【分析】(1)由中位线可知//OE BP ,结合线面平行判定即可证明//PB 平面ACE ;(2)以A 为原点构建空间直角坐标系,写出对应点的坐标并求出面ABE 、面BCE 的法向量,根据法向量夹角与二面角的关系求它们的夹角的余弦值【详解】(1)证明:连接AC 、BD ,AC BD O = ,连接EO∵在BPD △中,BO OD =,PE ED = ∴//OE BP又∵BP ⊄平面ACE ,OE ⊂平面ACE ∴//BP 平面ACE(2)由题,易知PA ,AD ,AB 两两互相垂直,2PA AD == 故可建立如图的空间直角坐标系A xyz -,则(0,0,0)A ,(2,2,0)C ,(0,1,1)E ,(2,0,0)B ,有(0,1,1)AE =,(2,0,0)AB =,(0,2,0)CB =-,(2,1,1)CE =--设(,,)m x y z =为平面ABE 的一个法向量,有020y z x +=⎧⎨=⎩令1y =-,1z =,得(0,1,1)m =-同理若(,,)n x y z =是平面BCE 的一个法向量,有2020y x y z -=⎧⎨--+=⎩令1x =,2z =,得(1,0,2)n = 则10cos ,||5|,|25m n m n m n ⋅〈〉===⨯∴由图知,二面角A BE C --(钝角)的余弦值为10-【点睛】本题考查了线面平行的判定证明平行,利用空间向量求二面角的余弦值,由题意构建空间坐标系并根据二面角所在的两个面确定各点坐标,可得面的法向量,进而求二面角的余弦值21. 东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价8元,售价12元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区100天的销售量如下表:(视样本频率为概率)(1)根据该产品100天的销售量统计表,记两天中一共销售该食品份数为ξ,求ξ的分布列与期望(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进32或33份,哪一种得到的利润更大?【答案】(1)见解析(2)见解析 【解析】 【分析】(1)根据题意可得ξ的取值为30,31,32,33,34,35,36,计算相应的概率值即可确定分布列和数学期望;(2)分别求解当购进32份时的利润和购进33份时的利润即可确定利润更高的决策. 【详解】(1)根据题意可得()111305525P ξ==⨯=,()13331251025P ξ==⨯⨯=,()123313225510104P ξ==⨯⨯+⨯=,()11327332251010525P ξ==⨯⨯+⨯⨯=,()31221134210105550P ξ==⨯⨯+⨯=, ()21235251025P ξ==⨯⨯=,()111361010100P ξ==⨯=,ξ的分布列如下:()131711213031323334353632.825254255025100E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯= (2)当购进32份时,利润()()2131324314830416252525⨯⨯+⨯-⨯+⨯-⨯ 107.5213.92 4.16125.6=++=, 当购进33份时,利润为()()()591313343248314163042410042525⨯⨯+⨯-⨯+⨯-⨯+⨯-⨯ 77.883012.96 3.84124.68=+++=, 125.6124.68>可见,当购进32份时,利润更高.【点睛】本题主要考查离散型随机变量的分布列与数学期望的计算,概率统计的预测作用等知识,意在考查学生的转化能力和计算求解能力. 22. 已知函数()ln 2()f x m x x m =-∈R . (1)当6m =时,试确定()f x 的零点的个数;(2)若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,求证:2m ≤. 【答案】(1)2;(2)证明见解析. 【解析】 【分析】(1)根据条件,利用导函数的符号得到()f x 的单调性和极大值、计算1()f e,2()f e 的符号,由零点存在定理,即可判断零点个数;(2)由题意可得[(1)]2(1)x m ln x x x e +->+-对任意(0,)x ∈+∞恒成立,设(1)y ln x x =+-,求得导数和单调性,得到2(1)(1)x x e m ln x x+-<+-对任意的0x >恒成立,再由此不等式的右边与2作差比较,再求出m 的范围.【详解】(1)当6m =时,知()6ln 2(0)f x x x x =->,则62(3)()2x f x x x-'=-=, ∵当03x <<时,()0f x '>;当3x >,则62(3)()2x f x x x-'=-=, ∴()f x 在区间()0,3是单调递增,在区间(3,)+∞单调递减. ∴max ()(3)6ln 360f x f ==->. 又∵1260f e e⎛⎫=--< ⎪⎝⎭,()221220f e e =-<. ∵()f x 在区间1,3e ⎛⎫ ⎪⎝⎭,在区间()23,e 各有1个零点.综上,函数()f x 零点的个数为2.(2)函数()ln 2f x m x x =-,若不等式(1)2xf x mx e +>-对任意(0,)x ∈+∞恒成立,即为ln(1)2(1)2xm x x mx e +-+>-对任意(0,)x ∈+∞恒成立 即有()(ln(1))21xm x x x e +->+-对任意(0,)x ∈+∞恒成立,设ln(1)y x x =+-,1111x y x x -'=-=++,0x >时,0y '<,函数y 递减, 可得ln(1)0y x x =+-<,则()21ln(1)x x e m x x+-<+-对任意(0,)x ∈+∞恒成立.由()211ln(1)22ln(1)ln(1)x x x e x e x xx x x x+-+--++-=⋅+-+-, 设()1ln(1)(0)xg x x e x x x =+--++>,1()21xg x e x '=--+,21()(1)x g x e x ''=-+,由()y g x ''=在0x >递减,即有()0g x ''<,可得()y g x '=在0x >递减,即有()0g x '<,可得()g x 在0x >递减,可得()0g x <,而ln(1)0x x +-<,可得1ln(1)20ln(1)x x e x xx x+--++⋅>+-. 则由()212ln(1)x x e x x+->+-,所以2m ≤.【点睛】本题考查函数的零点个数和函数恒成立问题解法,零点存在定理和分离参数法、以及构造函数法,考查化简运算能力、推理能力,属于难题.。
哈尔滨市第九中学2020--2021学年度.上学期期末学业阶段性评价考试高二学年数学学科(理)试卷(考试时间:120分钟满分:150分共2页第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项符合题目要求)1.过点M(-4,3)和N(-2,1)的直线方程是A.x -y+3=0B.x+y+1=0C.x -y -1=0D.x+y -3=02.双曲线221169y x -=的虚半轴长是 A.3 B.4 C.6 D.83.直线x+y=0被圆22|6240x y x y +-++=截得的弦长等于A.4B.2 .C .D 4.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河."诗中隐含着一个有趣的数学问题--“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221,x y +≤若将军从点A(4,-3)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营所在区域即回到军营,则“将军饮马"的最短总路程为A.8B.7C.6D.55.已知抛物线2:4C y x =的焦点为F,过点F 的直线与抛物线交于A,B 两点,满足|AB|=6,则线段AB 的中点的横坐标为A.2B.4C.5D.66.直线kx -y+2k+1=0与x+2y -4=0的交点在第四象限,则k 的取值范围为A.(-6,-2) 1.(,0)6B - 11.(,)26C -- 11.(,)62D -- 7.设12,F F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120,F PF ︒∠=则点P 到x 轴的距离为.A .B .C .D 8.已知点A(-2,3)在抛物线C 2:2y px =的准线上,过点A 的直线与C 在第一象限相切于点B,记C 的焦点为F,则直线BF 的斜率为1.2A2.3B3.4C4.3D 9.已知点(x,y)满足:221,,0x y x y +=≥,则x+y 的取值范围是.[A B.[-1,1] .C .D10.设双曲线221916x y -=的右顶点为A,右焦点为F,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB 的面积为32.15A 34.15B 17.5C 19.5D 11.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B,F 为其右焦点,若AF ⊥BF,设∠ABF=α,且[,]64ππα∈则该椭圆的离心率e 的取值范围是.A .1]B .C .D12.如图,,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于1.2A B.1.C.D 第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分)13.圆222200x y x y ++--=与圆2225x y +=相交所得的公共弦所在直线方程为___.14.若三个点(-2,1),(-2,3),(2,-1)中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为___. 15.椭圆221123x y +=的焦点分别是12,F F 点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的___倍.16.过抛物线2:2(0)C y px p =>的焦点F 的直线l 与C 相交于A,B 两点,且A,B 两点在准线上的射影分别为M,N ,,,MFN BFN AFM MFN S S S S λμ∆∆∆==则λμ=___. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)在①圆经过C(3,4),②圆心在直线x+y -2=0上,③圆截y 轴所得弦长为8且圆心E 的坐标为整数;这三个条件中任选一个,补充在下面的问题中,进行求解.已知圆E 经过点A(-1,2),B(6,3)且___;(1)求圆E 的方程;(2)求以(2,1)为中点的弦所在的直线方程.18.(本题满分12分)已知抛物线C:22(0)y px p =>,焦点为F,准线为1,抛物线C 上一点M 的横坐标为3,且点M 到焦点的距离为4.(1)求抛物线的方程;(2)设过点P(6,0)的直线'l 与抛物线交于A,B 两点,若以AB 为直径的圆过点F,求直线'l 的方程.19.(本题满分12分)在平面直角坐标系xOy 中,直线l的参数方程为12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=2acosθ(a>0),且曲线C 与直线l 有且仅有一个公共点.(1)求a;(2)设A,B 为曲线C.上的两点,且,3AOB π∠=求|OA|+|OB|的最大值.20.(本题满分12分)在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin .x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2:4cos .C ρθ=(1)求曲线2C 的直角坐标方程;(2)若点A(1,0),且1C 和2C 的交点分别为点M,N,求11||||AM AN +的取值范围.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的焦点为12(F F 且过点1).2 (1)求椭圆C 的方程;(2)设椭圆的上顶点为B,过点(-2,-1)作直线交椭圆于M,N 两点,记直线MB,NB 的斜率分别为,,MB NB k k 试判断MB NB k k +是否为定值?若为定值,求出该定值;若不是定值,说明理由.22.(本题满分12分)已知点F 是椭圆2222:1(0)x y C a b a b+=>>的右焦点,过点F 的直线l 交椭圆于M,N 两点,当直线l 过C 的下顶点时,l当直线l垂直于C的长轴时,△OMN的面积为3 . 2(1)求椭圆C的标准方程;(2)当|MF|=2|FN|时,求直线l的方程;(3)若直线l上存在点P满足|PM|,|PF|,|PN|成等比数列,且点P在椭圆外,证明:点P在定直线上.。
吴起高级中学(gāojízhōngxué)2021-2021学年第一学期期末考试高二理科数学根底卷第一卷〔选择题一共60分〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分〕1.设数列,,,,…,那么是这个数列的〔〕A. 第6项B. 第7项C. 第8项D. 第9项【答案】B【解析】试题分析:由数列前几项可知通项公式为时,为数列第七项考点:数列通项公式2.命题且是真命题,那么命题是〔〕A. 假命题B. 真命题C. 真命题或者假命题D. 不确定【答案】B【解析】【分析】命题且是真命题,那么命题p和命题q都为真命题.【详解】命题且是真命题,由复合命题真值表可知,命题p和命题q都为真命题.应选:B【点睛】此题考察含有逻辑连接词的复合命题的真假判断,属于根底题.3.的最小值是〔〕A. 2B.C. 4D. 8【答案(dá àn)】C【解析】【分析】直接利用根本不等式可求得表达式的最小值.【详解】由根本不等式得,当且仅当时,获得最小值.应选C.【点睛】本小题主要考察利用根本不等式求和式的最小值,属于根底题.根本不等式的HY 形式是,还可以变形为.前者,后者.要注意题目的适用范围.假如题目的表达式为,那么要对自变量的值进展讨论,不能直接用.4.为等差数列,假设,那么的值是〔〕.A. B. C. D.【答案】B【解析】【分析】将条件转化为的形式,列方程组,解方程组求得的值.【详解】由于数列为等差数列,故有,解得,应选B.【点睛】本小题主要考察利用根本元的思想求等差数列的根本量、通项公式和前个根本量,利用等差数列的通项公式或者前项和公式,结合条件列出方程组,通过解方程组即可求得数列,进而求得数列其它的一些量的值.5.到两定点、的间隔之差的绝对值等于4的点的轨迹〔〕A. 椭圆B. 线段C. 双曲线D. 两条射线【答案(dá àn)】C【解析】【分析】根据双曲线的定义,直接得出选项.【详解】到两个定点间隔之差的绝对值等于常数,并且这个常数小于这两个定点的间隔,根据双曲线的定义可知:动点的轨迹为双曲线.应选C.【点睛】本小题主要考察双曲线的定义,属于根底题.要注意双曲线的定义中,除了差这个关键字以外,还要注意有“绝对值〞这个关键词.6.在中,,那么等于〔〕A. B. C. 3 D.【答案】D【解析】【分析】根据条件,利用正弦定理列方程,解方程求得的值.【详解】由正弦定理得,即,解得.【点睛】本小题主要考察利用正弦定理解三角形,属于根底题.题目是两角以及其中一角的对边,常用的是利用正弦定理来解三角形.假如条件是两边以及它们的夹角,那么考虑用余弦定理来解三角形.假如条件是三边,那么考虑用余弦定理来解三角形.假如两边以及一边的对角,那么考虑用正弦定理来解三角形,此时要注意解的个数.7.抛物线的焦点坐标是〔〕A. B. C. D.【答案】C【解析(jiě xī)】试题分析:即,所以抛物线焦点为,应选C。
2021-2021学年高二上学期期末考试创作单位:*XXX创作时间:2022年4月12日创作编者:聂明景数学〔理〕试题一、选择题〔本大题一一共12小题,一共分〕1.命题“假设,那么〞的逆命题为〔〕A. 假设,那么B. 假设,那么C. 假设,那么D. 假设,那么【答案】C【解析】【分析】根据命题与逆命题的关系,可得逆命题。
【详解】根据原命题与逆命题的关系,可得逆命题为假设,那么所以选C【点睛】此题考察了命题与逆命题的关系,属于根底题。
中,,,那么A. 8B. 9C. 11D. 12 【答案】B【解析】由结合等差数列的性质即可求解的值.【详解】在等差数列中,由,得,又,.应选:B.【点睛】此题考察等差数列的通项公式,考察等差数列的性质,是根底题.中,角A,B,C的对边分别是边a,b,c,假设,,,那么A. B. 6 C. 7 D. 8【答案】C【解析】【分析】由利用三角形内角和定理可求B的值,根据余弦定理可得b的值.【详解】,,,,由余弦定理可得:.应选:C.【点睛】此题主要考察了三角形内角和定理,余弦定理在解三角形中的应用,属于根底题.4.双曲线的实轴的长度比虚轴的长度大2,焦距为10,那么双曲线的方程为〔〕A. B. C. D.【解析】【分析】根据双曲线定义及a、b、c关系,求出值即可得到双曲线方程。
【详解】因为双曲线的实轴的长度比虚轴的长度大2,焦距为10所以,解方程组得且焦点在x轴上,所以双曲线HY方程为所以选B【点睛】此题考察了利用a、b、c的关系求双曲线HY方程,属于根底题。
中,假设,那么A. B. C. D.【答案】D【解析】【分析】可画出三棱柱,结合图形即可求出,这样根据向量加法的平行四边形法那么即可求出.【详解】如图,∵;,;.应选:D.【点睛】此题考察相等向量、相反向量的概念,向量减法的几何意义,向量加法的平行四边形法那么,数形结合的解题方法.,,假设“ 〞是“ 〞的充分不必要条件,那么的取值范围为〔〕A. B. C. D.【答案】C【解析】【分析】解不等式求得x的取值范围,根据充分不必要条件可求出a、b的范围即可。
南宁市2022年秋季学期高二年级教学质量调研数学注意事项:1.本试卷满分150分,考试时间150分钟。
2,考生作答时请将答案写在答题卡上,选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答等无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.己知集合{}{}220,1A x x x B x x =+>=<-,则A B =( )A .(,1)(0,)-∞-+∞B .(,0)(2,)-∞+∞C .(,2)-∞-D .(,1)(2,)-∞-+∞ 2.若复数12i34iz +=-(i 为虚数单位),则在复平面内z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列化简结果错误的是( )A .0AB BC CA ++= B .()AB MB BO OM AB +++= C .0OA OD AD -+= D .AD DC A B B C --=4.如图,圆柱的底面直径和高都等于球的直径,则球与圆柱的体积之比为( )A .1∶2B .2∶3C .3∶4D .4∶55.袋子中有5个大小质地完全相同的球,其中2个红球、3个黄球,从中不放回地依次随机摸出2个球,则摸到的第一个球是红球的概率为( ) A .25 B .825 C .35 D .16256.若ln ln 0M N +=,则有( )A .0M N -=B .0M N +=C .1MN= D .1MN = 7.已知函数3()21f x x x =-+,则方程()f x x =在(1,2)-内的实数解的个数是( ) A .0 B .1 C .2 D .38.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,且PA =,E 为梭BC上的动点,若PE DE +的最小值为,则PB =( )A .8B .4C .6D .2二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列命题正确的是( )A .己知12,e e 是两个不共线的向量,若12122,24a e e b e e =-=-+,则a 与b 不共线B .已知a ,b 为两个非零向量,若||||a b a b +=-,则a b ⊥C .设||12,||9,542a b a b ==⋅=-a 与b 的夹角34πθ=D .已知||3,||4a b ==,且a 与b 不共线,则34k =是a kb +与a kb -互相垂直的必要不充分条件 10.把函数()sin f x x =的图象向左平移3π个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图象,下列关于函数()g x 的说法正确的是( ) A .最小正周期为π B .单调递增区间是5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .图象的一个对移中心为,03π⎛⎫-⎪⎝⎭D .图象的一条对称轴为直线12x π=11.过ABC △所在平面α外一点P ,作PO α⊥,垂足为O ,连接PA PB PC 、、,则下列说法正确的是( ) A .若PA PB PC ==,则点O 是ABC △的外心B .若,90PA PB PC C ==∠=︒,则点O 是AB 边的中点C .若,,PA PB PB PC PC PA ⊥⊥⊥,垂足都为P ,则点O 是ABC △的垂心D .若P 到ABC △三条边的距离相等,则点O 是ABC △的重心 12.下列函数中,既是偶函数又在(0,)+∞上单调递增的是( )A .)ln3y x = B .x x y e e -=+ C .21y x =+ D .cos 3y x =+三、填空题:本题共4小题,每小题5分,共20分。
高二数学上学期期末考试试题 理
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.范围:北师大必修5+选修2-1 +选修2-2复数、 导数。
第Ⅰ卷
一、选择题(本题共12题,每小题5分,共60分.每题给出的四个选项中,只有一项是符
合题目要求的)
1.已知复数z 满足i 1i z =+,则z 的共轭复数z =
A .1i +
B .1i -
C
D .1i --
2.命题“对任意的,sin 1x x ∈≤R ”的否定是 A .不存在,sin 1x x ∈≤R B .存在,sin 1x x ∈≤R C .存在,sin 1x x ∈>R
D .对任意的,sin 1x x ∈>R
3.已知双曲线2
2
2:1y C x b
-=的离心率为2,则双曲线C 的渐近线方程为
A .y x =
B .y =±
C .y =
D .y = 4.不等式
1
2x x
-≥的解集为 A .(,1]-∞-
B .(,1]
(0,)-∞-+∞ C .[1,)+∞
D .[1,0)-
5.已知空间向量(3,1,0),(,3,1)x ==-a b ,若⊥a b ,则x = A .3-
B .1-
C .1
D .3
6.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若
cos cos A a
B b
=,则ABC △是
A .直角三角形
B .等腰直角三角形
C .等腰三角形
D .等边三角形
7.已知a ,b ∈R ,且220a b -+=,则1
24a
b
+
的最小值为 A .2
B .1
C .1
2
D .
14
8.已知e e ()x
f x x -=+的导函数为()f 'x ,则1()f '=
A . 1
1
+
B 11
-+
C .
1-1
D .1-1
-
9.我国古代数学《算法通宗》有如下问题:远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层是上一层灯数的2倍,则塔顶层共有灯几盏? A .3
B .1
C .2
D .4
10.在正方体1111ABCD A B C D -中,已知M 为11A B 的中点,则异面直线AM 与1B C 所成角的余弦值为 A
B
C
D
11.若关于x 的不等式22
280(0)x ax a a --<<的解集为12(,)x x ,且2115x x -=,则a =
A .56
-
B .52
-
C .154
-
D .152
-
12.过抛物线2
:(0)C y mx m =>的焦点F 作直线l 交抛物线于P ,Q 两点,若线段PQ 中点
的横坐标为3,且5
||4
PQ m =,则m = A .6
B .8
C .10
D .12
第Ⅱ卷
二、填空题(本题共4小题,每小题5分,共20分)
13.已知变量x ,y 满足约束条件1330x y x y x +≥⎧⎪
+≤⎨⎪≥⎩
,则目标函数2z x y =-的最大值是
_____________.
14.集合1
{|
0}1
x A x x -=<+,{|}B x x a =<,若A 是B 的充分不必要条件,则实数a 的取值范围是______
15.已知1F , 2F 分别是椭圆22
2:1(3)9
x y C a a +=>的左、右焦点,P 为椭圆C 上一点,且
12120F PF ∠=︒则12||||PF PF ⋅=_____________.
16.已知0a >,0b >,且
23
a b
+=,则ab 的最小值为________________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)集合
2{|10}P x x
=-<与
2{|540}B x x x =-+<求B P 和
B P
C R
18.(本小题满分12分)
已知数列{}n a 是等差数列,{}n b 是等比数列,且111a b ==,234a b a +=,347a b a +=. (1)求数列{}n a 与{}n b 的通项公式; (2)记n n n b a c ∙=,求数列{}n c 的前n 项和n S .
19.(本小题满分12分)
在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos 0b c A a C --=.
(1)求角A 的大小;
(2)若2a =,求ABC △的面积S 的最大值.
20.(本小题满分12分)
设函数()()ln ,ln 2f x x g x x x ==-+. (1)求函数()g x 的极大值; (2)求)()(x g x f +的单调区间
21.(本小题满分12分)
已知椭圆2222:1()0x y C a b a b +=>>的离心率为2
,且过点.
(1)求椭圆C 的标准方程;
(2)设直线y x m =+交椭圆C 于A ,B 两点,设O 为坐标原点,求OAB △面积的最大值.
22.(本小题满分
12
分)如图,三棱柱
111
ABC A B C -中,11,AAC C ABC ⊥侧面底面11
2,AA AC AC ===AB BC =,,AB BC O AC ⊥且为中点.
(1)证明:1
;AO ABC ⊥平面 (2)求直线1BC 与平面1A AB 所成角的正弦值.。