弹簧类问题分析
- 格式:ppt
- 大小:1.30 MB
- 文档页数:16
弹簧类问题考点规律分析1.弹簧类问题特点(1)对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒。
(2)整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题。
由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。
2.弹簧类问题的注意事项光滑水平面上的两物块通过弹簧作用时,弹簧伸长到最长或压缩到最短时,两物体的速度一定相等,弹簧具有最大的弹性势能;当弹簧恢复原长时,两物体的速度相差最大,弹簧对两物体的作用力为零。
典型例题两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示。
B 与C 碰撞后二者会粘在一起运动。
则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?[规范解答] (1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大。
由A 、B 、C 三者组成的系统动量守恒得(m A +m B )v =(m A +m B +m C )v 1解得v 1=(2+2)×62+2+4m/s =3 m/s 。
(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为v 2,则m B v =(m B +m C )v 2,解得v 2=2×62+4m/s =2 m/s , 物块A 、B 、C 速度相同时弹簧的弹性势能最大,设为E p ,根据机械能守恒定律有E p =12(m B +m C )v 22+12m A v 2-12(m A +m B +m C )v 21 解得E p =12 J 。
[完美答案] (1)3 m/s (2)12 J弹簧类问题的解题思路(1)对系统应用动量守恒定律。
旋转弹簧类问题的分析技巧一、问题分析解决旋转弹簧类问题首先需要对问题进行全面的分析。
具体包括考虑以下几个方面:1.系统模型:明确问题中涉及到的旋转弹簧和其他物体的模型。
对于旋转弹簧,需要确定其结构、形状、刚度等参数。
2.受力分析:确定外力和作用力。
分析问题中作用在旋转弹簧上的各种力,如拉力、压力、重力等。
3.约束条件:分析系统内各个物体之间的约束关系。
考虑旋转弹簧与其他物体之间的接触、分离等约束关系。
4.运动方式:分析问题中的运动方式,包括回转、摆动、振动等。
确定旋转弹簧的运动状态和变化规律。
二、弹簧的刚度及力学特性分析在解决旋转弹簧类问题时,需要了解弹簧的刚度及其力学特性。
具体分析如下:1.弹簧刚度:弹簧的刚度决定了它对力的变形程度。
刚度越大,弹簧变形越小,反之亦然。
通常用弹性系数(弹簧常数)来表示。
2.弹簧力学特性:弹簧具有负载变形的特性,即当外力作用在弹簧上时,弹簧会发生变形,并产生一个恢复力,该恢复力与变形程度成正比。
3.力-位移关系:分析弹簧的力-位移关系,即外力与弹簧变形之间的关系。
一般情况下,采用胡克定律来描述弹簧的力学特性,即F=K∆x,其中F为弹簧的恢复力,K为弹簧刚度,∆x为弹簧变形量。
三、平衡和受力分析在解决旋转弹簧类问题时,需要进行平衡和受力分析,以确定系统的平衡状态及受力情况。
具体分析如下:1.平衡状态:分析问题中的平衡状态,即物体所处的平衡位置和角度。
根据问题的具体条件,确定旋转弹簧的平衡位置和角度范围。
2.受力分析:分析旋转弹簧所受力的大小、方向和作用点。
考虑外力、弹簧的力和其他物体对旋转弹簧的作用力等。
3.平衡条件:根据平衡问题的具体条件,利用受力分析得出的力平衡方程或力矩平衡方程,解方程得到平衡条件。
四、运动分析在解决旋转弹簧类问题时,需要对旋转弹簧的运动进行分析。
具体分析如下:1.运动方程:根据问题的具体条件,建立旋转弹簧的运动方程。
根据问题所涉及的物体、约束条件和受力情况,建立力学模型,并利用牛顿定律等基本原理,得到旋转弹簧的运动方程。
常见弹簧类问题归类剖析一、“轻弹簧”类问题簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.【例1】如图1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【12F F a m-= 1F 】二、质量不可忽略的弹簧【例2】如图2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【x xT F L=】三、弹簧长度的变化问题(胡克定律的理解与应用)F k x ∆=∆ 弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例3】如图3所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【221221()m m m g k + 21121211()()m m m g k k ++】四、与物体平衡相关的弹簧问题【例4】(山东卷)如图所示,用完全相同的轻弹簧A 、B 、C 将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o,弹簧C 水平,则弹簧A 、C 的伸长量之比为 A .4:3 B.3:4 C. 1:2 D. 2:1五、与动力学相关的弹簧问题【例5】如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( )A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下六、弹簧弹力瞬时问题(弹簧的弹力不能突变)【例6】如图6所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是Aa =与B a=【,1.5g 】图2图1图 3【例7】一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m ,它们的一端固定,另一端自由,弹力与形变量的关系如图所示,求这两根弹簧的劲度系数k 1(大弹簧)和k 2(小弹簧)分别为多少?【 k 1=100N/m k 2=200N/m) 】八、弹簧形变量可以代表物体的位移【例8】如图8所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【()sin A B A F m m g a m θ-+= ()sin AB m m g d kθ+=】九、最大转速和最小转速问题【例9】 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为Ffm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?【12πk L F m L L fm ∆∆++()和12πk L F m L L fm ∆∆-+()】拓展:若盘面光滑,弹簧的原长为L0,当盘以W 匀角速度转动时,弹簧的伸长量为多少?【)(02x L mw x k ∆+=∆】十、弹力变化的运动过程分析(弹簧振子振动模型)【例10】如图10所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?(此问自主招生选做)【答案】022gx32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.图 8图 10两物体分离之前加速度与速度均相同,刚分离时二者之间弹力为零。
8旋转弹簧类问题的一个分析技巧在解决旋转弹簧类问题时,我们可以运用一些分析技巧来帮助我们更好地理解问题并找出解决方法。
以下是一个可以用于这类问题的分析技巧。
1.明确问题:首先要确切地理解问题陈述。
明确我们需要解决的是什么问题,什么是已知条件,什么是待求解的变量。
2.了解弹簧的基本概念:旋转弹簧是由两端固定在不同地点的细长弹簧构成的,它可以扭转而不会变形。
在旋转弹簧类问题中,我们需要熟悉弹簧的基本特性和行为。
3.明确旋转角度的定义:在旋转弹簧问题中,旋转角度通常是我们所关心的变量之一、明确我们是如何定义旋转角度的,是弹簧相对于其平衡位置的偏转角度,还是相对于其自身的初始位置的角度。
4.弹簧的受力分析:在解决旋转弹簧类问题时,我们需要进行弹簧的受力分析。
了解弹簧在受力作用下的力学特性,例如胡克定律(弹力与位移成正比)和牛顿第三定律(作用力与反作用力相等但方向相反)。
这些分析将帮助我们确定弹簧所受的合力以及相应的方向。
5.应用转动力矩原理:旋转弹簧类问题通常涉及到转动力矩和转动惯量。
确定转动中心和转动轴,然后应用转动力矩原理来解决问题。
这将有助于我们找到弹簧的角加速度和角速度。
6.考虑额外约束条件:在一些情况下,弹簧可能会受到其他约束条件的限制。
例如,弹簧可能与其他物体连接,或受到摩擦力的影响。
这些额外的约束条件需要被纳入我们的分析中,以便得到准确的解。
7.确定边界条件:在一些问题中,边界条件是至关重要的,它们对问题的求解方法和结果有着重要影响。
边界条件可以包括初始条件、边界条件或其他约束条件。
我们需要注意到这些条件并确保将其纳入我们的分析中。
8.建立数学模型:最后,我们需要建立一个数学模型来描述旋转弹簧问题。
根据问题的具体情况,我们可以使用牛顿第二定律、能量守恒定律或动量守恒定律等来建立数学方程。
通过解这些方程,我们可以得到所需的解。
以上是一个用于解决旋转弹簧类问题的分析技巧。
通过运用这些技巧,我们可以更好地理解问题并找到解决方法。
弹簧问题类型轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。
物理弹簧类问题解题技巧(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:Wk=-(kx22 -kx12),弹力的功等于弹性势能增量的负值。
弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或^f=kx来求解3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
高中物理中的弹簧问题归类分析 (教师版 )有关弹簧的题目在高考取几乎年年出现,因为弹簧弹力是变力,学生常常对弹力大小和方向的变化过程缺少清楚的认识,不可以成立与之有关的物理模型并进行分类,致使解题思路不清、效率低下、错误率较高 .在详细实质问题中,因为弹簧特征使得与其相连物体所构成系统的运动状态拥有很强的综合性和隐蔽性,加之弹簧在伸缩过程中波及力和加快度、功和能、冲量和动量等多个物理观点和规律,所以弹簧试题也就成为高考取的重、难、热门, 一、“轻弹簧”类问题在中学阶段,凡波及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常有的理想化物理模型 .因为“轻弹簧”质量不计,选用随意小段弹簧,其两头所受张力必定均衡,不然,这小段弹簧的加快度会无穷大 .故轻弹簧中各部分间的张力到处相等,均等于弹簧两头的受力.弹簧一端受力为F ,另一端受力必定也为 F ,假如弹簧秤,则弹簧秤示数为F .【例 1】如下图,一个弹簧秤放在圆滑的水平面上,外壳质量m 不可以忽视,弹簧及挂钩质量不计,施加水平方向的力 F 1、 F 2 ,且 F 1F 2 ,则弹簧秤沿水平方向的加快度为,弹簧秤的读数为.【分析】 以整个弹簧秤为研究对象,利用牛顿运动定律得:F 1 F 2 ma ,即 aF 1F 2m仅以轻质弹簧为研究对象,则弹簧两头的受力都F 1 ,所以弹簧秤的读数为F 1 .说明 : F 2 作用在弹簧秤外壳上, 并无作用在弹簧左端, 弹簧左端的受力是由外壳内侧供给的.F 1 F 2F 1 【答案】 am二、质量不行忽视的弹簧【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在圆滑的水平面 , 在弹簧右 端施加一水平力 F 使弹簧向右做加快运动 . 试分析弹簧上各部分的受力状况.【分析】 弹簧在水平力作用下向右加快运动,据牛顿第二定律得其加快度F, 取弹簧左部随意长度 x 为研究aM图 3-7-2对象,设其质量为m 得弹簧上的弹力为:x M Fx Fx FT x ma 【答案】 T xL MLL三、 弹簧的弹力不可以突变( 弹簧弹力刹时 ) 问题弹簧 (特别是软质弹簧 )弹力与弹簧的形变量有关, 因为弹簧两头一般与物体连结,因弹簧形变过程需要一段时间,其长度变化不可以在瞬时达成,所以弹簧的弹力不可以在瞬时发生突变.即能够以为弹力大小和方向不变,与弹簧对比较,轻绳和轻杆的弹力能够突变.【例 3】如下图,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三者静置于地面, A 、B 、C 的质量之比是 1:2:3. 设全部接触面都圆滑,当沿水平方向迅速抽出木块 C 的刹时,木块 A 和 B 的加快度分别是 a A = 与 a B =【分析】由题意可设 A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前, 木块 A 遇到重力和弹力一对均衡力,抽出木块 C 的刹时,木块 A 遇到重力和弹力的大小和方 向均不变,故木块 A的刹时加快度为 0. 以木块 A 、B 为研究对象,由均衡条件可知,木块 C 对木块 B 的作使劲3F CB mg .以木块 B 为研究对象, 木块 B 遇到重力、 弹力和 F CB 三力均衡, 抽出木块 C 的刹时,木块 B 遇到重力和弹力的大小和方向均不变,F CB 刹时变成 0,故木块 C 的刹时合外力为 3mg , 竖直向下,刹时加快度为【答案】 01.5g .说明:差别于不行伸长的轻质绳中张力瞬时能够突变 .【例 4】如图 3-7-4 所示,质量为住,使小球恰巧处于静止状态 . 当m 的小球用水平弹簧连结, 并用倾角为 300 的圆滑木板AB 忽然向下撤退的瞬时,小球的加快度为 ( )AB 托A. 0B. 大小为 2 3g ,方向竖直向下3C.大小为2 3g ,方向垂直于木板向下3图 3-7-4D. 大小为2 3g ,方向水平向右3【分析】 末撤退木板前, 小球受重力 G 、弹簧拉力 F 、木板支持力 F N 作用而均衡, 如图 3-7-5所示,有 F Nmg.cosG 和弹力 F 保持不变 ( 弹簧弹力不可以突变 ) ,而木板支持力 F N 立刻撤退木板的瞬时,重力 消逝 , 小球所受 G 和 F 的协力大小等于撤以前的 F N ( 三力均衡 ) ,方向与 F N 相反,故加快度方 向为垂直木板向下,大小为F N g2 3 gamcos3【答案】 C.图 3-7-5四、弹簧长度的变化问题设劲度系数为 k 的弹簧遇到的压力为F 1 时压缩量为 x 1 ,弹簧遇到的拉力为 F 2 时伸长量为x 2 ,此时的“ - ”号表示弹簧被压缩 .若弹簧受力由压力 F 1 变成拉力 F 2 ,弹簧长度将由压缩量x 1 变成伸长量 x 2 ,长度增添量为 x 1 x 2 .由胡克定律有 : F 1 k( x 1 ) , F 2kx 2 .则: F 2 ( F 1 ) kx 2( kx 1 ) ,即 F k x说明 :弹簧受力的变化与弹簧长度的变化也相同按照胡克定律, 此时 x 表示的物理意义是弹簧长度的改变量,其实不是形变量 .【例 5】如图 3-7-6 所示,劲度系数为 k 1 的轻质弹簧两头分别与质量为 m 1 、m 2 的物块 1、2 拴接,劲度系数为 k 2 的轻质弹簧上端与物块 2 拴接,下端压在桌面上 ( 不拴接 ) ,整个系统处于均衡状态 . 现将物块 1 迟缓地竖直上提,直到下边那个弹簧的下端刚离开桌面. 在此过程中,物块 2 的重力势能增添了 , 物块 1 的重力势能增添了.【分析】由题意可知,弹簧k 2 长度的增添量就是物块2 的高度增添量,弹 图 3-7-6簧 k 2 长度的增添量与弹簧 k 1 长度的增添量之和就是物块 1 的高度增添量 .由物体的受力均衡可知,弹簧 k 2 的弹力将由本来的压力 (m 1 m 2 ) g 变成 0, 弹簧 k 1 的弹力将 由本来的压力 m 1 g 变成拉力 m 2 g , 弹力的改变量也为 ( m 1 m 2 )g . 所以 k 1 、 k 2 弹簧的伸长量分别为 : 1( m 1m 2 ) g 和 1(m 1 m 2 )gk 1k 2故物块 2 的重力势能增加了1m2 (m1 m2 )g 2,物块 1 的重力势能增加了k2( 1 1)m1 (m1m2 ) g2k1 k2【答案】1m2 (m1 m2 ) g2(11)m1 (m1m2 )g 2 k2k1k2五、弹簧形变量能够代表物体的位移弹簧弹力知足胡克定律F kx ,此中x为弹簧的形变量,两头与物体相连时x 亦即物体的位移,所以弹簧能够与运动学知识联合起来编成习题.【例 6】如图3-7-7 所示,在倾角为的圆滑斜面上有两个用轻质弹簧相连结的物块A、B ,其质量分别为 m A、m B,弹簧的劲度系数为k , C为一固定挡板,系统处于静止状态, 现开始用一恒力 F 沿斜面方向拉A使之向上运动,求 B 刚要走开C时 A 的加快度 a 和从开始到此时 A 的位移 d (重力加快度为 g ).【分析】系统静止时 , 设弹簧压缩量为x1,弹簧弹力为 F1,分析A受力可知 : F1kx1 m A g sinm A g sin解得 : x1k在恒力 F 作用下物体 A 向上加快运动时,弹簧由压缩渐渐变成伸图 3-7-7长状态 . 设物体B刚要走开挡板 C 时弹簧的伸长量为x2,分析物体B 的受力有: kx2m B g sin, 解得 x2m B g sink设此时物体 A 的加快度为a,由牛顿第二定律有: F m A g sin kx2m A aF(m A m B )g sin解得 : a mA因物体 A 与弹簧连在一同,弹簧长度的改变量代表物体 A 的位移,故有 d x1x2,即(m A m B ) g sindk(m A m B )g sin【答案】 dk六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时辰要与当时的形变相对应 .一般应从弹簧的形变分析下手,先确立弹簧原长地点、现长地点及临界地点,找出形变量 x 与物体空间地点变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长地点对应的形变量有关.以此来分析计算物体运动状态的可能变化.联合弹簧振子的简谐运动,分析波及弹簧物体的变加快度运动,常常能达到事半功倍的效果.此时要先确立物体运动的均衡地点,差别物体的原长地点,进一步确立物体运动为简谐运动.联合与均衡地点对应的答复力、加快度、速度的变化规律,很简单分析物体的运动过程.【例 7】如图 3-7-8 所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m 的物体B相连,开始时 A 和 B 均处于静止状态,此时弹簧压缩量为x0,一条不行伸长的轻绳绕过轻滑轮,一端连结物体 A 、另一端C握在手中,各段绳均恰巧处于挺直状态,物体 A 上方的一段绳索沿竖直方向且足够长 . 此刻 C 端施加水平恒力F使物体A从静止开始向上运动 .( 整个过程弹簧一直处在弹性限度之内).(1) 假如在 C 端所施加的恒力大小为3mg ,则在物体B刚要走开地面时物体 A 的速度为多大?(2) 若将物体B的质量增添到 2m,为了保证运动中物体 B 一直不走开地图 3-7-8面,则 F 最大不超出多少 ?【分析】 由题意可知,弹簧开始的压缩量x 0 mg ,k 物体 B 刚要走开地面时弹簧的伸长量也是x 0mg.(1)若F 3mg , 在弹簧伸长到kx 0 时,物体 B 走开地面, 此时弹簧弹性势能与施力前相等,F 所做的功等于物体 A 增添的动能及重力势能的和 .即: F 2x mg 2 x 0 1mv 2 得: v 2 2gx 0(2) 所施加的力为恒力 2F 0 时,物体 B 不走开地面, 类比竖直弹簧振子, 物体 A 在竖直方向上除了受变化的弹力外,再遇到恒定的重力和拉力. 故物体 A 做简谐运动 .在最低点有: F 0 mg kx 0 ma 1 , 式中 k 为弹簧劲度系数, a 1 为在最低点物体A 的加快度 .在最高点,物体 B 恰巧不走开地面, 此时弹簧被拉伸, 伸长量为 2x 0 ,则 : k(2 x 0 ) mg F 0ma 2而 kx 0mg ,简谐运动在上、下振幅处a 1 a 2 ,解得:3mg F 02也能够利用简谐运动的均衡地点求恒定拉力F 0 . 物体 A 做简谐运动的最低点压缩量为x 0 ,最高点伸长量为 2x 0 ,则上下运动中点为均衡地点,即伸长量为所在处. 由 mgkxF 0 , 解得:23mg .F 02【答案】 2 2 gx 03mg2说明 : 差别原长地点与均衡地点 .和原长地点对应的形变量与弹力大小、方向、弹性势能有关 ,和均衡地点对应的位移量与答复大小、方向、速度、加快度有关.七.与弹簧有关的临界问题经过弹簧相联系的物体,在运动过程中常常波及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰巧要走开地面;互相接触的物体恰巧要离开等 .此类问题的解题要点是利用好临界条件,获得解题实用的物理量和结论.【例 8】如图 3-7-9 所示, A 、B 两木块叠放在竖直轻弹簧上,已知木块 A 、B 的质量分别为 0.42kg 和 0.40kg ,弹簧的劲度系数 k 100N / m ,若在 A 上作用一个竖直向上的力 F ,使A 由静止开始以2 的加快度竖直向上做匀加快运动( g 10 m / s 2 )求:(1) 使木块 A 竖直做匀加快运动的过程中,力 F 的最大值 ; (2) 若木块由静止开始做匀加快运动, 直到 A 、B 分别的过程中, 弹簧的弹性 势能减少了 0.248J ,求这一过程中 F 对木块做的功 .【分析】 本题难点在于可否确立两物体分别的临界点. 当 F 0 ( 即不加竖直 图 3-7-9向上 F 力) 时,设木块 A 、B 叠放在弹簧上处于均衡时弹簧的压缩量为 x , 有 :kx (m A m B )g , 即 x(m A m B )g①k对木块 A 施加力 F , A 、 B 受力如图 3-7-10所示,对木块 A 有:F Nm A g m A a②对木块 B 有: kx 'Nm B g m B a ③可知,当 N 0 时,木块 A 、B 加快度相同,由②式知欲使木块 A 匀加快运动,随 N 减小 F 增大,当N 0 时 , F 获得了最大值 F m , 即 :F m m A (a又当 N0 时, A 、B 开始分别,由③式知,弹簧压缩量kx'm B (a g) ,则 x'm B (a g ) ④k木块 A 、 B 的共同速度: v 2 2a( x x ') ⑤ 由题知,此过程弹性势能减少了 W P E PJ图 3-7-10设F力所做的功为W F,对这一过程应用功能原理,得:W 1(mAm )v2(m m) g( x x ') EPF2B AB联立①④⑤⑥式,且PE J,得:W F10 2J【答案】( 1)F m W F102JN【例 9】如图 3-7-11所示,一质量为M 的塑料球形容器,在 A 处与水平面接触 . 它的内部有向来立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为 m 的小球在竖直方向振动,当加一直上的匀强电场后,弹簧正幸亏原长时,小球恰巧有最大速度. 在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加快度和容器对桌面的最大压力.图 3-7-11【分析】因为弹簧正幸亏原长时小球恰巧速度最大,所以有: qE mg①小球在最高点时容器对桌面的压力最小,有:kx Mg②此时小球受力如图 3-7-12所示,所受协力为 F mg kx qE③由以上三式得小球的加快度a Mg .m明显,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加快度,解以上式子得:kx Mg所以容器对桌面的压力为:图 3-7-12 F N Mg kx2Mg .【答案】Mg2Mg m八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储藏必定的弹性势能,所以弹簧的弹性势能能够与机械能守恒规律综合应用,我们用公式E P 12kx2计算弹簧势能,弹簧在相等形变量时所拥有的弹性势能相等一般是考试热门 .弹簧弹力做功等于弹性势能的减少许.弹簧的弹力做功是变力做功,法求解 :(1) 因该变力为线性变化,能够先求均匀力,再用功的定义进行计算(2) 利用 F x 图线所包围的面积大小求解;(3) 用微元法计算每一小段位移做功,再累加乞降;(4) 依据动能定理、能量转变和守恒定律求解.一般能够用以下四种方;因为弹性势能仅与弹性形变量有关,弹性势能的公式高考取不作定量要求,所以,在求弹力做功或弹性势能的改变时,一般从能量的转变与守恒的角度来求解.特别是波及两个物理过程中的弹簧形变量相等时,常常弹性势能的改变能够抵消或代替求解.【例 10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块 A 和B 大小可忽视,它们分别带有Q A和Q B的电荷量,质量分别为m A和 m B . 两物块由绝缘的轻弹簧相连,一个不行伸长的轻绳越过滑轮,一端与 B 连结,另一端连结轻质小钩. 整个装置处于场强为 E 、方向水平向左的匀强电场中, A 、B开始时静止,已知弹簧的劲度系数为k ,不计全部摩擦及A、B 间的库仑力,A、B所带电荷量保持不变, B 不会遇到滑轮.(1) 若在小钩上挂质量为 M 的物块 C 并由静止开释,可使物块不会走开 P , 求物块 C 降落的最大距离 h .A 对挡板P 的压力恰为零,但(2) 若 C 的质量为 2M , 则当 A 刚走开挡板 P 时, B 的速度多大 ?【分析】 经过物理过程的分析可知,当物块A 刚走开挡板 P 时, 弹力恰巧与 A 所受电场力均衡,弹簧伸长量必定,前后两次改变物块 C 质量,在第 (2) 问对应的物理过程中, 弹簧长度的变化及弹性势能的改变相同,能够代替求解.图 3-7-13设开始时弹簧压缩量为x 1 ,由均衡条件kx 1 Q B E , 可得 x 1Q B Ek①设当 A 刚走开挡板时弹簧的伸长量为Q A E ②x 2 , 由 kx 2 Q A E ,可得 : x 2降落的最大距离为 :k故 C 12③h xx由①②③三式可得 :hE(Q A Q B )④k(2) 由能量守恒定律可知, 物块 C 着落过程中, C 重力势能的减少许等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当 C 的质量为 M 时,有: MgHQ B EhE 弹⑤当 C 的质量为 2M 时,设 A 刚走开挡板时 B 的速度为 v ,则有:2MgH Q B EhE 弹1(2 M m B )v 2 ⑥2由④⑤⑥三式可得A 刚走开 P 时B 的速度为 :v2MgE (Q A Q B ) ⑦k (2 M m B )【答案】( 1) h E (Q A Q B ) (2) v 2MgE (Q A Q B )kk (2 Mm B )【例 11】如图 3-7-14所示,质量为 m 1 的物体 A 经一轻质弹簧与下方地面上的质量为m 2 的物体 B 相连,弹簧的劲度系数为 k , 物体 A 、B 都处于静止状态 . 一不行伸长的轻绳一端绕过轻滑轮连结物体 A ,另一端连结一轻挂钩 . 开始时各段绳都处于挺直状态, 物体 A 上方的一段绳沿竖直方向 . 现给挂钩挂一质量为 m 2 的物体 C 并从静止开释,已知它恰巧能使物体 B 走开地面但不持续上涨 . 若将物体 C 换成另一质量为 (m m ) 的物体 D ,仍从上述初始地点由静止释1 2放,则此次物体 B 刚离地时物体 D 的速度大小是多少 ?已知重力加快度为 g【分析】 开始时物体 A 、B 静止,设弹簧压缩量为x 1 ,则有: kx 1 m 1g悬挂物体 C 并开释后,物体 C 向下、物体 A 向上运动,设物体B 刚要离地时弹簧伸长量为 x 2 ,有 kx 2m 2 gB 不再上涨表示此时物体A 、C 的速度均为零,物体 C 己降落到其最低点 , 与初 状态对比,由机械能守恒得弹簧弹性势能的增添量为:E m 2 g (x 1 x 2 ) m 1g (x 1 x 2 )物体 C 换成物体 D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关 图 3-7-14系得:1( m 2 m 1 )v 21m 1v 2 ( m 2 m 1 )g ( x 1 x 2 ) m 1 g( x 1 x 2 )E联立上式解得题中所 求速度为:222m 1 (m 1 m 2 ) g22m 1 ( m 1m 2 )g 2【答案】 vv(2 m 1 m 2 )k(2 m 1 m 2 )k说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转变守恒的联合常常在一些题目中需要综合使用.九、弹簧弹力的双向性弹簧能够伸长也能够被压缩,所以弹簧的弹力拥有双向性,亦即弹力既可能是推力又可能是拉力,这种问题常常是一题多解.【例 12】如图3-7-15 所示,质量为 m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为 1200 ,已知弹簧 a 、 b 对证点的作使劲均为F ,则弹簧 c 对证点作使劲的大小可能为( ) A 、 0 B、 F mg C 、 F mg D 、 mg F 【分析】 因为两弹簧间的夹角均为图 3-7-151200,弹簧 a 、 b 对证点作使劲的协力 仍为 F ,弹簧 a 、b 对证点有可能是拉力,也有可能是推力 , 因 F 与 mg 的大小关系不确立,故 上述四个选项均有可能 . 正确答案 :ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加快度、动能和弹性势能之间存在着特别关系,弹簧振子类问题往常就是考察这些关系,各物理量的周期性变化也是考察的要点 .【例 13】如图 3-7-16 所示,一轻弹簧与一物体构成弹簧振子,物体在同一竖图 3-7-16直线上的 A 、B 间做简谐运动,O 点为均衡地点 ; C 为 AO 的中点,已知OC h ,弹簧振子周期为 T , 某时辰弹簧振子恰巧经过 C 点并向上运动 , 则此后时辰开始计时,以下说法中正确的选项是 ( )A 、 tT时辰,振子回到 C 点4B 、 t T时间内,振子运动的行程为4h2C 、 t3T时辰,振子的振动位移为8 D 、 t 3T8 时辰,振子的振动速度方向向下【分析】 振子在点 A 、 C 间的均匀速度小于在点 C 、O 间的均匀速度, 时间大于 T,选项 A 、C8 错误 ; 经 T振子运动 O 点以下与点 C 对称的地点,总行程为 4h,选项 B 正确 ; 经 t3T振子在28点 O 、B 间向下运动,选项 D 正确 .【答案】 B D十一、弹簧串、并联组合弹簧串连或并联后劲度系数会发生变化,弹簧组合的劲度系数能够用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特色要掌握 :弹簧串连时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17所示,两个劲度系数分别为k 1、k 2 的轻弹簧竖直悬挂,下端用圆滑细绳连结, 并有一圆滑的轻滑轮放在细线上; 滑轮下端挂一重为 G的物体后滑轮降落,求滑轮静止后重物降落的距离.【分析】 两弹簧从形式上看仿佛是并联,但因每根弹簧的弹力相等,故两弹簧实为串连; 两弹簧的弹力均G,可得两弹簧的伸长量分别为x 1G , 图 3-7-1722k 1x 2G ,两弹簧伸长量之和 xx 1 x 2 ,故重物降落的高度为x G( k 1 k 2 )2k 2 : h4k 1k 22【答案】 G(k1k2 )4k1k2。
弹簧类问题分类解析弹簧模型是高考中出现最多的模型之一,在填空、实验、计算题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。
由于弹力与弹簧的形变成正比,在有关弹簧的题目中,物体的运动要影响弹簧的长度,长度的改变会影响力的变化.这样力与运动相联系,运动反过来又影响力的变化,几个矛盾联系在一起,学生往往感到感到较难分析.其实只要抓住弹簧几方面的特征,在解决问题的过程中如果就相关力学知识并结合弹簧本身特性进行分析,问题就可迎刃而解了。
一、对轻质弹簧而言,其内部弹力处处相等,等于弹簧一端所受外力F例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的力F 的作用,③中弹簧的左端拴一个小木块,木块在光滑的平面上滑动,④中弹簧的左端拴一个小木块,木块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以1 、2 、3 、4 依次表示四个弹簧的伸长量,则有( )A .2 >1B .4 >3C .1 >3D .2 =4解析 弹簧的伸长量与弹簧内部弹力相关,由此分析四根弹簧的伸长量的关系,只要将四种情况下弹簧内部弹力的大小关系分析清楚即可。
将整根弹簧从右到左分成很多小段,每小段标上序号1、2、3、4……,设每小段弹簧质量均为∆m ,则对1号小段弹簧,设2号小段弹簧对其向左的拉力为f 1,由牛顿第二定律有F – f 1 = ∆ma ;对2号小段弹簧,设3号小段弹簧对其向左拉力为f 2,因1号小段弹簧对其向右拉力为f 1',则有f 1' - f 2 = ∆ma .图中①、②两种情况下弹簧处于平衡状态,加速度a = 0,虽③、④弹簧加速度a ≠ 0,但弹簧为轻质弹簧,∆m = 0,则由上面两式有f 1 = f 2 = F ,以此类推可知弹簧中各小段间张力处处相等,均为F ,则四种情况下弹簧伸长量必均相等,应选择选项D .二.弹簧弹力的大小遵循胡克定律F = kx ,其中x 为弹簧的形变量,当形变量x 发生变化时,弹力F 也随之变化,是变力例2.一个弹簧台秤的秤盘质量和弹簧质量都可不计,盘内放一个物体PF F ② ③ ④处于静止。