理解示波器带宽
- 格式:docx
- 大小:9.79 KB
- 文档页数:5
示波器那些事儿--之带宽
带宽决定着示波器测量信号的基本能力。
在信号频率提高时,示波器准确显示信号的能力会下降,带宽这个指标表明了示波器能够准确测量的频率范围。
示波器带宽是指正弦曲线输入信号被衰减到信号真实幅度70.7%的频率,称为- 3dB点。
如图所示:
如果没有充足的带宽,示波器将不能解析高频变化,幅度将失真,边沿将消失,细节将丢失。
如果没有充足的带宽,示波器的所有功能和浮华都没有任何意义。
任何信号都可以分解成无数次谐波的叠加,从频域来理解,带宽选择的总原则是:带宽能覆盖被测信号各次谐波的99.9%的能量就足够了。
带宽选择的根源就在于:我们不能直观地知道被测信号能量的99.9%对应的带宽是多少。
示波器的带宽当然是越高越好这句话从某种意义上是正确的:带宽越高,意味着能够准确测量被测信号的带宽越高,可能实现的信号复现精度就越高;示波器的带宽越高,那么示波器的上升时间越小,测量出上升时间的准确度越高。
但是带宽越高,价值越大,也越值钱。
另外从使用角度来说,带宽越高未必越好。
在不确定信号分解到第N次谐波的时候能量衰减到99.9%,在选择和使用示波器时可以留下足够的带宽裕量,但是带宽过高会造成一个严重问题是:引入的噪声能量超过了同等带宽范围内的信号的自身的能量,也会导致测量结果不准确,这就是测量中反复要提及的信噪比(SNR)问题。
假如使用500MHz的示波器能覆盖被测信号99.9%的能量,测量精度可以达到5%以内,但是我们偏要使用1GHz的示波器,那么在500MHz~1GHz频率范围内引入的噪声能量远远大于500MHz~1GHz范围内覆盖的被测信号剩下。
示波器带宽限制怎么调示波器是如何工作的示波器带宽是指输入一个幅度相同,频率变化的信号,当示波器读数比真值衰减3dB时,此时的频率即为示波器的带宽。
也就是说,输入信号在示波器带宽处测试值为真值示波器带宽是指输入一个幅度相同,频率变化的信号,当示波器读数比真值衰减3dB时,此时的频率即为示波器的带宽。
也就是说,输入信号在示波器带宽处测试值为真值—3dB,带宽不是示波器能显示的最高频率。
一般情况下,示波器带宽应为所测信号最高频率的3~5倍。
与示波器带宽规格紧密相关的是其上升时间参数。
具备高斯频响的示波器,依照10%到90%的标准衡量,上升时间约为0.35/fBW。
具备最大平坦频响的示波器上升时间规格一般在0.4/fBW范围上,随示波器频率滚降特性的陡度不同而有所差异。
假如在进行上升时间和下降时间参数测量时允许20%的定时误差,那么带宽为1GHz的示波器就能充分该数字测量应用的要求。
但假如要求定时精度在3%范围内,那么接受带宽为2GHz的示波器更好。
示波器带宽限制怎么调?在的通道按钮里面,你按下CH1按钮,显现的菜单上应当就有带宽限制的选项了大多数示波器中存在限制示波器带宽的电路。
限制带宽开启后,可以削减显示波形中不时显现的噪声,显示的波形会显得更为清楚。
但请注意,在除去噪声的时候,带宽限制同样会削减或者除去高频信号成分。
鼎阳示波器,带宽限制开启后将有效滤除20M以上的噪声信号—专业分析仪器服务平台,试验室仪器设备交易网,仪器行业专业网络宣扬媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
示波器种类及工作原理示波器用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等构成。
示波器常用术语解释1、带宽:指的是正弦输入信号衰减到其实际幅度的70.7%时的频率值,即-3dB点(基于对数标度)。
本规范指出示波器所能准确测量的频率范围。
带宽决定示波器对信号的基本测量能力。
随着信号频率的增加,示波器对信号准确显示能力将下降。
如果没有足够的带宽,示波器将无法分辨高频变化。
幅度将出现失真,边缘将会消失,细节数具将被丢失。
如果没有足够的带宽,得到的关于信号的所有特性、响铃和振鸣等都毫无意义。
▲5倍准则(示波器所需带宽=被测信号的最高频率成分Х 5)使用5倍准则选定的示波器的测量误差将不会超过±2%,一般已足够了。
然而,随着信号频率的增加,这个经验准则已不再适用。
带宽越高,再现的信号就越准确。
2、上升时间:在数字世界中,时间的测定至关重要。
在测定数字信号时,如脉冲和阶跃波可能更需要对上升时间作性能上的考率。
示波器必需要有足够长的上升时间,才能准确的捕获快速变换的信号细节。
▲示波器上升时间=被测信号的最快上升时间+5上升时间描述示波器的有效频率范围,选择示波器上升时间的依据类似于带宽的选择依据。
示波器的上升时间越快,对信号的快速变换的捕获也就越准确。
3、采样速率:采样速率表示的是示波器在一个波形或周期内,采样输入信号的频率。
表示为样点数每秒(S/S)。
示波器的采样速率越快,所显示的波形的分辨率和清晰度就越高,重要信息和事件丢失的概率就越小。
如果需要观测较长时间范围内的慢变信号,则最小采样率就变得较为重要。
计算采样速率的方法取决于所测量的波形类型,以及示波器所采用的信号重构方式。
为了准确的再现信号并避免混淆,奈奎斯特定理规定,信号的采样速率必需不小于其最高频率成分的两倍。
然而,这个定理的前提是基于无限长时间和连续的信号。
由于没有示波器可以提供无限时间的记录长度,而且从定义上看,低频干扰是不连续的,所以采用两倍于最高频率成分的采样速率是不够的。
实际上,信号的准确再现取决于其采样速率和信号采样点间隙所采用的插值法。
示波器带宽原理
示波器(或称为示波仪)带宽是指示波器能够准确显示的频率范围。
示波器的带宽取决于其对输入信号的处理和显示能力。
示波器的带宽原理如下:
1. 输入信号:示波器的带宽是由输入信号决定的,它表示示波器能够准确显示的最高频率。
输入信号在进入示波器之前会经过前端放大器,然后进入示波器的采样系统。
2. 前端放大器:示波器的前端放大器负责放大输入信号。
放大器的带宽限制了示波器可以准确显示的最高频率。
放大器的带宽一般指-3 dB 降低的频率,即在该频率处输入信号的幅度下降到输入信号基准值的0.707 倍。
3. 采样系统:示波器的采样系统对输入信号进行采样,并将信号转换为数字形式。
采样系统的带宽限制了示波器可以准确采样的最高频率。
采样频率必须满足奈奎斯特采样定理,即采样频率至少是被采样信号最高频率的两倍。
4. 数字处理和显示:示波器将采样到的信号进行数字处理和显示。
示波器的数字处理和显示系统的带宽取决于数字处理器和显示器的性能。
数字处理和显示系统的带宽限制了示波器可以准确显示的最高频率。
综上所述,示波器的带宽取决于前端放大器、采样系统以及数字处理和显示系统的性能。
示波器的带宽越高,它能够显示的最高频率就越大,因此能够准确显示高频部分的信号。
示波器带宽限制原理
示波器带宽限制原理是指示波器在测量信号频率时会受到带宽限制的影响。
简单来说,带宽是指可以通过的频率范围,超出带宽范围的信号将无法准确显示。
示波器带宽限制的原因主要有两个。
首先,示波器的前端电路和信号处理电路是通过各种滤波器组成的,而滤波器的特性决定了示波器的带宽范围。
其次,示波器的采样速率也影响了带宽限制。
根据奈奎斯特定理,要准确重构一个信号,采样频率至少要是信号频率的2倍。
因此,示波器的带宽也受到采样速率的限制。
带宽限制会对示波器的信号测量产生一些影响。
首先,如果测量的信号频率超过了示波器的带宽范围,那么示波器将无法显示出准确的波形。
其次,即使信号频率在带宽范围内,示波器的带宽限制也会导致波形失真和幅度衰减。
这是因为示波器对高频信号响应较差,无法完全捕捉到高频信号的细节。
为了解决示波器带宽限制的问题,可以采取一些措施。
一是选择更高频率范围的示波器,以确保测量信号的频率在其带宽内。
二是减小信号频率,避免超过示波器的带宽范围。
三是对信号进行预处理,如使用滤波器进行降频处理,以适应示波器的带宽。
四是采用更高的采样速率,以增加示波器的带宽范围。
总而言之,示波器的带宽限制原理是指示波器在测量信号时受到限制的频率范围。
带宽限制会导致信号失真和幅度衰减,因
此在使用示波器进行信号测量时需要注意信号频率和示波器的带宽匹配,或者采取一定的措施进行适配。
示波器的采样率和带宽的意义和区别示波器是一种广泛应用于电子测量和故障排除的仪器。
而示波器的采样率和带宽是评估和选择示波器性能的两个重要指标。
本文将详细介绍示波器的采样率和带宽的意义和区别。
一、采样率的意义示波器的采样率是指示波器在单位时间内对电信号进行采样的次数。
采样率决定了示波器对待测信号进行还原的能力。
采样率的意义主要体现在两个方面:1. 信号还原能力采样率越高,示波器对信号的还原能力越强。
通过提高采样率,可以更准确地还原高频信号的波形。
如果采样率低于信号的最高频率,会导致信号失真,无法正确观察和分析。
2. 防止混叠根据香农奎斯特定理,采样频率必须大于被测信号最高频率的两倍,才能避免混叠现象的发生。
混叠现象会导致信号频率信息失真,严重影响测量结果的准确性。
二、带宽的意义示波器的带宽是指示波器能够测量和展示的信号频率范围。
带宽决定了示波器能够准确显示高频信号的能力。
带宽的意义主要体现在以下方面:1. 频率响应带宽决定了示波器对输入信号的频率响应能力。
示波器的带宽越宽,频率响应范围越广,可以测量和观察更高频率范围内的信号。
2. 带宽限制示波器的带宽限制是由示波器的硬件设计和信号处理算法决定的。
当输入信号超过示波器的带宽限制时,示波器无法正确显示信号的频谱信息,会导致波形失真和测量误差。
三、采样率和带宽的区别采样率和带宽是示波器性能的两个重要指标,它们在以下几个方面有所区别:1. 概念定义采样率是指示波器在单位时间内对信号进行采样的次数;带宽是指示波器能够测量和展示的信号频率范围。
2. 表征方式采样率用“频率”来表示,带宽用“频率范围”来表示。
3. 功能作用采样率主要决定示波器对信号波形的还原能力和防止混叠现象的能力;带宽主要决定示波器对信号频率的测量和展示能力。
4. 相关性采样率和带宽是相互关联的,两者关系可以用香农奎斯特定理进行描述。
示波器的带宽必须大于被测信号最高频率的两倍,才能满足采样定理。
示波器的三个重要参数是:带宽、采样率、存储深度。
1.带宽定义:示波器带宽的定义没有变,就是输入一个正弦波,保持幅度不变,增加信号频率,当示波器上显示的信号是实际信号幅度的70.7%(即3dB衰减)的时候,该对应的频率就等于示波器带宽。
100MHz的带宽在测量100MHz的正弦波时,幅度会下降到原来的0.7,但是100mhz带宽的示波器不能测100mhz的方波,因为方波由基波和奇次谐波组成,5次以下的谐波对方波波形影响很大,所有要较好的看清楚方波,示波器带宽至少要比待测波形频率大5倍。
2.采样率:每秒采样多少个样点。
根据香农定理,为了避免波形混叠,采样率应该大于波形频率的2倍。
一般来说采样率是带宽的5倍即可,比如200M带宽的示波器,配1G采样率就可以了。
追求更高的采样率无非为了抓小毛刺,但是这些高频毛刺在带宽层已经被滤掉了,更高的采样率并不能带来很好的收益。
3.存储深度:表示示波器可以保存的采样点的个数。
存储深度=采样率*采样时间。
笔者一直执着地将它称为示波器中的第一关系式,因为很多工程师在使用示波器过程中因为忘记这个关系式而产生错误。
如图2为中国首款智能示波器SDS3000的显示界面。
右下方红色方框中,右边两个数值50MS/s和20ms/div相乘,再乘以10,就等于左边的数10MS。
当前采样率为50MS/s,当前时基为20ms/div,因为水平轴是10格(有些示波器是12格或14格),因此采样时间为200ms, 50MS/s * 200ms = 10MS。
就是说以50MS/s 的采样率捕获200ms的波形,需要示波器的存储深度是10MS。
示波器基本概念之带宽、采样率,与奈奎斯特定理1. 简介高速数字器/示波器的模拟前端有两项主要组件,就是模拟输入电路及模拟数字转换器(ADC)。
模拟输入电路将信号衰减、放大、过滤、及/或耦合,使ADC的数字化能达到最佳。
ADC将处理过的波型做取样,将模拟输入信号转换为代表经过处理之数字信号的数字值。
图 12. 带宽(Bandwidth)带宽 (Bandwidth) 描述的是模拟前端在振幅损失最少的前提下,将信号从外部世界传入ADC的能力。
采样率是ADC将模拟输入波型转换为数字数据的频率。
奈奎斯特定理 (Nyquist Theorem) 说明采样率和受测信号的频率之间的关系。
以下将更详细地讨论这三个名词。
带宽形容一个频率范围,在这个范围内,输入信号可以用振幅损失最少的方式,穿过模拟前端──从探测器的前端或测试设备到达 ADC 的输入端。
带宽指定为正弦曲线输入信号衰减至原振幅之 70.7% 时的频率,亦称为 -3 dB 点。
下图说明 100 MHz 高速数字器的典型输入反应。
图 2举例来说,如果将1 个 1 V、100 MHz 的正弦波,输入带宽为 100 MHZ 的高速数字器中,信号会被数字器的模拟输入途径衰减,而被取样的波型振幅约为 0.7 V。
图 3数字器的带宽最好比要测量的信号中的最高频率高3 ~ 5 倍,以期在最低的振幅误差下撷取信号(所需带宽= (3 至 5)*欲测频率)。
受测信号的理论振幅误错可以从数字器带宽与输入信号带宽(R)之间的比例计算得知。
图 4举例来说,在使用 100 MHz 高速数字器测量 50 MHz 正弦曲线信号时(其比例 R=2),误差大约为 10.5%。
另一个和带宽有关的重要主题是上升时间 (Rise time)。
输入信号的上升时间是指信号从最大信号振幅的 10% 转换到 90% 的时间,而且与带宽成反向相关,由以下公式呈现。
此公式采用单极模型,R-C 限制输入反应为基础。
示波器的主要参数和功能介绍示波器是一种用来显示和测量电信号波形的仪器,广泛应用于电子、通信、自动化等领域。
本文将介绍示波器的主要参数和功能,帮助读者更好地了解和使用示波器。
一、示波器的主要参数1. 带宽(Bandwidth)带宽是示波器的一个重要参数,表示示波器能够准确显示的最高频率。
示波器的带宽越高,能够显示的高频信号越多。
在选择示波器时,需要根据被测信号的频率范围来确定合适的带宽。
2. 垂直灵敏度(Vertical Sensitivity)垂直灵敏度是示波器测量信号幅度的能力。
它通常以伏特每个小格来表示,即示波器在屏幕上的一个小格代表的电压值。
较高的垂直灵敏度意味着示波器可以测量较小的信号幅度。
3. 时间基准(Time Base)时间基准是示波器在水平方向上显示信号波形的参数。
它表示示波器在屏幕上的一个小格代表的时间值。
时间基准可以调节示波器的时间分辨率,使信号波形在屏幕上更加清晰可见。
4. 触发(Trigger)触发功能是示波器的一个重要功能,用于稳定显示信号波形。
通过设置触发电平和触发边沿,示波器可以在合适的时刻捕获并显示信号波形。
5. 存储和回放(Storage and Playback)存储和回放功能使示波器能够捕获并保存信号波形,供后续分析和回放。
这个功能特别适用于捕获瞬态信号或者长时间监测信号。
二、示波器的主要功能1. 显示波形示波器最基本的功能就是显示信号波形。
通过示波器,用户可以观察到信号的幅度、频率、周期、相位等特性。
2. 测量参数示波器可以精确地测量信号的幅值、频率、周期、占空比等参数。
通过调整示波器的参数设置,用户可以获取所需的测量结果。
3. 触发功能触发功能使示波器能够捕获、稳定并显示特定的信号波形。
用户可以通过设置合适的触发条件,确保波形显示的稳定性和准确性。
4. 存储和回放功能部分示波器具备存储和回放功能,可以捕获和保存信号波形,并在需要时进行回放。
这对于分析复杂的波形或者跟踪特定事件非常有用。
什么是示波器的带宽导言:200M带宽的示波器,理论是是可以测到200M的正弦信号。
也就是说输出200M的正弦信号,信号幅值才会降到实际的0.707倍(此处可以参见信号与系统相关知识);但如果是方波或者三角波信号,就不能如此推算了,具体需要按照傅里叶变换的方式进行频谱分析,看你关注多少次内谐波,比如40M的方波信号,按照频谱分析的原理,最多只能看到200M的5次谐波,5次以上的谐波就看不到了,可能就会看到方波变成了有一定弧度的曲线。
当然,信号超过带宽之后衰减的只是幅值,并没有衰减频率,如果仅仅关注频率参数,就没有上面的那么顾虑了,200M的方波测量频率依然是200M。
示波器带宽概念定义:带宽是示波器的首要指标,和放大器的带宽一样,是所谓的-3dB点,即:在示波器的输入端加正弦波,幅度衰减至-3dB(70.7%)时的频率点就是示波器的带宽。
如果我们用100MHz带宽的示波器测量:幅值为1V ,频率为100MHz 的正弦波时,实际得到的幅值会不小于0.707V。
那么作为示波器的首要参数指标,“带宽不足”对波形测量有哪些影响呢 ?我们用20M、60M、100M带宽的示波器分别观察20M的方波信号20M示波器60M示波器100M示波器由上面三张图可以看出:20M示波器基本无法观察到方波形状,另外100M示波器的观察效果比60M示波器要好,下面我们来一起分析原因:方波信号有限次谐波合成波形图20M方波频谱上图中,我们可以看到方波是由基波以及3、5、7、9……次谐波分量递加而成。
所以20M的方波包含20M基波、60M三次谐波,100M五次谐波,140M七次谐波……如果要对波形进行准确测量,应该让示波器的带宽大于波形的主要谐波分量。
因此对于正弦波可以要求示波器的带宽大于波形的频率,但是对与非正弦波则要求示波器的带宽大于波形的最大主要谐波频率。
带宽不足具体的影响表现在以下两个方面:1、由低带宽导致主要谐波分量消失,使原本规则的波形呈圆弧状接近正弦波;2、低带宽给波形的上升时间和幅度的测量带来较大的误差。
示波器的频率范围和带宽选择示波器是一种广泛应用于电子测量和实验中的仪器。
它通过观察电信号的波形来分析和测量各种电子设备的性能。
在使用示波器时,我们需要了解和选择合适的频率范围和带宽,以确保得到准确可靠的测量结果。
本文将探讨示波器的频率范围和带宽选择的重要性以及选择时需要考虑的因素。
一、示波器频率范围的意义示波器的频率范围是指它能够准确显示和测量的信号频率范围。
示波器通常使用的是模拟信号处理技术,其频率范围是有限的,超过频率范围的信号将无法正确显示和测量。
在选择示波器的频率范围时,我们需要考虑待测信号的频率。
如果待测信号的频率超过了示波器的频率范围,那么示波器将无法正确显示信号的波形和幅值。
因此,选择适合的示波器频率范围非常重要。
二、示波器带宽的意义示波器的带宽是指示波器能够准确显示和测量的最高频率信号。
示波器的带宽取决于示波器的内部电路和信号传输路径的特性。
当我们选择示波器的带宽时,我们需要根据待测信号的带宽来确定。
如果待测信号的带宽超过了示波器的带宽,那么示波器将无法完整地显示信号的波形和细节,从而导致测量结果的不准确。
因此,根据待测信号的带宽选择适当的示波器带宽非常重要。
三、频率范围和带宽选择的因素在选择示波器的频率范围和带宽时,我们需要考虑以下几个因素:1. 待测信号的频率和带宽:首先要了解待测信号的频率和带宽范围。
根据待测信号的特性选择示波器的频率范围和带宽。
2. 频率分辨率和波形准确度:频率范围和带宽对示波器的频率分辨率和波形准确度有直接影响。
如果对测量的频率和波形要求较高,需要选择具有更宽频率范围和更高带宽的示波器。
3. 频率范围和带宽的成本:通常来说,宽频率范围和高带宽的示波器更昂贵。
因此,我们需要根据实际需求和预算来选择合适的频率范围和带宽。
4. 频率范围和带宽的未来扩展:在选择示波器的频率范围和带宽时,我们还需要考虑未来的扩展需求。
如果预计在将来需要测量更高频率和更宽带宽的信号,可以选择具有更大频率范围和带宽余量的示波器。
示波器带宽和上升时间--定义及原理示波器带宽和上升时间--定义及原理带宽示波器最生根的技术指标就是带宽。
示波器的带宽表明了该示波器垂直系统的频率响应。
示波器的带宽定义为示波器在屏幕上能以不低于真实信号3dB的幅度来显示信号的最高频率。
—3dB点的频率就是示波器所显示的信号幅度“Vdisp”为示波器输入端真实信号值“Vinput”的71%时的信号频率,如下式所示:设:dB(伏)=20log(电压比)—3Db=20log(Vdisp/Vinput)—0.15=log(Vdisp/Vinput)10-0.15=Vdisp/VinputVdisp=0.7Vinput图表示出一个100MHz示波器的典型频率响应曲线。
出于现实的理由,通常把带宽想象成为叔响曲线一直平坦延伸至其截止频率,然后从该频率以-20dB/+倍频程的斜率下降。
当然,这是一种简化的考虑。
实际上,放大器的灵敏度从较低的频率就开始下降,百在其截止频率达到-3dB。
图5中中同时给出了简化的频率响应曲线和实际的频率响应曲线。
上升时间上升时间直接和带宽有关。
上升时间通常规定为信号从其稳态最大值的10%到90%所用的时间。
上升时间是一个示波器从理论上来说能够显示的最快的瞬变的时间。
示波器的高频响应曲线是经过认真安排的。
这就保证了具有高谐波含量的信号,如方波,能够在屏幕上精确的再现。
如果频响曲线下降太快,则在信号的快速上升沿上就会发生振铃现象。
如果频响曲线下降太慢,即在频响曲线上下降开始得过早,则示波器总的高频响应就受到影响,使得方波失去“方形”特性。
对于各种通用示波器来说,其高频响应曲线是类似的。
从该曲线我们可以得到一个示波器带宽和上升时间的简单关系公式。
此公式为:tr(s)=0.35/BW(Hz)对于高频示波器来说,这个公式可以表示为:tr(ns)=350/BW(MHz)对于一个100MHz的示波器来说,上升时间为3.5(ns=纳秒10-9秒)在示波器的标尺上刻有标明0%和100%的专门的线,用来进行上升时间的测量。
如何理解示波器探头的带宽示波器探头的带宽是指探头能够准确地测量的信号频率范围。
在使用示波器进行信号测量时,探头的带宽是一个重要的参数,它决定了示波器能够测量的信号频率范围,也影响了信号测量的准确性和精度。
以下是对示波器探头带宽的理解。
1.带宽的定义和意义带宽是一个频率范围,通常用来描述信号的频率区间。
在示波器中,带宽是指当输入信号的频率处于该范围内时,信号经过示波器探头后能够准确地传递到示波器显示屏上。
探头的带宽决定了示波器所能测量的最高频率,超过带宽的信号将无法准确显示,并引发失真。
2.探头的带宽与信号波形示波器探头的带宽与信号的波形有直接关系。
对于复杂的信号波形,例如方波、脉冲波等,它们包含较多的高频成分,因此需要具备较高的带宽的探头来准确传递和测量。
探头的带宽越宽,对高频信号的传递越准确,信号波形的表现也更真实。
3.探头的带宽和示波器信号的重建示波器探头的带宽限制了示波器对信号波形的重建能力。
在示波器的采样过程中,系统会对输入信号进行采样,然后通过数字信号处理的方式重建信号波形。
探头的带宽低于信号的频率时,采样的信号将不准确地反映信号的真实形态,造成信号失真。
4.探头的带宽和信号的衰减示波器探头具有一定的阻抗,会对信号进行衰减。
衰减与信号的频率密切相关。
探头在频率较高的情况下,由于电缆的损耗以及探头自身的带宽限制,会对信号进行不同程度的衰减。
因此,在高频情况下,要求尽可能使用带宽较高的探头,以减小衰减对测量结果的影响。
5.探头带宽的选择与应用选择适合的探头带宽对于信号测量的准确性和精度至关重要。
对于常用的模拟信号测量,一般选择探头带宽为信号带宽的两倍。
例如,如果要测量一个频率范围为100MHz的信号,那么应该选择带宽为200MHz的探头。
对于高速数字信号测量,需要选择更高带宽的探头,以保证信号的准确重建。
总之,示波器探头的带宽是衡量示波器信号测量能力的关键参数之一、探头带宽的选择需要根据信号的频率、波形及测量的准确性来确定。
示波器参数一、什么是示波器示波器(Oscilloscope)是一种用来观测和测量电信号波形的仪器。
它可以将电信号转换成可视化的波形图形,帮助工程师分析和诊断电路的性能问题。
示波器通常由显示屏、控制面板、输入输出接口等组成,具备多种参数和功能,以适应不同的测量需求。
二、示波器的参数示波器的参数是评估和比较示波器性能的重要指标,不同的参数可以反映示波器的测量能力、信号处理能力、显示能力等方面。
1. 带宽(Bandwidth)带宽是示波器最基本的参数之一,表示示波器能够准确显示的最高频率。
带宽通常以频率单位表示,如MHz或GHz。
示波器的带宽决定了它能够测量和显示的信号频率范围,带宽越高,示波器能够显示的高频信号越多。
2. 采样率(Sample Rate)采样率是示波器进行信号采样的速率,表示每秒采集的信号点数。
采样率决定了示波器对信号波形的重建精度,过低的采样率可能导致信号失真或丢失细节。
一般来说,示波器的采样率应该满足奈奎斯特采样定理,即采样率应至少是被测信号最高频率的两倍。
3. 垂直灵敏度(Vertical Sensitivity)垂直灵敏度是示波器能够测量和显示的最小电压变化。
它通常以电压单位表示,如mV、V或kV。
垂直灵敏度决定了示波器对小信号的测量能力,灵敏度越高,示波器能够显示的微弱信号越多。
4. 水平灵敏度(Horizontal Sensitivity)水平灵敏度是示波器可以显示的最小时间间隔,表示示波器能够分辨两个时间点之间的最小差异。
水平灵敏度通常以时间单位表示,如ns、μs或ms。
水平灵敏度决定了示波器对时间测量的精度,灵敏度越高,示波器能够显示更细微的时间变化。
5. 存储深度(Memory Depth)存储深度是示波器能够存储和显示的波形数据点数。
存储深度决定了示波器可以捕获和显示的波形长度,存储深度越大,示波器能够显示更长的波形,捕获更多的细节。
6. 垂直分辨率(Vertical Resolution)垂直分辨率是示波器能够显示的最小电压差异。
示波器中的带宽
示波器是一种广泛应用于电子测量领域的重要仪器。
带宽是示波器参数中的一个重要参数,它反映了示波器的性能和适用范围。
带宽是指示波器可输入信号频率的最高值,也可以理解为表示示波器在不同频率下能够正确显示输入信号的能力。
在使用示波器时,带宽会直接影响到测量的准确性和可靠性。
当测量信号的频率超过带宽时,示波器会出现失真现象,导致测量数据不准确。
因此,在选择示波器时,需要根据需要测量的信号频率来选择相应的带宽。
示波器的带宽通常有多种不同的选择,如100MHz、200MHz、500MHz等。
较高的带宽会使示波器价格更高,但能够更准确地测量高频信号。
同时,较高的带宽也意味着示波器的内部电路和元件需要更高的质量和精度,以保证其能够稳定地工作。
除了带宽外,示波器的采样率和垂直灵敏度等参数也会影响示波器的性能和测量结果。
在使用示波器时,需要合理选择这些参数,以达到最佳的测量效果。
总之,带宽是示波器最基本的参数之一,它直接影响示波器的性能和
适用范围。
在选择示波器时,需要根据需要测量的信号频率来选择相应的带宽,并结合其他参数综合考虑,以获得最佳的测量效果。
示波器的三个参数示波器是电子测量仪器中常见的一种,常用于观察和分析波形信号。
在实际应用中,我们经常需要了解示波器的各种参数,以下是示波器的三个参数以及其作用和特点。
1. 带宽(Bandwidth)示波器的带宽是指其可测量的频率范围,也是一个最基本的参数。
在示波器选择时,带宽是一个非常重要的因素,因为它直接关系到观察波形是否准确。
带宽越宽,可观测的信号范围也就越大。
需要注意的是,示波器的带宽并不是越宽越好。
事实上,示波器的带宽应该选择与测量的信号同阶段的带宽。
例如,测量一个3MHz的正弦波,我们至少需要一个6MHz带宽的示波器才能保证信号的准确性。
2. 垂直灵敏度(Vertical Sensitivity)示波器的垂直灵敏度是指输入电压变化量和示波器屏幕上方波形高度之间的比例关系。
垂直灵敏度是示波器的灵敏度参数,通常以伏特每分(V/div)来表示。
例如,如果示波器的垂直灵敏度设置为1V/div,那么表示每提高1V输入电压,屏幕上显示的波形高度就会上升1个分度。
因此,垂直灵敏度可以帮助我们确定输入信号的振幅大小。
需要注意的是,垂直灵敏度与示波器的带宽有关系,一般情况下,示波器带宽越高,垂直灵敏度容易变小。
3. 水平扫描速率(Horizontal Sweep Rate)水平扫描速率是指示波器水平扫描电路每秒扫过的像素数量或者是摆动频率。
水平扫描速率的单位通常是秒每分(S/s),它决定了示波器屏幕上波形的时间分辨率。
例如,若设置水平扫描速率为1ms/div,则屏幕上每个小格即为1毫秒,可表示的时间范围就是10个小格(即10ms)。
水平扫描速率参数可以帮助我们精确地锁定信号的时间点,保证测量的准确性。
总之,示波器的带宽、垂直灵敏度和水平扫描速率是示波器最基本也是最重要的三个参数。
对于学习、使用示波器的人来说,熟悉和掌握这些参数的特点和作用,可以为需要观察和分析波形信号的工作提供更准确、更有帮助的支持。
示波器带宽你真的理解吗?
当示波器用户选择示波器进行关键的测量时,示波器的主要参数指标
往往是选择哪一款示波器的唯一标准。
示波器最主要的指标参数是:
(1)带宽;
(2)采样率;
(3)记录长度。
带宽- 这个指标能告诉我们什么?
模拟带宽是一个测量指标,简单的定义是:示波器测得正弦波的幅度不
低于真实正弦波信号3dB 的幅度时的最高频率(见的IEEE -1057)。
如带宽- 不能告诉我们什么
最典型的用户选择示波器显示和测量复杂的电和光信号,观测信号在示
波器上幅度对时间的显示。
模拟带宽,一个示波器重要的指标,它应该定义在
频域,而不是在时域。
根据采样理论,复杂的信号在频域包含丰富的频谱成
分(包含多次正弦波的谐波成分),见
带宽和上升时间的关系是什么
除了对通用的信号分析,大多数的工程师也有对时间测量感兴趣,如方
波的上升时间和下降时间。
因此,从指定的带宽可以评估示波器系统的上升时间,我们可以使用下面公式:tr= 0.35/BW(或0.42/BW);即:BW = 0.35/tr(或0.42/tr)=5*Fclock(一般普通信号的tr=7%*T,其中:T=1/Fclock)。
实际信号的带宽:信号谐波幅值将为0 次波(基波)的70%(即下降3dB)时
的谐波频率。
这里的0.35 是示波器带宽和上升时间(一阶高斯模型时的10%-90 %上升时间)之间的比例系数,示波器的放大器大多数使用的是一阶高斯型RC 低。
如何理解示波器探头的带宽示波器探头的带宽是指探头能够传输的信号频率范围,也可以看作是探头能够测量准确的最高频率。
示波器是电子工程师和科学家常用的一种测量仪器,用于观察和分析电子信号的特征和性质。
示波器探头是连接示波器与被测电路之间的接口,用于将被测信号引入示波器进行测量。
示波器探头的带宽对于正确测量信号和准确分析数据非常重要。
下面将从理论和实际应用角度,详细解释如何理解示波器探头的带宽。
1.理论解释:带宽是指一个系统或设备能够传输或处理的频率范围。
对于示波器探头而言,带宽指的是探头能够测量准确的最高频率。
在使用示波器进行信号测量时,如果被测信号的频率高于探头的带宽,探头将无法准确测量信号的特征,从而导致测量结果出现误差。
示波器探头的带宽与探头的设计和制造有关。
探头内部存在各种电容和电感元件,这些元件会对被测信号进行滤波和衰减。
当信号频率超过探头的带宽时,这些元件开始起到滤波作用,导致信号被衰减或失真,从而无法准确测量。
2.实际应用:示波器探头的带宽在实际应用中有重要的意义。
以下是几个具体的应用场景来说明:a.数字通信:在数字通信系统中,信号一般经过调制、解调和编码等复杂处理。
为了确保数据传输的准确性,需要使用示波器测量和检查信号的波形。
数字通信系统的带宽通常较高,因此需要选择带有较高带宽的示波器探头,以便准确观察和分析信号的特性。
b.高速电子设备测试:高速电子设备,如微处理器、FPGA和通信硬件等,其内部运行的时钟频率通常非常高。
为了测量和调试这些设备,需要使用具有高带宽的示波器探头,以便捕捉到设备内部信号的快速变化和细节。
c.射频和微波测试:射频(RF)和微波频段的信号具有较高的频率和较短的波长。
在射频和微波测试中,需要使用具有足够高带宽的示波器探头,以便能够测量和观察信号的快速变化和细节,以及分析信号的谐波和干扰。
在选择示波器探头时,需要根据实际应用需求和被测信号的频率范围选择合适的带宽。
带宽不宜过小,否则将无法测量高频信号的特性;同时,带宽也不宜过大,因为过大的带宽会导致更高成本,并且过大的带宽可能对探头的测量准确性造成一定影响。
示波器的带宽示波器的带宽(概念-非常详细)带宽被称为示波器的第一指标,也是示波器最值钱的指标。
示波器市场的划分常以带宽作为首要依据,工程师在选择示波器的时候,首先要确定的也是带宽。
在销售过程中,关于带宽的故事也特别多。
通常谈到的带宽没有特别说明是指示波器模拟前端放大器的带宽,也就是常说的-3dB 截止频率点。
此外,还有数字带宽,触发带宽的概念。
我们常说数字示波器有五大功能,即捕获(Capture),观察(View),测量(Measurement),分析(Analyse)和归档(Document)。
这五大功能组成的原理框图如图1 所示。
图1,数字示波器的原理框图捕获部分主要是由三颗芯片和一个电路组成,即放大器芯片,A/D 芯片,内存芯片和触发器电路,原理框图如下图2 所示。
被测信号首先经过探头和放大器及归一化后转换成ADC 可以接收的电压范围,采样和保持电路按固定采样率将信号分割成一个个独立的采样电平,ADC 将这些电平转化成数字的采样点,这些数字采样点保存在采集内存里送显示和测量分析处理。
图2,示波器捕获电路原理框图示波器放大器的典型电路如图3 所示。
这个电路在模拟电路教科书中处处可见。
这种放大器可以等效为RC 低通滤波器如图4 所示。
由此等效电路推导出输出电压和输入电压的关系,得出理想的幅频特性的波特图如图5 所示。
图3,放大器的典型电路图4,放大器的等效电路模型图5,放大器的理想波特图至此,我们知道带宽f2 即输出电压降低到输入电压70.7%时的频率点。
根据放大器的等效模型,我们可进一步推导示波器的上升时间和带宽的关系式,即我们常提到的0.35 的关系:上升时间=0.35/带宽,推导过程如下图6 所示。
需要说明的是,0.35 是基于高斯响应的理论值,实际测量系统中这个数值往往介于0.35-0.45 之间。
在示波器的datasheet 上都会标明上升时间指标。
示波器测量出来的上升时间与真实的上升。
当示波器用户选择示波器进行关键的测量时,示波器的主要参数指标往往是选择哪一款示波器的唯一标准。
示波器最主要的指标参数是:
(1)带宽;
(2)采样率;
(3)记录长度。
带宽- 这个指标能告诉我们什么?
模拟带宽是一个测量指标,简单的定义是:示波器测得正弦波的幅度不低于真实正弦波信号3dB 的幅度时的最高频率(见的IEEE -1057)。
如图1,是一个理想的示波器带宽和幅度测量误差的曲线图,从图1可以看出,当被测正弦波的频率等于示波器的带宽(示波器的放大器的响应是一阶高斯型)时,幅度测量误差大约30%。
如果想测量正弦波的幅度误差只有3%,被测正弦波的频率要比示波器的带宽要低很多(大约是示波器的带宽的0.3倍)。
由于大多数信号是比正弦波复杂的多,使用示波器测量信号的通用法则是:示波器的带宽是被测信号的频率的5 倍。
带宽- 不能告诉我们什么
最典型的用户选择示波器显示和测量复杂的电和光信号,观测信号在示波器上幅度对时间的显示。
模拟带宽,一个示波器重要的指标,它应该定义在频域,而不是在时域。
根据采样理论,复杂的信号在频域包含丰富的频谱成分(包含多次正弦波的谐波成分),见图2.利用频谱分析,可以看到被采样信号的频率成分,
然而,如果要充分描述这些频率成分的特点,就必须知道组成复杂信号的每个成分的准确幅度和相位信息。
在这种情况下,带宽除了能够告诉将怎样捕获这些细节,其它什么也不能告诉我们。
从带宽的测量角度,我们只知道,输入一个频率和带宽相同的正弦波,示波器的幅度测量误差为30%。
带宽和上升时间的关系是什么
除了对通用的信号分析,大多数的工程师也有对时间测量感兴趣,如方波的上升时间和下降时间。
因此,从指定的带宽可以评估示波器系统的上升时间,我们可以使用下面公式:tr= 0.35/BW(或0.42/BW);即:BW = 0.35/tr(或0.42/tr)=5*Fclock(一般普通信号的tr=7%*T,其中:T=1/Fclock)。
实际信号的带宽:信号谐波幅值将为0次波(基波)的70%(即下降3dB)时的谐波频率。
这里的0.35是示波器带宽和上升时间(一阶高斯模型时的10%-90 %上升时间)之间的比例系数,示波器的放大器大多数使用的是一阶高斯型RC低通滤波器的响应模型。
使用这个公式很容易计算出tr 上升时间,但是,实际往往不是这样的。
图3 的表格给出了不同信号标准所需要的测量系统带宽的建议,建议的系统带宽能够保证上升时间或其它测量得到合理的测试精度。
注意,仪器系统很多因数都会影响在示波器测试上升时间结果的精度,这些因数包括信号源,探头,以及示波器。
图3 表格是假设信号和示波器的测试系统都是一阶响应特性,但是在实际上,特别是今天的高速串行信号,这个假设与实际相差甚远。
对于最大平坦包络延迟响应,示波器的带宽和上升时间的关系系数接近0.45.在图3中,可以看出上升时间和带宽比例系数的变化,20GHz 幅频响应模型也发生变化,从简单的一阶响应到32 阶响应。
16 阶和32 阶响应类似现在的高性能示波器的响
应特性,这类高性能示波器的tr/BW 比例系数接近0.4 或0.45。
对于这样的比
例系数,示波器的幅频响应从低频到示波器带宽截止频率的平坦度非常好。
另外,如果仪器使用非常好的滤波器,那么它的幅度和相位都会得到较好的补偿,以便以最好的保真度捕获和分析复杂信号。
什么是真正意义上最好的示波器?两台示
波器具有相同带宽性能可以有不同的上升时间,以及不同的幅频响应和相位响应!因此,只有知道示波器的带宽,将无法可靠地知道其测量能力或其能够准确捕捉
复杂信号(像高速串行数据流)的能力。
同时,示波器的真实的上升时间和从示波器带宽计算出的上升时间结果是否一致值得商榷。
要得到示波器真实上升时间
和下降时间,唯一可靠的途径就是利用一个上升时间比示波器快的多的理想阶跃信号去测量。
探头带宽和上升时间
带宽
为了满足示波器探头设计要求,探头带宽是大频率范围。
例如,一个100 MHz 的示波器探头要求所测量的频率范围达到100MHz,探头能够捕捉信号在指定频率范围的变化。
事实上,每个探头制造商认为,在最大指定的带宽,探头的频率响应是下降3dB。
在频率超出了3dB点,信号幅度会大大衰减,测量结果可能是不可预测的。
精确测量幅度的原则是:测量系统的带宽应是被测波形频率的3至5倍以上。
这个建议可确保足够的带宽捕获非正弦波波形的高频率成分,如方波。
例如,一个带宽是300MHz至500MHz测量系统,建议捕获100MHz的方波信号。
关于带宽见图1,随着频率的增加,信号的幅度衰减。
同样地如前所述,探头制造商指定带宽到3dB 内的幅度损失对测试信号没有明显影响,在3dB外,随着高频成分的衰减,在方波信号的上升和下降边缘发生明显的变化。
使用探头测试信号时,选择探头带宽应是被测信号频率的3 到5 倍以上,幅度误差从在3 dB 上的30% 减少至约3%。
上升时间
带宽描述了频域特性,但不提供完整的描绘探头,示波器是如何对时间复现复杂波形形状的。
要充分理解其波
形复现过程,阶跃响应是获取时域特性是必须的。
时域特性通过探头的上升时间来表征,输入一个比测试系统
快很多的阶跃信号来评估系统的阶跃响应,从而得到的上升时间。
选用探头的规则,探头的上升时间应该比被
测信号的上升时间快3 至5 倍。
示波器采样率
常见的数字存储示波的采样率单位是1GS/s,代表什么含义?
是每秒采样1G个点。
但是,数字示波器的采样率不是固定不变的,随着你的屏幕分辨率不同,其每秒采样的次数也不同。
1G是指采样的最大值。
记录长度
记录长度=采样速率×扫速×10。