学年高中数学 模块测试1 新人教A版必修5
- 格式:doc
- 大小:263.00 KB
- 文档页数:10
模块综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.在△ABC 中,a =1,b =3,B =120°,则A 等于( ) A .30° B .45° C .60°D .120°解析:由正弦定理可知a sin A =b sin B ⇒1sin A =3sin120°,∴sin A =12.又a <b ,∴A <B ,∴A =30°. 答案:A2.符合下列条件的三角形有且只有一个的是( ) A .a =1,b =2,c =3 B .a =1,b =2,A =30° C .a =1,b =2,A =100° D .b =c =1,B =45°解析:A 组不成三角形;对于B ,∵b sin30°=22<1<2,∴B 有两解;C 组不成三角形,D 正确.答案:D3.在△ABC 中,sin A :sin B :sin C =3:2:4,那么cos C =( ) A.23 B.14 C .-23D .-14解析:由正弦定理知sin A :sin B :sin C =3:2:4,得到a :b :c =3:2:4,令a =3k ,b =2k ,c =4k (k >0),由余弦定理知cos C =3k2+2k 2-4k 22×3k ×2k=-14,故选D.答案:D4.已知等差数列{a n }中,a n =4n -3,则首项a 1和公差d 的值分别为( ) A .1,3 B .-3,4 C .1,4D .1,2解析:∵a n =4n -3,∴a 1=4-3=1,d =a n -a n -1=4. 答案:C5.已知等比数列{a n }的各项均为正数,前n 项之积为T n ,若T 5=1,则必有( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:∵T 5=a 1·a 2·a 3·a 4·a 5=(a 3)5=1, ∴a 3=1. 答案:B6.若△ABC 中,a =2b cos C ,则该三角形一定为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形解析:∵a =2b cos C , ∴sin A =2sin B ·cos C .∴sin A =sin(B +C )=sin B ·cos C +cos B ·sin C =2sin B ·cos C . ∴sin B ·cos C -cos B ·sin C =sin(B -C )=0. ∴B =C ,故选A. 答案:A7.等比数列{a n }的公比为13,前n 项的和为S n ,n ∈N *如S 2,S 4-S 2,S 6-S 4成等比数列,则其公比为( )A .(13)2B .(13)6C.13D.23解析:∵S 4-S 2S 2=a 4+a 3a 2+a 1=q 2a 2+a 1a 2+a 1=q 2=(13)2.答案:A8.等比数列{a n }的各项均为正数,且a 5a 6+a 2a 9=18,则log 3a 1+log 3a 2+…+log 3a 10的值为( )A .12B .10C .8D .2+log 35解析:由题可知log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5,又因为在等比数列中a 5a 6+a 2a 9=18,所以a 5a 6=9,代入求解得原式的值为10,故选B.答案:B9.递减的等差数列{a n }的前n 项和S n 满足S 5=S 10,则欲使S n 取最大值,n 的值为( ) A .10 B .7 C .9D .7或8解析:∵S 5=S 10,∴a 6+a 7+a 8+a 9+a 10=0,∴a 8=0.由于数列递减,故数列前7项为正,从第9项开始为负, ∴S n 取最大值时,n =7或8. 答案:D10.(2012·陕西卷)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2解析:设甲、乙两地之间的距离为s . ∵a <b ,∴v =2ss a +sb=2sab a +b s =2ab a +b <2ab2ab=ab .又v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b =0,∴v >a .答案:A11.设a >0,b >0.若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .8B .4C .1D.14解析:因为3a·3b=3. 所以a +b =1. 1a +1b=(a +b )(1a +1b )=2+b a +a b≥2+2b a ·ab=4. 当且仅当b a =a b 即a =b =12时“=”成立,故选B.答案:B2 4 12xyz12.在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么x +y +z 的值为( )A .1B .2C .3D .4解析:由题知表格中第三列成首项为4,公比为12的等比数列,故有x =1.根据每行成等差数列得第四列前两个数字依次为5,52,故其公比为12,所以y =5×(12)3=58,同理z =38.∴x +y +z =1+58+38=2.答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.不等式1x≤x 的解集是________.解析:1x ≤x 等价于x -1x ≥0⇒x 2-1x≥0,所以不等式的解集为{x |-1≤x <0,或x ≥1}.答案:{x |-1≤x <0,或x ≥1}14.如果关于x 的不等式2kx 2+kx -38<0对一切实数x 都成立,那么k 的取值范围是________.解析:当k =0时满足条件;当k ≠0时满足⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×-38<0,解得-3<k ≤0.答案:-3<k ≤015.已知在△ABC 中,A =60°,最大边和最小边的长是方程3x 2-27x +32=0的两实根,那么边BC 的长为________.解析:设方程3x 2-27x +32=0的两根分别为b ,c 由题意可知⎩⎪⎨⎪⎧b +c =9bc =323,由余弦定理可知BC 2=b 2+c 2-2bc cos60° =(b +c )2-3bc =81-32=49, ∴BC =7. 答案:716.等差数列{a n }中,S n 是它的前n 项之和,且S 6<S 7,S 7>S 8,则①此数列的公差d <0;②S 9一定小于S 6;③a 7是各项中最大的一项;④S 7一定是S n 中的最大值.其中正确的是________.(填入你认为正确的所有序号)解析:由题S 6<S 7,S 7>S 8可知a 7>0,a 8<0,等差数列为递减数列,故①正确,且④也正确,由等差数列的前n 项和为关于n 的二次式可知,其单调性为先增再减,而S 9离对称轴的距离比S 6离对称轴的距离要远,因此对应的函数值要小,故②正确.答案:①②④三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)在△ABC 中,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1. (1)求角C 的度数;(2)求c ;(3)求△ABC 的面积. 解:(1)∵2cos(A +B )=1,∴cos C =-12.∴角C 的度数为120°.(2)∵a ,b 是方程x 2-23x +2=0的两根, ∴a +b =23,ab =2.由余弦定理,得c 2=a 2+b 2-2ab cos C=(a +b )2-2ab (cos C +1)=12-2=10,∴c =10. (3)S =12ab sin C =32.18.(12分)已知公差不为零的等差数列{a n }中,a 1=1,且a 1,a 3,a 13成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2a n ,求数列{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d (d ≠0), 由a 1,a 3,a 13成等比数列,得a 23=a 1·a 13即(1+2d )2=1+12d ,得d =2或d =0(舍去).故d =2, 所以a n =2n -1. (2)b n =2a n =22n -1,所以数列{b n }是以2为首项,4为公比的等比数列. ∴S n =2+23+25+…+22n -1=21-4n1-4=23(4n-1). 19.(12分)(2012·中山高二检测)如下图,从气球A 测得正前方的河流上的桥梁两端B ,C 的俯角α,β,如果这时气球的高度是h ,求桥梁BC 的长度.解:过A 作垂线AD 交CB 于D ,则在Rt △ADB 中,∠ABD =α,AB =hsin α.又在△ABC 中,∠C =β,∠BAC =α-β, 由正弦定理,得BC sin α-β=ABsin β,∴BC =AB ·sin α-βsin β=h ·sin α-βsin α·sin β.20.(12分)已知下列不等式①x 2-4x +3<0;②x 2-6x +8<0;③2x 2-9x +a <0.要使①②成立的x 也满足③,请你找一个这样的a 值.解:解①x 2-4x +3<0, 即(x -1)(x -3)<0,∴1<x <3.解②x 2-6x +8<0,即(x -2)(x -4)<0, ∴2<x <4,∴①②同时成立的x 的范围是2<x <3.2x 2-9x +a <0对应的二次方程为2x 2-9x +a =0,对应的二次函数f (x )=2x 2-9x +a 的对称轴为x =94∈(2,3).∵3-94>94-2,∴f (3)>f (2),∴只须f (3)≤0即可.即2×32-9×3+a ≤0,∴a ≤9.这样a 的值可取小于等于9中任一个,不妨取a =9. 21.(12分)等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2nS n=4,n =1,2,…, (1)求数列{a n }的通项公式和S n ; (2)记b n =a n ·2n -1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由S 2nS n=4, 得a 1+a 2a 1=4,所以a 2=3a 1=3,且d =a 2-a 1=2. 所以a n =a 1+(n -1)d =1+2(n -1)=2n -1,S n =n 1+2n -12=n 2.(2)由b n =a n ·2n -1,得b n =(2n -1)·2n -1.所以T n =1+3·21+5·22+…+(2n -1)·2n -1,①2T n =2+3·22+5·23+…+(2n -3)·2n -1+(2n -1)·2n,②①-②得-T n =1+2·2+2·22+…+2·2n -1-(2n -1)·2n=2(1+2+22+…+2n -1)-(2n -1)·2n-1=21-2n1-2-(2n -1)·2n-1.所以T n =(2n -1)·2n+1-(2n +1-2)=(n -1)·2n +1-2n+3.22.(12分)电视台某广告公司特约播放两部片集,其中片集甲每片播放时间为20分钟,广告时间为1分钟,收视观众为60万;片集乙每片播放时间为10分钟,广告时间为1分钟,收视观众为20万,广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于86分钟的节目时间(含广告时间).(1)问电视台每周应播放两部片集各多少集,才能使收视观众最多;(2)在获得最多收视观众的情况下,片集甲、乙每集可分别给广告公司带来a 和b (万元)的效益,若广告公司本周共获得1万元的效益,记S =1a +1b为效益调和指数,求效益调和指数的最小值.(取2=1.41)解:(1)设片集甲、乙分别播放x ,y 集,则有⎩⎪⎨⎪⎧x +y ≥6,21x +11y ≤86,x ,y ∈N .要使收视观众最多,则只要z =60x +20y 最大即可. 如图作出可行域,易知满足题意的最优解为(2,4),z max =60×2+20×4=200,故电视台每周片集甲播出2集,片集乙播出4集,其收视观众最多.(2)由题意得:2a +4b =1,S =1a +1b =(1a +1b)(2a +4b ) =6+2a b +4b a ≥6+42=11.64(万元),当且仅当a =2-12,b =2-24时,取等号.所以效益调和指数的最小值为11.64万元.。
模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知不等式ax 2+bx +2>0的解集是(-1,2),则a +b 的值为( ) A .1 B .-1 C .0D .-2C [由已知得-b a=-1+2,2a=-1×2,a <0,解得a =-1,b =1,故a +b =0,故选C.]2.已知一个等差数列{a n }的第8,9,10项分别为b -1,b +1,2b +3,则通项a n 等于( ) A .2n -5 B .2n -9 C .2n -13D .2n -17D [依题意得2(b +1)=b -1+2b +3,解得b =0,∴d =2,a 8=-1,a n =a 8+(n -8)d =-1+(n -8)×2=2n -17.]3.在△ABC 中,已知sin A cos B =sin C =cos C ,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .正三角形C [由sin A cos B =sin C 及正、余弦定理得a ·a 2+c 2-b 22ac=c ,可得b 2+c 2=a 2,即A=90°,由sin C =cos C 得C =45°.故△ABC 为等腰直角三角形.]4.在等差数列{a n }中,若a 4+a 5+a 6+a 7+a 8=450,则a 4+a 8的值为( ) A .45 B .75 C .180D .300C [a 4+a 5+a 6+a 7+a 8=(a 4+a 8)+(a 5+a 7)+a 6=5a 6=450,∴a 6=90. ∴a 4+a 8=2a 6=2×90=180.] 5.下列不等式中,恒成立的是( ) A .x +1x≥2(x ≠0)B .x 2-2x -3>0 C .2x 2-x +2x 2-x +1>1D .log 12(x 2+1)≥0C [当x <0时,x +1x≥2不成立;当-1≤x ≤3时,不等式x 2-2x -3>0不成立;因为x2+1≥1,则log 12(x 2+1)≤log 121=0,故D 项不成立;由于x 2-x +1>0,不等式等价于2x 2-x+2>x 2-x +1,即x 2+1>0,故C 项正确.]6.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是( )A.72 B .4 C .92D .5C [∵2y =2⎝ ⎛⎭⎪⎫1a +4b =(a +b )·⎝ ⎛⎭⎪⎫1a +4b =5+4a b +b a ,又∵a >0,b >0,∴2y ≥5+24a b ·b a=9,∴y min =92,当且仅当b =2a 时“=”成立.]7.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B =( ) A .π6B .π4C .π3D .3π4C [因为c -b c -a =sin A sin C +sin B ,所以c -b c -a =ac +b,即(c -b )·(c +b )=a (c -a ),所以a 2+c 2-b 2=ac ,所以cos B =12,又B ∈(0,π),所以B =π3.]8.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A .1210 B .129 C .110D .15D [当n ≥2时,由已知得1-a n a n -1=a n a n +1-1,∴2=a n a n -1+a n a n +1,∴2a n =1a n -1+1a n +1,∴数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,又∵a 1=2,a 2=1,∴1a 1=12,1a 2=1,d =1a 2-1a 1=12,∴1a n =n 2,∴a n =2n ,∴a 10=210=15.]9.若关于x 的不等式x 2+ax -a -2>0和2x 2+2(2a +1)x +4a 2+1>0的解集依次为A 和B ,那么,使得A =R 和B =R 至少有一个成立的实常数a ( )A .可以是R 中的任何一个数B .有无穷多个,但并不是R 中所有的实数都能满足要求C .有且仅有一个D .不存在B [若A =R ,则Δ1=a 2+4(a +2)<0成立,显然是不可能的,即这样的a ∈∅;若B =R ,则Δ2=4(2a +1)2-8(4a 2+1)<0成立,即(2a -1)2>0,因而存在无穷多个实常数a ,当a =12时,上述不等式不成立,从而选B.]10.设变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤1x -y ≤1x ≥0,则x +2y 的最大值和最小值分别为( )A .1,-1B .2,-2C .1,-2D .2,-1[答案] B11.若直线ax +2by -2=0(a ,b ∈R +)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a+2b的最小值为( )A .1B .5C .4 2D .3+22D [∵直线平分圆, ∴直线过圆心(2,1),即2a +2b -2=0,a +b =1,1a +2b =a +b a +2a +2b b =3+b a +2ab≥3+2 2.]12.如图所示,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,且货轮与灯塔S 相距20海里,货轮按北偏西30°的方向航行30分钟后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(2+6)海里/小时B .20(6-2)海里 /小时C .20(3+6)海里/小时D .20(6-3)海里/小时B [设货轮的速度为v 海里/小时,∠NMS =45°,∠MNS =105°,则∠MSN =30°,由MS =20,MN =v2,则v2sin 30°=20sin 105°,v =20sin 105°=20(6-2).]二、填空题(每小题5分,共20分,把答案填在题中横线上)13.已知x >1,y >1,且ln x ,1,ln y 成等差数列,则x +y 的最小值为 . 2e [由已知ln x +ln y =2, ∴xy =e 2,x +y ≥2xy =2e.当且仅当x =y =e 时取“=”,∴x +y 的最小值为2e.]14.已知{a n }是等差数列,S n 为其前n 项和,n ∈N +,若a 3=16,S 20=20,则S 10的值为 .110 [设等差数列{a n }的首项为a 1,公差为d ,则a 3=a 1+2d =16,S 20=20a 1+20×192d=20,∴⎩⎪⎨⎪⎧a 1+2d =162a 1+19d =2,解得d =-2,a 1=20.∴S 10=10a 1+10×92d =200-90=110.]15.在△ABC 中,已知|AB →|=4,|AC →|=1,S △ABC =3,则AB →·AC →的值为 . 2或-2 [∵S △ABC =12|AB →||AC →|·sin A =12×4×1×sin A =3,∴sin A =32.∴cos A =12或-12. ∵AB →·AC →=|AB →|·|AC →|·cos A , ∴AB →·AC →=2或-2.]16.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.20 [设一年的总费用为y 万元,则y =4×400x +4x =1 600x+4x ≥21 600x·4x =160.当且仅当1 600x=4x ,即x =20时,等号成立.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在△ABC 中,cos A =-513,cos B =35.(1)求sin C 的值;(2)设BC =5,求△ABC 的面积.[解] (1)由cos A =-513,得sin A =1213,由cos B =35,得sin B =45.∴sin C =sin (A +B )=sin A cos B +cos A sin B =1213×35+⎝ ⎛⎭⎪⎫-513×45=1665.(2)由正弦定理得AC =BC ·sin Bsin A =5×451213=133.∴△ABC 的面积S =12·BC ·AC ·sin C =12×5×133×1665=83.18.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.[解] 设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.② 联立①和②解得⎩⎪⎨⎪⎧d =3,q =0,(舍去)或⎩⎪⎨⎪⎧d =1,q =2.所以b n =2n -1.(2)∵b 1=1,T 3=21,∴1+q +q 2=21. 解得q =4或q =-5.当q =4时,由①得d =-1,则S 3=-6; 当q =-5时,由①得d =8,则S 3=21.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). [解] 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a或x ≤-1;(3)当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a<-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a,+∞.20.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.[解] (1)由已知及正弦定理得, 2cos C (sin A cos B +sin B cos A ) =sin C ,2cos C sin (A +B )=sin C . 故2sin C cos C =sin C . 可得cos C =12,所以C =π3.(2)由已知,得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7.故a 2+b 2=13,从而(a +b )2=25. ∴a +b =5.所以△ABC 的周长为5+7.21.(本小题满分12分)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.[解] (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列.(2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n,∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列, ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n(n ∈N *).22.(本小题满分12分)某学校为了解决教职工的住房问题,计划征用一块土地盖一幢总建筑面积为A (m 2)的宿舍楼.已知土地的征用费为2 388元/m 2,且每层的建筑面积相同,土地的征用面积为第一层的2.5倍.经工程技术人员核算,第一、二层的建筑费用相同都为445元/m 2,以后每增高一层,其建筑费用就增加30元/m 2.试设计这幢宿舍楼的楼高层数,使总费用最少,并求出其最少费用.(总费用为建筑费用和征地费用之和)[解] 设楼高为n 层,总费用为y 元,则征地面积为2.5A n m 2,征地费用为5 970An元,楼层建筑费用为[445+445+(445+30)+(445+30×2)+…+445+30×(n -2)]·An=⎝ ⎛⎭⎪⎫15n +30n +400A 元,从而y =5 970A n +15nA +30A n +400A =(15n +6 000n +400)A ≥1 000A (元). 当且仅当15n =6 000n,即n =20(层)时,总费用y 最少.故当这幢宿舍楼的楼高层数为20层时,费用最少,最少总费用为1 000A 元.。
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是( )A.1a>1bB.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有( )A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于( )A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎨⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,12.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12--1=32.【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3 【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3. 【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫x +1x max,∵x +1x ≥52,∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+n n -12d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0.【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A .189B .186C .180D .192【解析】 由a n +1=2a n ,知{a n }为等比数列, ∴a n =2n . ∴2b n =2n +2n +1, 即b n =3·2n -1,∴S 6=3·1+3·2+…+3·25=189.【答案】 A10.已知a,b,c∈R,a+b+c=0,abc>0,T=1a+1b+1c,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c b+aabc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b=3,则c=( )A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A=3 2.又0<A<π,∴A=π6,∴B=2A=π3.∴C=π-A-B=π2,∴△ABC为直角三角形.由勾股定理得c=12+32=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q 3n -6=4,两式相乘,得a 61q3(n -1)=8,即a 21q n -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,所以a n1·qn n -12=64,即(a 21q n -1)n =642,即2n =642,所以n =12.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________. 【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎨⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2×3+2n -12=-n n +12.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n n -12+n 2=n n +12.综上,第n个等式为12-22+32-…+(-1)n-1n2=(-1)n+1n n+12.【答案】(-1)n+1n n+12三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC中,角A,B,C的对边分别为a,b,c,若m =(a2+c2-b2,-3a),n=(tan B,c),且m⊥n,求∠B的值.【解】由m⊥n得(a2+c2-b2)·tan B-3a·c=0,即(a2+c2-b2)tan B=3ac,得a2+c2-b2=3ac tan B,所以cos B=a2+c2-b22ac=32tan B,即tan B cos B=32,即sin B=32,所以∠B=π3或∠B=2π3.18.(本小题满分12分)在等差数列{a n}中,S9=-36,S13=-104,在等比数列{b n}中,b5=a5,b7=a7, 求b6. 【导学号:05920087】【解】∵S9=-36=9a5,∴a5=-4,∵S13=-104=13a7,∴a7=-8.∴b26=b5·b7=a5·a7=32.∴b6=±4 2.19.(本小题满分12分)解关于x的不等式ax2-2≥2x-ax(a∈R). 【导学号:05920088】【解】原不等式可化为ax2+(a-2)x-2≥0⇒(ax-2)(x+1)≥0.(1)当a=0时,原不等式化为x+1≤0⇒x≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0. ①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a<-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154.∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角,∴cos A =1-sin 2A =1-⎝⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2), ∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 tA,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y满足⎩⎨⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B产品225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15,则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245t ,B 产品225 t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
高中数学模块综合评价(一)练习(含解析)新人教A 版必修5(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a >b ,则下列正确的是( ) A .a 2> b 2B .ac > bcC .ac 2> bc 2D .a -c > b -c解析:A 选项不正确,因为若a =0,b =-1,则不成立;B 选项不正确,c ≤0时不成立;C 选项不正确,c =0时不成立;D 选项正确,因为不等式的两边加上或者减去同一个数,不等号的方向不变.答案:D2.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45°D .30°解析:因为A =60°,a =43,b =42, 由正弦定理a sin A =bsin B,得sin B =b sin Aa=42×3243=22. 因为a >b ,所以A >B , 所以B =45°. 答案:C3.数列1,1+2,1+2+4,…,1+2+22+…+2n -1,…的前n 项和S n >1 020,那么n的最小值是( )A .7B .8C .9D .10解析:因为1+2+22+…+2n -1=1-2n1-2=2n-1, 所以S n =(2+22+ (2))-n =2-2n +11-2-n =2n +1-2-n .若S n >1 020,则2n +1-2-n >1 020,所以n ≥10. 答案:D4.若集合M ={x |x 2>4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪3-x x +1>0,则M ∩N =( )A .{x |x <-2}B .{x |2<x <3}C .{x |x <-2或x >3}D .{x |x >3}解析:由x 2>4,得x <-2或x >2,所以M ={x |x 2>4}={x |x <-2或x >2}. 又3-xx +1>0,得-1<x <3, 所以N ={x |-1<x <3}; 所以M ∩N ={x |x <-2或x >2}∩ {x |-1<x <3}={x |2<x <3}. 答案:B5.已知各项均为正数的等比数列{a n },a 1·a 9=16,则a 2·a 5·a 8的值为( ) A .16 B .32 C .48 D .64解析:由等比数列的性质可得,a 1·a 9=a 25=16. 因为a n >0,所以a 5=4,所以a 2·a 5·a 8=a 35=64,故选D. 答案:D6.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若a cos B =b cos A ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:因为a sin A =bsin B =2R ,即a =2R sin A ,b =2R sin B ,所以a cos B =b cos A 变形得:sin A cos B =sin B cos A , 整理得:sin A cos B -cos A sin B =sin(A -B )=0. 又A 和B 都为三角形的内角, 所以A -B =0,即A =B , 则△ABC 为等腰三角形. 答案:A7.若实数x ,y 满足⎩⎪⎨⎪⎧x ≤2,y ≤3,x +y ≥1,则S =2x +y -1的最大值为( )A .8B .4C .3D .2解析:作出不等式组对应的平面区域如图,由图可知,当目标函数过图中点(2,3)时取得最大值6.答案:A8.公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90解析:因为a 4是a 3与a 7的等比中项,所以a 24=a 3a 7,即(a 1+3d )2=(a 1+2d )(a 1+6d ),整理得2a 1+3d =0.①又因为S 8=8a 1+562d =32,整理得2a 1+7d =8.②由①②联立,解得d =2,a 1=-3, 所以S 10=10a 1+902d =60,故选C.答案:C9.设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点P n (n ,a n )都有P n P n +1=(1,2),则{a n }的前n 项和S n 为( )A .n ⎝ ⎛⎭⎪⎫n -43B .n ⎝ ⎛⎭⎪⎫n -34C .n ⎝ ⎛⎭⎪⎫n -23 D .n ⎝ ⎛⎭⎪⎫n -12 解析:因为P n P n +1=(1,2),(1,a n +1-a n )=(1,2),a n +1-a n =2,公差为d =2. 所以a 1+2(a 1+2)=3,3a 1+1=0,a 1=-13,所以S n =n ⎝ ⎛⎭⎪⎫-13+n (n -1)2·2所以S n =n ⎝ ⎛⎭⎪⎫n -43.答案:A10.已知数列{a n }满足:a 1=2,a n +1=3a n +2,则{a n }的通项公式为( ) A .a n =2n -1B .a n =3n-1C .a n =22n -1D .a n =6n -4解析:a n +1=3a n +2⇒a n +1+1=3(a n +1)⇒a n +1+1a n +1=3. 所以数列{a n +1}是首项为a 1+1=3,公比为3的等比数列.所以a n +1=3×3n -1=3n,所以a n =3n-1.故选B.答案:B11.在R 上定义运算⊗:x ⊗y =x (1-y ),若对任意x >2,不等式(x -a )⊗x ≤a +2都成立,则实数a 的取值范围是( )A .[-1,7]B .(-∞,3]C .(-∞,7]D .(-∞,-1]∪[7,+∞)解析:由题意可知,(x -a )⊗x =(x -a )(1-x )≤a +2对任意x >2都成立,即a ≤⎝ ⎛⎭⎪⎫x 2-x +2x -2min在(2,+∞)上恒成立. 由于x 2-x +2x -2=(x -2)+4x -2+3≥2(x -2)·4x -2+3=7(x >2), 当且仅当x -2=4x -2,即x =4时,等号成立. 所以a ≤7,故选C. 答案:C12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π3,则该三角形面积的最大值是( )A .2 2B .3 3C .4 3D .4 2解析:a 2=b 2+c 2-2bc cos A ≥2bc -bc =bc ,即bc ≤16,当且仅当b =c =4时取等号, 所以S △ABC =12bc sin A ≤12×16×sin π3=8×32=4 3.故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.若△ABC 的内角A 满足sin 2A =23,则sin A +cos A =________.解析:由sin 2A =2sin A cos A >0,可知A 是锐角,所以sin A +cos A >0,又(sin A +cos A )2=1+sin 2A =53,所以sin A +cos A =153.答案:15314.已知a <b ∈R,且ab =50,则|a +2b |的最小值为________. 解析:因为ab =50>0,所以a 与b 同号, 若二者均为正数,则|a +2b |≥22ab =20, 只有a =2b 时等式成立,所以a =10,b =5(不合题意,舍去). 若二者均为负数,则-a >0,-b >0, |a +2b |=-(a +2b )≥22ab =20, 只有a =2b 时等式成立, 所以a =-10,b =-5符合题意. 所以最小值为 20. 答案:2015.不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为________.解析:作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D=12,所以S △BCD =12×(x C -x B )×12=14.答案:1416.在△ABC 中,A 、B 、C 是三角形的三内角,a 、b 、c 是三内角对应的三边,已知b 2+c 2-a 2=bc ,sin 2A +sin 2B =sin 2C ,则角B 的大小为________.解析:由b 2+c 2-a 2=bc ⇒cos A =b 2+c 2-a 22bc =12,所以A =60°.再由sin 2A +sin 2B =sin 2C ⇒a 2+b 2=c 2,所以C =90°, 所以B =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知等差数列{a n }的公差d 不为零,首项a 1=2且前n 项和为S n .(1)当S 9=36时,在数列{a n }中找一项a m (m ∈N *),使得a 3,a 9,a m 成为等比数列,求m 的值;(2)当a 3=6时,若自然数n 1,n 2,…,n k ,…满足3<n 1<n 2<…n k <…,并且a 1,a 3,an 1,…,an k ,…是等比数列,求n k .解:(1)数列{a n }的公差d ≠0,a 1=2,S 9=36, 所以36=9×2+12×9×8d ,所以d =12,所以a 3=3,a 9=6.由a 3,a 9,a m 成等比数列, 则a 29=a 3·a m ,得a m =12, 又12=2+(m -1)·12,所以m =21.(2)因为{a n }是等差数列,a 1=2,a 3=6, 所以a n =2n .又a 1,a 3,an 1成等比数列,所以公比q =3. 所以an k =a 1·qk +1=2·3k +1.又an k 是等差数列中的项, 所以an k =2n k ,所以2n k =2·3k +1,所以n k =3k +1(k ∈N *).18.(本小题满分12分)已知数列{a n }是公差为2的等差数列,它的前n 项和为S n ,且a 1+1,a 3+1,a 7+1成等比数列.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解:(1)由题意,得a 3+1=a 1+5,a 7+1=a 1+13,所以由(a 3+1)2=(a 1+1)·(a 7+1)得(a 1+5)2=(a 1+1)·(a 1+13), 解得a 1=3,所以a n =3+2(n -1),即a n =2n +1. (2)由(1)知a n =2n +1,则S n =n (n +2),1S n =12⎝ ⎛⎭⎪⎫1n -1n +2,T n =12⎝ ⎛1-13+12-14+13-15+…+⎭⎪⎫1n -1n +2=12⎝ ⎛1+12-1n +1-⎭⎪⎫1n +2=34-2n +32(n +1)(n +2).19.(本小题满分12分)小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25-x 万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?解:(1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -⎣⎢⎡⎦⎥⎤6x +x (x -1)2·2-50, (0<x ≤10,x ∈N),即y =-x 2+20x -50,(0<x ≤10,x ∈N), 由-x 2+20x -50>0, 解得10-52<x <10+52, 而2<10-52<3,故从第3年开始运输累计收入超过总支出. (2)因为利润=累计收入+销售收入-总支出. 所以销售二手货车后,小王的年平均利润为y -=1x [y +(25-x )]=1x(-x 2+19x -25)=19-⎝⎛⎭⎪⎫x +25x ,而19-⎝ ⎛⎭⎪⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时取得等号.即小王应当在第5年年底将大货车出售,才能使年平均利润最大.20.(本小题满分12分)实系数一元二次方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a ,b )对应的区域的面积; (2)b -2a -1的取值范围; (3)(a -1)2+(b -2)2的值域.解:方程x 2+ax +2b =0的两根区间(0,1)和(1,2)上的几何意义分别是:函数y =f (x )=x 2+ax +2b 与x 轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组。
高中数学学习材料马鸣风萧萧*整理制作数学·必修5(人教A模块综合检测卷(一)(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35解析:∵a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7=7(a1+a7)2=7a4=28.答案:C2.设集合M={x|x2-x<0},N={x|-3<x<3},则() A.M∩N=∅B.M∩N=N C.M∪N=N D.M∪N=R答案:C3.不等式x -1x >0的解是( )A .-1<x <0或x >1B .x <-1或0<x <1C .x >-1D .x >1解析:x -1x >0⇔x 2-1x >0⇔x (x -1)(x +1)>0, 解得x >1或-1<x <0.故选A. 答案:A4.(2013·茂名二模)为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B (如图),要测量A ,B 两点的距离,测量人员在岸边定出基线BC ,测得BC =50 m ,∠ABC =105°,∠BCA =45°,就可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案:A5.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形解析:由sin A ∶sin B ∶sin C =5∶11∶13及正弦定理得:a ∶b ∶c =5∶11∶13.由余弦定理得cos C =52+112-1322×5×11<0,所以角C 为钝角.答案:C6.(2013·汕头二模)在△ABC 中,内角A ,B ,C 对应的边分别是a ,b ,c ,已知c =2,C =π3,△ABC 的面积S =3,则△ABC 的周长为( )A .6B .5C .4D .4+2 3解析:∵S △ABC =3,∴ab =4.在△ABC 中由余弦定理得:a 2+b 2-ab =4. 易求得:a +b =4.∵c =2,∴a +b +c =6. 答案:A7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤1,x +2y ≥1.则目标函数z =5x +y 的最大值为( )A .2B .3C .4D .5答案:D8.等比数列{a n }中,a n >0,a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .81答案:B9.设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点P n (n ,a n )都有P n P n +1=(1,2),则{a n }的前n 项和S n 为( )A .n ⎝ ⎛⎭⎪⎫n -43B .n ⎝ ⎛⎭⎪⎫n -34C .n ⎝ ⎛⎭⎪⎫n -23D .n ⎝ ⎛⎭⎪⎫n -12答案:A10.已知{a n }为等差数列,a 1=15,S 5=55,则过点P (3,a 2),Q (4,a 4)的直线的斜率为( )A .4 B.14C .-4D .-14答案:C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.若△ABC 的内角A 满足sin 2A =23,则sin A +cos A =______.解析:由sin 2A =2sin A cos A >0,可知A 是锐角,所以sin A +cos A >0,又(sin A +cos A )2=1+sin 2A =53,所以sin A +cos A =153.答案:15312.已知a <b ∈R ,且ab =50,则|a +2b |的最小值为________.解析:∵ab =50>0,∴a 与b 同号,若二者均为正数,则|a +2b |≥22ab =20, 只有a =2b 时等式成立,∴a =10,b =5(不合题意,舍去). 若二者均为负数,则-a >0,-b >0, |a +2b |=-(a +2b )≥22ab =20,只有a =2b 时等式成立,∴a =-10,b =-5符合题意,∴最小值为20.答案:2013.已知点A (4,1),B (7,5),C (0,4),则△ABC 中的∠BAC 的大小是______.解析:AB→=(3,4),AC →=(-4,3), ∵AB →·AC →=3×(-4)+4×3=0, ∴AB →⊥AC →,即∠BAC =90°.答案:90°14.在△ABC 中,A 、B 、C 是三角形的三内角,a 、b 、c 是三内角对应的三边,已知b 2+c 2-a 2=bc ,sin 2A +sin 2B =sin 2C ,则角B 的大小为__________.解析:由b 2+c 2-a 2=bc⇒cos A =b 2+c 2-a 22bc =12,∴A =60°.再由sin 2A +sin 2B =sin 2C ⇒a 2+b 2=c 2, ∴C =90°,∴B =30°.答案:π6三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;解析:cos A =2cos2A2-1=2×2⎛⎫⎪⎝⎭255-1=35,又A ∈(0,π),sin A =1-cos 2A =45,而AB →·AC →=|AB →|·|AC →|·cos A =35bc =3,所以bc =5,所以△ABC 的面积为: 12bc sin A =12×5×45=2.(2)若c =1,求a 的值.解析:由(1)知,bc =5,而c =1,所以b =5, 所以a =b 2+c 2-2bc cos A =25+1-2×3=2 5.16.(本小题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫ωx -π6sin ⎝⎛⎭⎪⎫ωx +π3(其中ω为正常数,x ∈R)的最小正周期为π.(1)求ω的值;解析:∵f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π6sin ⎝ ⎛⎭⎪⎫ωx +π3=2sin ⎝ ⎛⎭⎪⎫ωx -π6cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫ωx +π3-π2=2sin ⎝⎛⎭⎪⎫ωx -π6cos ⎝ ⎛⎭⎪⎫ωx -π6=sin ⎝ ⎛⎭⎪⎫2ωx -π3, 而f (x )的最小正周期为π,ω为正常数, ∴2π2ω=π,解之,得ω=1.(2)在△ABC 中,若A <B ,且f (A )=f (B )=12,求BCAB .解析:由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3. 若x 是三角形的内角,则0<x <π,∴-π3<2x -π3<5π3.令f (x )=12,得sin ⎝ ⎛⎭⎪⎫2x -π3=12,∴2x -π3=π6或2x -π3=5π6,解之,得x =π4或x =7π12.由已知,A ,B 是△ABC 的内角,A <B 且f (A )=f (B )=12,∴A =π4,B =7π12,∴C=π-A-B=π6.又由正弦定理,得BCAB=sin Asin C=sinπ4sinπ6=2212= 2.17.(本小题满分14分)某工厂生产A 、B 两种型号的童车.每种童车都要经过机械、油漆和装配三个车间进行加工.根据该厂现有的设备和劳动力等条件,可以确定各车间每日的生产能力,我们把它们折合成有效工时来表示.现将各车间每日可利用的有效工时数、每辆童车的各个车间加工时所花费的工时数以及每辆童车可获得的利润情况列成下表:车间每辆童车所需的加工工时 有效工时(小时/日)A B 机械 0.8 1.2 40油漆0.6 0.8 30 装配 0.4 0.6 25利润(元/辆)610试问这两种型号的童车每日生产多少辆,才能使得工厂所获得的利润最大?解析:设x ,y 分别是A ,B 两种型号童车的日产量,工厂每日可获得利润为z ,则z =6x +10y ,其中x ,y 满足约束条件.⎩⎪⎨⎪⎧0.8x +1.2y ≤40,0.6x +0.8y ≤30,0.4x +0.6y ≤25,x ∈N ,y ∈N.即⎩⎪⎨⎪⎧2x +3y ≤100,3x +4y ≤150,2x +3y ≤125,x ∈N ,y ∈N.作出线性可行域.考虑z =6x +10y ,将它变形为y =-35x +110z ,这是斜率为-35,随z 变化的一组平行直线.110z 是直线在y 轴上的截距,当直线截距最大时,z 的值最大.当然直线要与可行域相交,即在满足约束条件时目标函数z =6x +10y 取得最大值.可见,当直线z =6x +10y 经过可行域上的点A 时,截距最大,即z 最大.解方程组⎩⎪⎨⎪⎧x =0,2x +3y =100,得A 的坐标为⎝ ⎛⎭⎪⎫0,1003.但A ⎝ ⎛⎭⎪⎫0,1003不是整点,在可行域的整点中,(2,32)是最优解.此时,z max =6×2+10×32=332.18.(本小题满分14分)已知等差数列{a n }的公差d 不为零,首项a 1=2且前n 项和为S n .(1)当S 9=36时,在数列{a n }中找一项a m (m ∈N *),使得a 3,a 9,a m 成为等比数列,求m 的值;解析:数列{a n }的公差d ≠0,a 1=2,S 9=36,∴36=9×2+12×9×8d ,∴d =12,∴a 3=3,a 9=6.由a 3,a 9,a m 成等比数列, 则a 29=a 3·a m ,得a m =12, 又12=2+(m -1)×12,∴m =21.(2)当a3=6时,若自然数n1,n2,…,n k,…满足3<n1<n2<…<n k<…,并且a1,a3,an1,…,an k,…是等比数列,求n k.解析:∵{a n}是等差数列,a1=2,a3=6,∴a n=2n.又a1,a3,an1成等比数列,所以公比q=3.∴an k=a1·q k+1=2·3k+1.又an k是等差数列中的项,∴an k=2n k,∴2n k=2·3k+1,∴n k=3k+1(k∈N*).19.(本小题满分14分)把正奇数数列{2n -1}中的数按上小下大、左小右大的原则排成如下三角形数表:1 3 5 7 9 11 - - - - - - - - -设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数.(1)若a mn =2 011,求m ,n 的值.解析:∵三角形数表中前m 行共有1+2+3+…+m =m (m +1)2个数,∴第m 行最后一个数应当是所给奇数列中的第m (m +1)2项.故第m 行最后一个数是2·m (m +1)2-1=m 2+m -1,因此,使得a mn =2 011的m 是不等式 m 2+m -1≥2 011的最小正整数解.由m 2+m -1≥2 011得m 2+m -2 012≥0,∴m ≥-1+1+8 0482>-1+7 9212=-1+892=44.∴m 的最小正整数解为45.于是,第45行第一个数是442+44-1+2=1 981,∴n =2 011-1 9812+1=16.(2)已知函数f (x )=n⎛⎫ ⎪⎝⎭12·3x (x >0),若记三角形数表中从上往下数第n 行各数的和为b n ,求数列{f (b n )}的前n 项和S n .解析:∵第n 行最后一个数是n 2+n -1,且有n 个数,若将n 2+n -1看成第n 行第一个数,则第n 行各数成公差为-2的等差数列,故b n =n (n 2+n -1)+n (n -1)2(-2)=n 3.∵f(x)=n⎛⎫⎪⎝⎭123x(x>0),∴f(b n)=n⎛⎫⎪⎝⎭123n3=nn⎛⎫⎪⎝⎭12,S n=12+22⎛⎫⎪⎝⎭12+33⎛⎫⎪⎝⎭12+44⎛⎫⎪⎝⎭12+…+(n-1)n-1⎛⎫⎪⎝⎭12+nn⎛⎫⎪⎝⎭12,∵12S n=2⎛⎫⎪⎝⎭12+23⎛⎫⎪⎝⎭12+34⎛⎫⎪⎝⎭12+45⎛⎫⎪⎝⎭12+…+(n-1)n⎛⎫⎪⎝⎭12+nn+1⎛⎫⎪⎝⎭12,两式相减得:12S n=12+2⎛⎫⎪⎝⎭12+3⎛⎫⎪⎝⎭12+…+n⎛⎫⎪⎝⎭12-nn+1⎛⎫⎪⎝⎭12=⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-⎛⎫- ⎪⎝⎭n12112112-nn+1⎛⎫⎪⎝⎭12=1-n⎛⎫⎪⎝⎭12-nn+1⎛⎫⎪⎝⎭12.∴S n=2-(n+2)n⎛⎫⎪⎝⎭12.20.(本小题满分14分)已知函数f (x )=ax 2-12x +c (a ,c ∈R)满足条件:①f (1)=0;②对一切x ∈R ,都有f (x )≥0.(1)求a 、c 的值.解析:解法一:当a =0时,f (x )=-12x +c .由f (1)=0得:-12+c =0,即c =12,∴f (x )=-12x +12.显然x >1时,f (x )<0,这与条件②相矛盾,不合题意.∴a ≠0,函数f (x )=ax 2-12x +c 是二次函数.由于对一切x ∈R ,都有f (x )≥0,于是由二次函数的性质可得 20412a ac >∆=-⎛⎫- ⎪⎝⎭⎩⎨⎧a >0,ac ≥116>0,(*) 由f (1)=0得a +c =12,即c =12-a ,代入(*)得a ⎝ ⎛⎭⎪⎫12-a ≥116.整理得a 2-12a +116≤0,即2⎛⎫- ⎪⎝⎭1a 4≤0.而2⎛⎫-⎪⎝⎭1a 4≥0,∴a =14.∴c =12-a =12-14=14,∴a =c =14.解法二:当a =0时,f (x )=-12x +c .由f (1)=0得-12+c =0,即c =12,∴f (x )=-12x +12.显然x >1时,f (x )<0,这与条件②相矛盾,≤0∴a ≠0,因而函数f (x )=ax 2-12x +c 是二次函数.由于对一切x ∈R ,都有f (x )≥0,于是由二次函数的性质可得 2412a ac >∆=-⎛⎫- ⎪⎝⎭即⎩⎨⎧a >0,ac ≥116>0,由此可知a >0,c >0, ∴ac ≤2+⎛⎫⎪⎝⎭a c 2.由f (1)=0,得a +c =12,代入上式得ac ≤116.但前面已推得ac ≥116,∴ac =116.由⎩⎪⎨⎪⎧ac =116,a +c =12,解得a =c =14.(2)是否存在实数m ,使函数g (x )=f (x )-mx 在区间[m ,m +2]上有最小值-5?若存在,请求出实数m 的值;若不存在,请说明理由.解析:∵a =c =14,∴f (x )=14x 2-12x +14.g (x )=f (x )-mx =14x 2-⎝ ⎛⎭⎪⎫12+m x +14. 该函数图象开口向上,且对称轴为 x =2m +1.假设存在实数m 使函数g (x )=f (x )-mx =14x 2-⎝ ⎛⎭⎪⎫12+m x +14 在区间[m ,m +2]上有最小值-5.≤①当m <-1时,2m +1<m ,函数g (x ) 在区间 [m ,m +2]上是递增的,∴g (m )=-5,即14m 2-⎝ ⎛⎭⎪⎫12+m m +14=-5, 解得m =-3或m =73.∵73>-1,∴m =73舍去. ②当-1≤m <1时,m ≤2m +1<m +2,函数g (x )在区间[m,2m +1]上是递减的,而在区间[2m +1,m +2]上是递增的,∴g (2m +1)=-5,14(2m +1)2-⎝ ⎛⎭⎪⎫12+m (2m +1)+14=-5.解得m =-12-1221或m =-12+1221,均应舍去.③当m ≥1时,2m +1≥m +2,函数g (x )在区间 [m ,m +2]上是递减的, ∴g (m +2)=-5,14(m +2)2-⎝ ⎛⎭⎪⎫12+m (m +2)+14=-5, 解得m =-1-22或m =-1+22, 其中m =-1-22,应舍去.综上可得,当m =-3或m =-1+22时,函数g (x )=f (x )-mx 在区间[m ,m +2]上有最小值-5.。
高中数学学习材料马鸣风萧萧*整理制作必修5模块测试卷(A )一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在△ABC 中,a =3,b =7,c =2,那么B 等于( )A .30°B .45°C .60°D .120°2. 已知{a n }是等差数列,五个数列① {a 2n -3};② {| a n |};③ {lg a n };④ {3-2a n };⑤ {a n 2} 中,仍是等差数列的个数是( )A .1个B .2个C .3个D .4个 3.在△ABC 中,一定成立的等式是( )A .a sin A =b sinB B .a cos A =b cos BC .a sin B =b sin AD .a cos B =b cos A 4.数列 {a n } 是公差不为 0 的等差数列,且 a 7,a 10,a 15 是等比数列{b n }的连续三项,若等比数列{b n } 的首项 b 1 = 3,则 b 2 等于( ) A .245 B .5 C .2 D .95 5.已知a +b >0,b <0,那么a 、b 、-a 、-b 的大小关系是( )A .a >b >-b >-aB .a >-b >-a >bC .a >-b >b >-aD . a >b >-a >-b6.三个不相等的正数a 、b 、c 成等比数列,则lg a 、 lg b 、 lg c 是( )A .等差数列B .既是等差又是等比数列C .等比数列D .既不是等差又不是等比数列7.在首项为81,公差为-7的等差数列}{n a 中,最接近零的是第( )A .11项B .10项C .9项D .8项8.在△ABC 中,三个顶点的坐标分别是A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及边界上运动,则w =y -x 的取值范围是( ) A .[1,3] B . [-3,1] C .[-3,-1] D .[-1,3] 9.数列{)1(2+n n }的前n 项和为S n ,已知611=n S ,则n 值是( )A .8B .9C .10D .11 10.下列各不等式:① 212a a +> (R a ∈); ② 12x x+≥ (0,≠∈x R x ) ; ③2≥+abb a (0≠ab ); ④11122>++x x (R x ∈).其中正确的个数是( )A .4个B .3个C .2个D .1个二、填空题:本大题共4小题.每小题5分,满分20分.11.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+ a 10= . 12.在ΔABC 中,AB =2cm ,BC =2cm ,∠A 满足3sinA +cosA =1,则ΔABC 的面积是 .13.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖 块.14.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≥+≤632x y y x x y ,则目标函数y x z +=2的最小值为.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.16.如图所示,在某公园的一块绿地上划出一个矩形区域,在这个矩形区域的中央修建两个相同的矩形的池塘,每个面积都为200米2,池塘前方要留4米宽的走道,其余各方均为2米宽的走道,问每个池塘的长宽各为多少米时(记池塘的长为x 米),这个矩形区域占地面积最少?并求出这个最小值.17.已知等差数列{}n a ,92=a ,215=a ,(1)求{}n a 的通项公式;(2)若n a n b 2=,求数列{}n b 的前n 项和n S .18.如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =600,AC =7,AD =6, S △ADC =1532 ,求AB 的长.池塘池塘走道2米走道2米走道2米4米走道4米走道 走道2米走道2米19.某运输公司接受了向抗洪救灾地区每天送至少180t 支援物资的任务.该公司有8辆载重6t 的A 型卡车与4辆载重为10t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排A 型或B 型卡车,所花的成本费分别是多少?20.已知数列{x n }的各项为不等于1的正数,其前n 项和为S n ,点P n 的坐标为(x n ,S n ),若所有这样的P n (n =1,2……)都在斜率为5的同一条直线上. (1)求证数列{x n }是等比数列;(2)设y n = log x n a 且满足 y 8 = 125 ,y 12 = 117 ,a 为大于0的常数.① 试确定a 的值;② 是否存在正整数M ,使得当n >M 时,x n >1恒成立?若存在,求出相应的M ;若不存在,请说明理由.6002 1DCB A必修5模块测试卷(A )1-10:CBCBC ABDBD11.- 49 12. 3 13. 4n +2 14.3 15.解:设公比为q ,由已知得 ⎪⎩⎪⎨⎧=+=+45105131211q a q a q a a 即⎪⎩⎪⎨⎧=+=+45)1(①10)1(23121q q a q a ②÷①得 21,813==q q 即 ,将21=q 代入①得 81=a ,1)21(83314=⨯==∴q a a , 231211)21(181)1(5515=-⎥⎦⎤⎢⎣⎡-⨯=--=q q a s . 16.解:设池塘的长为x (0>x )米,则池塘的宽为x200米,令矩形区域的面积为y 平方米,则有)6200)(62(++=xx y =4[109+3)100(xx +]=⨯+≥)203109(4676 当且仅当x x 100=,即10=x 时,676min =y ,这时20200=x②答:池塘的长和宽分别为10米、20米,矩形区域的面积最小为676平方米.17.解:(1) 设数列 {a n } 的公差为d ,则a 5=a 2+3d .得21=9+3d ,∴ d = 4,∴ a n = a 2 + (n -2) d = 4n + 1(2) ∵ b n = 2 a n , ∴ b n = 24n +1, 又 b n +1b n= 16,∴ {b n } 是以 16 为公比的等比数列.b 1=25=32,∴ S n = 32(1-16n )1-16= 3215 (16n -1)18.解:依题意 S △ADC = 12 ·6·7 sin ∠1 = 1532∴ sin ∠1 = sin ∠2 = 5314∴ cos ∠2 = 1114 ∴ △ABC 中,sin ∠ACB = sin (∠2 + 60︒) = sin ∠2 cos 60︒ + cos ∠2 sin 60︒= 5314 ×12 + 1114 ×32 = 16328 =437 又 AC sin B = AB sin ∠ACB ⇒ 732= AB 437 ⇒ AB = 8.19.答案:解:设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.A 型车B 型车 限量 车辆数 xy 10运物吨数 24x 30y 180费用320x504yz由表可知x ,y 满足的线性条件:1024301800804x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≤≤≤≤, 且320504z x y =+.作出线性区域,如图所示,可知当 直线320504z x y =+过(7.50)A ,时,xyCDBA8O 4z最小,但(7.50)A,不是整点,继续向上平移直线320504z x y=+可知,(52),是最优解.这时min 320550422608z=⨯+⨯=(元),即用5辆A型车,2辆B型车,成本费最低.若只用A型车,成本费为83202560⨯=(元),只用B型车,成本费为180504302430⨯=(元).20.解:(1)证明:已知P n、P n+1都在斜率为5的同一直线上,∴S n+1-S nx n+1-x n=5 , ∴x n+1x n+1-x n=5,∴4x n+1=5x n∴x n+1x n=54,n=1,2,3,……∴{x n}是以x1为首项,公比为54的等比数列(2) (i) ∵ y n=log xn a , y8=18,y12 =117,1y n= log a x n , 又由(1), x n = x1·(54)n-1∴1y8-1y12=log a x8-log a x12 = log ax8x12= log a (54)-4,又∵1y8-1y12=25-17=8, ∴ log a(54)-4 = 8, ∴a8 = (45)4, 又a > 0,∴a = 25=255(ii)由(i) 知x n = a 1y n,而a =2 55∈ (0,1) , 故欲使x n > 1, 则只须1y n<0,∵1y n= log a x n= log a [x1·(54)n-1]=(n-1)log a54+log a x1∴ { 1y n} 为等差数列, 其公差d = log a54= log25554=-lg54lg255= -2.(公差d也可由1y12-1y8= 4d 求得)∴1y n=1y8+ (n-8)·(-2)=25-n+16 = 41-2n由1y n< 0 得n > 20.5∴取M=20, 当n>20时x n>1 恒成立.(注:凡是取M为大于或等于20的正整数均可)。
2021年高中数学 模块能力检测卷(A )新人教版必修5一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a >b ,则下列不等式成立的是( ) A .a 2-b 2>0 B .ac >bc C .ac 2>bc 2 D .2a >2b答案 D2.若△ABC 中,A <B <C ,且C ≠π2,则下列结论中正确的是( )A .tan A <tan CB .tan A >tan CC .sin A <sin CD .cos A <cos C答案 C解析 利用正弦定理A <B <C .所以a <c ,即2R sin A <2R sin C .所以sin A <sin C . 3.已知a >b >0,c >d >0,则( ) A.c a >dbB .ac >bdC .a -c >b -d D.b c >a d答案 B4.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( ) A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 5答案 D解析 由于△ABC 为锐角三角形,故有⎩⎪⎨⎪⎧22+42>x 2,22+x 2>42,解得23<x <2 5.5.已知等比数列{a n }的各项均为正数,公比q ≠1,设P =a 3+a 92,Q =a 5·a 7,则P 与Q 的大小关系是( )A .P >QB .P <QC .P =QD .无法确定答案 A解析 由题设知a n >0,q >0且q ≠1.所以a 3≠a 9,a 3>0,a 9>0,P =a 3+a 92>a 3·a 9,因为a 3·a 9=a 5·a 7,所以P >Q .6.设数列{a n }是由正项组成的等比数列,且a 7·a 8=4,则log 4a 1+log 4a 2+…+log 4a 14等于( )A .5B .6C .7D .8答案 C解析 log 4a 1+log 4a 2+…+log 4a 14=log 4(a 1a 2·…·a 14)=log 4(a 7·a 8)7=log 447=7. 7.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取最大值时的项数n 是( )A .5B .6C .5或6D .6或7答案 C解析 由题设可知a 1=-a 11,所以a 1+a 11=0.所以a 6=0.因为d <0,故a 5>0,a 7<0,所以n =5或6.8.如图,目标函数z =ax -y 的可行域为四边形OACB (含边界),若C (23,45)是该目标函数z =ax -y 的最优解,则a 的取值范围是( )A .(-103,-512) B .(-125,-310) C .(310,125)D .(-125,310) 答案 B解析 利用目标函数的斜率a 与最优点为C ,依线性规划知识知-125<a <-310.9.在△ABC中,若∠A=60°,b=1,其面积为3,则a+b+csin A+sin B+sin C=( )A.3 3 B.239 3C.2633D.392答案 B解析∵∠A=60°,b=1,S△ABC=3,∴12·b·c sin A=3,∴c=4,∴a2=b2+c2-2bc cos A=13,∴a=13.∴a+b+csin A+sin B+sin C=asin A=1332=2393.10.在△ABC中,关于x的方程(1+x2)sin A+2x·sin B+(1-x2)sin C=0有两个不相等的实根,则A为( )A.锐角B.直角C.钝角D.不确定答案 A解析Δ=4sin2B-4(sin2A-sin2C)>0,即sin2B>sin2A-sin2C.由正弦定理b2+c2>a2,再由余弦定理得cos A>0,所以A为锐角.11.等差数列{a n}中,d=-2,a1+a4+a7+…+a31=50,那么a2+a6+a10+…+a42的值为( )A.60 B.-82C.182 D.-96答案 B解析a2+a6+a10+…+a42=a1+d+a4+2d+a7+3d+…+a31+11d=(a1+a4+…+a31)+(d+2d+3d+…+11d)=50+11×122d=50+66d=-82.12.制作一个面积为1 m2,形状为直角三角形的铁支架框,有下列四种长度的钢管供选择,较经济(够用,又耗材最少)的是( )A.4.6 m B.4.8 mC.5 m D.5.2 m答案 C解析 设直角三角形两直角边为x m ,y m ,则12xy =1.∴x +y +x 2+y 2≥2xy +2xy =22+2≈4.828.二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.已知不等式x 2+bx -b -34>0的解集为R ,则b 的取值范围是________.答案 (-3,-1)解析 由题知b 2-4(-b -34)<0,即b 2+4b +3<0,所以-3<b <-1.14.在等差数列{a n }中,若a 1-a 4-a 8-a 12+a 15=2,则S 15=________. 答案 -30解析 因为a 4+a 12=a 1+a 15=2a 8,所以a 8=-2.所以S 15=a 1+a 152×15=a 8×15=-2×15=-30.15.在△ABC 中,A =30°,b =12,S △ABC =18,则sin A +sin B +sin Ca +b +c的值为________.答案1125-23解析 由S △ABC =12bc sin A ,得18=12×12×c sin30°.所以c =6.再由余弦定理得a 2=122+62-2×6×12cos30°=36(5-23).由正弦定理,得sin A +sin B +sin Ca +b +c=sin Aa=1265-23=1125-23.16.数列{a n }中,a 1=3,a n -a n a n +1=1(n ∈N *),A n 表示数列{a n }的前n 项之积,A 2 009=________.答案 -2解析 由已知a 1=3,a n -a n a n +1=1,所以a n +1=1-1a n .所以a n +2=1-1a n +1=1-11-1a n=1-a n a n -1.a n +3=1-1a n +2=1-11-a n a n -1=a n ,故{a n }是以3为周期的数列,而a 1=3,a 2=23,a 3=-12. 所以a 1a 2a 3=3×23×(-12)=-1.所以A 2 009=(-1)669·a 1a 2=-2.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,sin A =sin B +sin Ccos B +cos C,试判断△ABC 的形状.解析 由正、余弦定理及sin A cos B +sin A cos C =sin B +sin C ,得a 2+c 2-b 22c +a 2+b 2-c 22b=b +c ,∴a 2=b 2+c 2.故△ABC 是直角三角形.18.(12分)某游泳馆出售冬季学生游泳卡,每张240元,使用规定:不记名,每卡每次只限1人,每天只限1次.某班有48名学生,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次还要包一辆汽车,无论乘坐多少名同学,每次的车费均为40元.若使每个同学游8次,则购买几张游泳卡最合算?每人最少交多少钱?解析 设购买x 张游泳卡,则游泳活动总支出为y =48×8x ×40+240x ,即y =240(64x+x )(x ∈N *).所以y =240(64x+x )≥240×264x·x =3 840.当且仅当64x =x ,即x =8时,最合算,每人最少交钱3 84048=80元.即:购买8张游泳卡最合算,每人最少交80元.19.(12分)已知△ABC 的外接圆半径为1,且角A 、B 、C 成等差数列,若角A 、B 、C 所对的边长分别为a 、b 、c ,求a 2+c 2的取值范围.解析 由A 、B 、C 成等差数列,得2B =A +C ,又A +B +C =180°,所以B =60°,A +C =120°.设A =60°+α,得C =60°-α.由0°<A <120°,0°<C <120°,得-60°<α<60°.由正弦定理,得a =2R sin A =2sin A ,c =2R sin C =2sin C . 所以a 2+c 2=4(sin 2A +sin 2C )=4(1-cos2A 2+1-cos2C 2)=4-2(cos2A +cos2C )=4-2[cos(120°+2α)+cos(120°-2α)]=4+2cos2α. 因为-60°<α<60°,所以-120°<2α<120°.所以-12<cos2α≤1.所以a 2+c 2∈(3,6].20.(12分)购买8角和2元的邮票若干,并要求每种邮票至少要2张,如果小明带有10元,问有多少种买法?解析 设8角邮票可买x 张,2元邮票可买y 张,根据题意,有⎩⎪⎨⎪⎧8x +20y ≤100,x ≥2,y ≥2,x ,y ∈N *.不等式组表示的平面区域如下图所示:在该区域内,x ,y 都是不小于2的整数,这样的点有11个,所以小明有11种购买方法,分别是(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(4,2)、(4,3)、(5,2)、(5,3)、(6,2)、(7,2).21.(12分){a n },{b n }都是各项为正数的数列,对于任意n ∈N *,都有a n ,b 2n ,a n +1成等差数列,b 2n ,a n +1,b 2n +1成等比数列.(1)试问{b n }是否为等差数列,为什么? (2)若a 1=1,b 1=2,求S =1a 1+1a 2+…+1a n.解析 (1)b 2n ,a n +1,b 2n +1成等比数列,则a 2n +1=b 2n b 2n +1.因为a n >0,b n >0,n ∈N *. 所以a n +1=b n b n +1.所以n ≥2时,a n =b n -1b n . 又因为a n ,b 2n ,a n +1成等差数列,则a n +a n +1=2b 2n . 所以n ≥2时,b n -1b n +b n b n +1=2b 2n . 因为b n >0,所以2b n =b n -1+b n +1(n ≥2). 所以{b n }是等差数列.(2)由(1)及a 1=1,b 1=2知:a 1+a 2=2b 21,所以a 2=3. 又a 2=b 1b 2,所以3=2·b 2,所以b 2=322. 所以公差d =b 2-b 1=22,所以b n =22(n +1).当n ≥2时,a n =b n -1b n =12n (n +1).因为a 1=1适合上式,所以a n =n n +12,n ∈N *.所以1a n =2(1n -1n +1).所以S n =1a 1+1a 2+…+1a n=2⎣⎢⎡⎦⎥⎤1-12+12-13+…+1n -1n +1=2(1-1n +1)=2n n +1. 22.(12分)(1)设不等式2x -1>m (x 2-1)对一切满足-2≤m ≤2的实数m 都成立,求x 的取值范围;(2)是否存在m 使不等式2x -1>m (x 2-1)对满足-2≤x ≤2的一切实数x 都成立? 解析 令f (m )=2x -1-m (x 2-1)=(1-x 2)m +2x -1,可看作是一条直线,且使满足-2≤m ≤2的一切实数都有2x -1>m (x 2-1)成立.所以⎩⎪⎨⎪⎧f 2>0,f -2>0,即⎩⎪⎨⎪⎧2x 2-2x -1<0,2x 2+2x -3>0,解得⎩⎪⎨⎪⎧1-32<x <1+32,x <-1-72或x >-1+72.所以7-12<x <3+12. (2)令f (x )=2x -1-m (x 2-1)=-mx 2+2x +(m -1), 使满足-2≤x ≤2的一切实数x 都有2x -1>m (x 2-1)成立. 当m =0时,f (x )=2x -1在x ≥12时,f (x )≥0(不满足题意).当m ≠0时,f (x )只需满足下式: ⎩⎪⎨⎪⎧-m >0,1m ≤-2,f -2>0或⎩⎪⎨⎪⎧-m >0,-2<1m <0,Δ<0或⎩⎪⎨⎪⎧-m <0,f 2>0,f -2>0.解得解集为空集.故没有m 满足题意.}x21494 53F6 叶30701 77ED 短38461 963D 阽W%36059 8CDB 賛29531 735B 獛24981 6195 憕245355FD7 志xz523280 5AF0 嫰。
必修五模块综合测试卷(一)一、 选择题(共12小题,每小题5分,共计60分)1.若d c b a >>,,则下面不等式中成立的一个是( ) A .c b d a +>+ B.bd ac > C.dbc a > D.b c ad -<- 2. 已知等比数列{}n a 的前三项依次为1a -,1a +,4a +,则n a =( )A .342n ⎛⎫⋅ ⎪⎝⎭B .243n ⎛⎫⋅ ⎪⎝⎭C .1342n -⎛⎫⋅ ⎪⎝⎭ D .1243n -⎛⎫⋅ ⎪⎝⎭3.设2()1f x x bx =++,且(1)(3)f f -=,则()0f x >的解集是( )A: (,1)(3,)-∞-+∞U B:R C: {|1}x x ≠ D:{|1}x x =4.设n S 为数列{}n a 的前n 项和,492-=n a n ,则n S 达到最小值时,n 的值为( ) A. 12 B. 13 C. 24 D. 255.实数d c b a 、、、满足条件:①d c b a <<,;②()()0>--c b c a ;③()()0<--d b d a ,则有( ) A .b d c a <<< B .d b a c <<< C .d b c a <<< D .b d a c <<< 6、若c b a >>,则一定成立的不等式是( )A .c b c a >B .ac ab >C .c b c a ->-D .cb a 111<< 7.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定8. 在平面直角坐标系中,动点M(x,y)满足条件⎪⎩⎪⎨⎧≥-≤-+≤+-01,02,02y y x y x ,动点Q在曲线21)1(22=+-y x 上,则|MQ|的最小值为 ( )A .2B .223 C .221-D .215-9.在∆ABC 中,60A ︒∠=,16AC =,面积为3BC 的长度为( )A .25B .51C .493.4910.已知钝角△ABC 的最长边为2,其余两边长为a ,b,则集合},|),{(b y a x y x P ===所表示的平面图形的面积是( )A .2B .4C .-2D .4π-211.如图,设P 、Q 为ABC ∆内的两点,且2155AP AB AC =+u u u r u u u r u u u r ,2134AQ AB AC =+u u u r u u u r u u u r,则ABP ∆的面积与ABQ ∆的面积的比为 ( )A .15 B.45 C.14 D.1312.已知中ABC ∆,3AB =,5BC =,且cos B 为方程25760x x --=的根.则cos AB A ⋅cos BC C +⋅的值为( )A .213B .213或-26C .45 D .35二. 填空题(共4小题,每小题5分,共计20分)13.对任意实数x ,不等式04)2(2)2(2<----x a x a 恒成立,则实数a 的取值范围是.14.若两个等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的*n N ∈都有2343n n S n T n -=-,则935784a ab b b b +=++_________.15.若,,A B C 为ABC △的三个内角,记A α=,B C β=+,则41αβ+的最小值为 .16.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的取值范围是_________.三.解答题(共6小题,共计70分)17.(本题满分10分)AB 是底部B 不能到达的烟囱,A 是烟囱的最高点,选择一条水平基线HG ,使得H .G .B 三点在同一条直线上,在相距为d 的G .H 两点用测角仪测得A 的仰角分别为α.β,已知测角仪器高m h 5.1=,试完成如下《实验报告》(要求:1. 计算两次测量值的平均值,填入表格;2. 利用α.β.d 的平均值,求AB 的值,写出详细计算过程;3. 把计算结果填入表格) 相关数据:.7.13,4.12≈≈题目测量底部不能到达的烟囱的高 计算过程测量 数 据测量项目 第一次第二次 平均值α74°52' 75°8'β30°12'29°48' d (m ) 59.7860.22测量目标 (附图)结果18.已知等差数列{}n a 中,21920,28a a a =-+=-. ⑴求数列{}n a 的通项公式;⑵若数列{}n b 满足2log n n a b =,设12n n T b b b =L ,且1n T =,求n 的值. 19.已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a⑴当n 为何值时,n S 取得最大值; ⑵求208642a a a a a +++++Λ的值; ⑶求数列{}n a 的前n 项和.n T20. 7月份,有一款新服装投入某市场销售,7月1日该款服装仅销售出3件,7月2日售出6件,7月3日售出9件,7月4日售出12件,以后每天售出的件数分别递增3件直到日销售量达到最大(只有l 天)后,每天销售的件数开始下降,分别递减2件,到7月31日刚好售出3件. (1)问7月几号该款服装销售件数最多?其最大值是多少?(2)按规律,当该商场销售此服装达到200件时,社会上就开始流行,而日销售量连续下降并低于20件时,则不再流行,问该款服装在社会上流行几天?说明理由.21. 已知数列{}n a 的前n 项和为n S ,11a =, 21(1)n n nS n S n cn +-+=+(c ∈R ,1,2,3,...n =).且1S ,22S ,33S 成等差数列. (Ⅰ)求c 的值;(Ⅱ)求数列{}n a 的通项公式.22.数列{}n a 中, 112,n n a a a cn +==+(c 是不为零的常数, 1,2,3,n =⋅⋅⋅),且1,2,3a a a 成等比数列.(1) 求c 的值;(2) 求{}n a 的通项公式;(3) 求数列n n a c n c -⎧⎫⎨⎬⋅⎩⎭的前n 项之和n T . 必修五模块综合测试卷(一)答案1. D 解:由不等式的性质知:A 、B 、C 成立的条件都不充分,所以选D ,其实D 正是异向不等式相减的结果,.b c a d c d d c b a b a -<-⇒⎭⎬⎫<⇒>-<-⇒>2. C 解析: 5)4)(1()1(2=⇒+-=+a a a a ,23,41==q a ,∴1)23(4-⋅=n n a . 3.C 解析: 由(1)(3)f f -=知2)31(-=+--=b ,则0)1(12)(22≥-=+-=x x x x f ,则()0f x >的解集是{|1}x x ≠. 4.C 解析:22124)24(2)(--=+=n a a n S n n ,∴24=n 时,n S 达到最小值. 5. D 解析:∵()()0>--c b c a ,∴b a 、与c 同侧∵()()0<--d b d a ,∴b a 、与d 异侧 ∵d c b a <<,∴把d c b a 、、、标在数轴上,只有下面一种情况由此得出b d a c <<<,∴此题选D . 6 C 解析:A 错,当0,=>c b a 时有c b c a =;同样B 错;D 没有考虑各数取零和正负号的关系,所以也不对.故选C ,因为不等式两边同时加上一个任意数(此题是c -),原不等式成立.7. A 解析:设增加同样的长度为x ,原三边长为a 、b 、c ,且c 2=a 2+b 2,a +b>c 新的三角形的三边长为a +x 、b +x 、c +x ,知c +x 为最大边,其对应角最大.而(a +x)2+(b +x)2-(c +x)2=x 2+2(a +b -c)x>0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.8. A 解析:21)1(22=+-y x 的圆心坐标为(1,0),半径22r =,则圆心到可行域的最小距离为到直线20x y -+=的距离,即10232,22d -+==∴|MQ|的最小值为2d r -= 9.D 解析: 1sin 604322032ABC S AB AC AB ︒=⋅⋅==V Q ,得55AB =,再由余弦定理,有222165521655cos602401BC ︒=+-⨯⨯⨯=,得49BC =.10.C 解析:由题中三角形为钝角三角形可得①2222<+b a ;②a +b>2;③a >0,b>0,于是集合的含义即为由条件①②③组成的图形,如图所示,则其面积为22221422-=⨯⨯-⨯=ππS ,故选C . 11.B 解析:如图,设25AM AB =u u u u r u u u r ,15AN AC =u u u r u u u r,则AP AM AN =+u u u r u u u u r u u u r.由平行四边形法则知,//NP AB ,则1,5ABPABC AN S S AC ∆∆==u u u r u u u r 同理可得,1,4ABQ ABC S S ∆∆=故45ABP ABQ S S ∆∆=. 12. A 解析: sin sin sin AB BC CAC A B ==由正弦定理得 sin sin cos cos cos cos sin()sin sin sin AC C AC A ACAB A BC C A C A C B B B+=+=+g g g g g g gsin sin AC B AC B==g 2222cos 52,AB BC B -=g g 再由余弦定理得,AC =AB +BC 213.cos cos 213AC AB A BC C ∴=+=g g 即.13.(]2,2-解答: ①当2=a 时,不等式为04<-,恒成立;②当2≠a 时,由题意可得:⎩⎨⎧<-+-=∆<-0)2(16)2(4022a a a ,解得:22<<-a ;综上可得:实数a 的取值范围是(]2,2-. 14.1941 解析:∵939361111157846661111121922241a a a a a a a S b b b b b b b b b T ++=+====+++,∴填1941.15.9π解析:πA B C ++=,即παβ+=,则41αβ+=411()()αβαβπ++=14(5)βαπαβ++9π≥,当且仅当4βααβ=,即2αβ=时等号成立.16. ()∞+,2解析:设ABC ∆中,C B A <<,且C B A ,,成等差数列,则︒=60B ,设其公差为α,则︒>-︒=90120A C ,∴ ︒<<︒300A ,∴AA A R C R a c m sin )120sin(sin 2sin 2-︒===21tan 23sin sin 120cos cos 120sin +=︒-︒=A A A A .由33tan 0<<A 得3tan 1>A,∴221323=+⋅>m .题目测量底部不能到达的烟囱的高 计算过程测 量 数 据测量项目第一次第二次平均值 mAB m AE AC AE AEC AC ACCD CD ACD CAD 425.15.40.5.40)31(15,462)4530sin(75sin ,75sin ,230,30sin 45sin ,60,4530,75≈+=∴≈+=∴+=+==∆=︒==∆︒=∠∴︒=︒=︒︒︒︒︒而中,在则由正弦定理,中,在解:βαΘα74°52' 75°8'75°β30°12' 29°48' 30° d (m)59.7860.2260测量目标(附图)结果m 4218.解析:⑴设数列{}n a 的公差为d ,则2,22288220111=-=⇒⎩⎨⎧-=+-=+d a d a d a∴242)1(222-=-+-=n n a n⑵Θ242log 2-=n b n ,∴2422-=n n b∴n n n n n n n b b b b T 24)1(24)321(232122-+-++++===ΛΛ令(1)240n n n +-=,得23=n ∴当23n =时,.1=n T 19.解:⑴Θ等差数列{}n a 中,.16,2541==a a ∴公差31414-=--=a a d ∴283+-=n a n ,令90283≤⇒>+-=n n a n∴当9≤n 时,0>n a ;当9>n 时,0<n a .∴当9=n 时,n S 取得最大值;⑵Θ数列{}n a 是等差数列∴208642a a a a a +++++Λ20)9325(10102)(1011202-=⨯-==+=a a a 50)103-=⨯; ⑶由⑴得,当9≤n 时,0>n a ;当9>n 时,0<n a . ∴n n n S S a a a a a a T -=+++-+++=911109212)(ΛΛ ⎥⎦⎤⎢⎣⎡---⨯-⨯=)1(2325)336259(2n n n 234253232+-=n n20. 解:(1)设7月n 日售出的服装件数为)4,(),311,(**≥∈≤≤∈k N k a n N n a k n 为最大.⎩⎨⎧=---+=3)31(2)1(33k a k a kk ,∴,13=k 39=k a ,∴7月13号该款服装销售件数最多,其最大值是39件. (2)设n S 是数列{}n a 的前n 项和,∵)(,3114,265131,3*N n n n n n an∈⎩⎨⎧≤≤-≤≤= ∴)(,3114),13)(51(273131,233*N n n n n n n nS n ∈⎪⎩⎪⎨⎧≤≤--+≤≤⋅+=∵20027313>=S ,∴由12200,131≥>≤≤n S n n 得时,由2320,3114≥<≤≤n a n n 得时. ∴从7月12日到7月22日共11天该服装在社会上流行.21. 解:(Ⅰ)∵21(1)n n nS n S n cn +-+=+(1,2,3,...n =),∴()2111n n S S n cnn n n n ++-=++(1,2,3,...n =).∵1S ,22S ,33S 成等差数列,∴32122132S S S S -=-,∴14226c c ++=,∴1c =. (Ⅱ)由(Ⅰ)得111n nS S n n+-=+(1,2,3,...n =). ∴数列{}n S n 为首项是11S ,公差为1的等差数列. ∴1(1)11n S S n n n =+-⋅=.∴2n S n =. 当2n ≥时,221(1)21n n n a S S n n n -=-=--=-. 当1n =时,上式也成立.∴21n a n =-(1,2,3,...n =).22. 解:(1) 1232,2,23a a c a c ==+=+. 因为1,2,3a a a 成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =∵0c ≠,∴2c =(2)当2n ≥时,由于21321,2,,(1)n n a a c a a c a a n c --=-=⋅⋅⋅-=-, 所以[]112(1)n a a n c -=++⋅⋅⋅+-(1)2n n c -=. 又12,2a c ==,故有22(1)2(2,3,)n a n n n n n =+-=-+=⋅⋅⋅.当1n =时,上式也成立,所以22(1,2,3,)n a n n n =-+=⋅⋅⋅(3)令1(1)()2nn n na cb n nc -==-⋅. 123n n T b b b b =+++⋅⋅⋅+2341111023(1)2222nn ⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ①3411111102(2)(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ②①-②得111122n n n n T --⎛⎫=--⎪⎝⎭。
模块综合检测(时间:120分钟 满分:150分)知识点分布表一、选择题(本大题共12小题,每小题5分,共60分)1.(2015江西吉安联考,1)若a ,b ,c ∈R ,a>b ,则下列不等式成立的是( )A.1<1B.a2>b2 C.a 2>b 2 D.a|c|>b|c|答案:B解析:A.∵当1>-2时,1<-12不成立,∴1a <1b 不成立.B.∵c 2+1≥1,a>b ,∴ac 2+1>bc 2+1,故B 正确. C.∵当1>-2时,1>4不成立,∴a 2>b 2不成立.D.当c=0时,0=a|c|>b|c|=0,不成立.故选B .2.在△ABC 中,A=60°,AB=2,且△ABC 的面积为√32,则BC 的长为( )A.√3B.3C.√7D.7答案:A解析:S=12×AB ·AC sin 60°=12×2×√32AC=√32,所以AC=1.所以BC 2=AB 2+AC 2-2AB ·AC cos 60°=3. 所以BC=√3,故选A .3.若5,x ,y ,z ,21成等差数列,则x+y+z 的值为( ) A.26 B.29 C.39 D.52答案:C解析:因为5,x ,y ,z ,21构成等差数列,所以y 是x ,z 的等差中项,也是5,21的等差中项,所以x+z=2y ,5+21=2y ,所以y=13,x+z=26,所以x+y+z=39.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C+c cos B=2b ,则a等于( ) A.1 B.√2C.2D.√3答案:C解析:利用正弦定理,将b cos C+c cos B=2b 化为sin B cos C+sin C cos B=2sin B ,即sin(B+C )=2sin B.∵sin(B+C )=sin A ,∴sin A=2sin B.利用正弦定理可得a=2b ,故a b=2.5.已知数列{a n }满足3a n+1+a n =0,a 2=-43,则{a n }的前10项和等于( ) A.-6(1-3-10) B.19(1-3-10) C.3(1-3-10) D.3(1+3-10)答案:C解析:由3a n+1+a n =0,得a n+1a n=-13.所以{a n }是以q=-13为公比的等比数列. 所以a 1=a 2·1q =-43×(-3)=4.所以S 10=4[1-(-13)10]1+13=3(1-3-10),故选C .6.(2015河北邯郸三校联考,6)设变量x ,y 满足约束条件{x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z=3x-y 的最大值为( )A.-4B.0C.43D.4答案:D解析:画出不等式组表示的平面区域,将目标函数变形为y=3x-z,作出目标函数对应的直线,当直线过(2,2)时,直线在y轴上的截距最小,z最大,最大值为6-2=4.故选D.7.已知等差数列{a n}满足,a1>0,5a8=8a13,则前n项和S n取最大值时,n的值为()A.20B.21C.22D.23答案:B解析:由5a8=8a13得5(a1+7d)=8(a1+12d)⇒d=-361a1,由a n=a1+(n-1)d=a1+(n-1)(-361a1)≥0⇒n≤643=2113,所以数列{a n}前21项都是正数,以后各项都是负数,故S n取最大值时,n的值为21,选B.8.(2015福建宁德五校联考,8)已知正实数a,b满足2+1=1,x=a+b,则实数x的取值范围是()A.[6,+∞)B.(2√2,+∞)C.[4√2,+∞)D.[3+2√2,+∞)答案:D解析:∵2a +1b=1,∴x=a+b=(a+b)(2a +1b)=2+1+2ba+ab≥3+2√2(当且仅当2ba=ab,即b=√2+1,a=2+√2时,等号成立).故选D.9.(2015河南南阳高二期中,7)在△ABC中,若tan A tan B>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定答案:A解析:因为A和B都为三角形中的内角,由tan A tan B>1,得到1-tan A tan B<0,且得到tan A>0,tan B>0,即A ,B 为锐角, 所以tan(A+B )=tanA+tanB1-tanAtanB<0,则A+B ∈(π2,π),即C 为锐角, 所以△ABC 是锐角三角形.10.(2015山东潍坊四县联考,10)已知数列{a n }中,a 1=2,na n+1=(n+1)a n +2,n ∈N *,则a 11=( ) A.36 B.38 C.40 D.42答案:D解析:因为na n+1=(n+1)a n +2,n ∈N *,所以在等式的两边同时除以n (n+1),得a n+1n+1−a n n =2(1n -1n+1).所以a 1111=a 11+2[(110-111)+(19-110)+…+ (1-12)]=4211.所以a 11=42.故选D .11.(2015陕西高考,10)设f (x )=ln x ,0<a<b ,若p=f (√ab ),q=f (a+b2),r=12(f (a )+f (b )),则下列关系式中正确的是( ) A.q=r<p B.q=r>p C.p=r<q D.p=r>q答案:C解析:∵f (x )=ln x ,∴p=f (√ab )=ln √ab =12(ln a+ln b )=r.又∵0<a<b ,∴a+b2>√ab .又∵y=ln x 为递增函数,∴lna+b2>ln √ab ,即q>r ,综上p=r<q.12.(2015河南南阳高二期中,6)对于数列{a n },定义数列{a n+1-a n }为数列a n 的“差数列”,若a 1=1,{a n }的“差数列”的通项公式为3n ,则数列{a n }的通项公式a n =( ) A.3n -1B.3n+1+2C.3n -12D.3n+1-12答案:C解析:∵a 1=1,a n+1-a n =3n ,∴a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=3n-1+3n-2+…+31+1=1×(1-3n )1-3=3n -12.故选C . 二、填空题(本大题共4小题,每小题5分,共20分)13.(2015广东湛江高二期末,14)若x>4,函数y=x+1x -4,当x= 时,函数有最小值为 . 答案:5 6解析:∵x>4,∴x-4>0.∴y=x+1x -4=x-4+1x -4+4≥2√(x -4)·1x -4+4=6.当且仅当x-4=1x -4即x=5时等号成立.14.(2015山东潍坊四县联考,12)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S nn=3n -1,则a 8b 8= .答案:43解析:2a 82b 8=a 1+a 15b 1+b 15=152(a 1+a 15)152(b 1+b 15)=S 15T 15=3×15-12×15+3=43.15.设数列{a n }满足:a 1=1,a 2=4,a 3=9,a n =a n-1+a n-2-a n-3(n=4,5,…),则a 2 015= . 答案:8 057解析:由a n =a n-1+a n-2-a n-3,得a n+1=a n +a n-1-a n-2,两式作和得:a n+1=2a n-1-a n-3, 即a n+1+a n-3=2a n-1(n=4,5,…).∴数列{a n }的奇数项和偶数项均构成等差数列. ∵a 1=1,a 3=9,∴奇数项构成的等差数列的公差为8.则a 2 015=a 1+8(1 008-1)=1+8×1 007=8 057.故答案为8 057.16.(2015福建宁德五校联考,16)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,有下列结论:①若A>B ,则sin A>sin B ;②若c 2<a 2+b 2,则△ABC 为锐角三角形;③若a ,b ,c 成等差数列,则sin A+sin C=2sin(A+C ); ④若a ,b ,c 成等比数列,则cos B 的最小值为12.其中结论正确的是 .(填上全部正确结论的序号) 答案:①③④解析:对于①,若A>B ,则a>b ,由正弦定理得sin A>sin B ,命题①正确;对于②,若c 2<a 2+b 2,则cos C=a 2+b 2-c 22ab >0,说明C 为锐角,但A ,B 不一定为锐角,△ABC 不一定是锐角三角形,命题②错误;对于③,若a ,b ,c 成等差数列,则a+c=2b ,结合正弦定理得:sin A+sin C=2sin B ,即sin A+sin C=2sin(A+C ),命题③正确;对于④,若a ,b ,c 成等比数列,则b 2=ac , 则cos B=a 2+c 2-b22ac=a 2+c 2-ac 2ac≥ac 2ac =12,命题④正确.三、解答题(17~20小题及22小题每小题12分,21小题10分,共70分)17.(2015福建厦门高二期末,17)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a=4,cos B=45. (1)若b=3,求sin A 的值;(2)若△ABC 的面积为12,求b 的值. 解:(1)∵cos B=45,0<B<π,∴sin B=√1-cos 2B =35.由正弦定理可得:asinA =bsinB . 又a=4,b=3,∴sin A=asinBb=4×353=45.(2)由面积公式,得S △ABC =12ac sin B ,∴12ac×35=12,可解得c=10.由余弦定理,b 2=a 2+c 2-2ac cos B=52,解得b=2√13.18.(2015河北邯郸三校联考,18)数列{a n }中,a 1=2,a n+1=a n +cn (c 是常数,n=1,2,3,…),且a 1,a 2,a 3成公比不为1的等比数列.(1)求c的值;(2)求{a n}的通项公式.解:(1)a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c),解得c=0或c=2.当c=0时,a1=a2=a3,不符合题意,舍去,故c=2.(2)当n≥2时,由于a2-a1=c,a3-a2=2c,…,a n-a n-1=(n-1)c,c.所以a n-a1=[1+2+…+(n-1)]c=n(n-1)2又a1=2,c=2,故a n=2+n(n-1)=n2-n+2(n=2,3,…).当n=1时,上式也成立.所以a n=n2-n+2(n=1,2,…).19.(2015河南南阳高二期中,19)△ABC的内角A,B,C的对边分别是a,b,c,已知A,B,C成等差数列,△ABC的面积为√3.(1)求证:a,2,c成等比数列;(2)求△ABC的周长L的最小值,并说明此时△ABC的形状.(1)证明:∵A,B,C成等差数列,∴B=60°.又△ABC的面积为√3,∴1ac sin 60°=√3,即ac=4.2∵ac=22,∴a,2,c成等比数列.(2)解:在△ABC中,根据余弦定理,得b2=a2+c2-2ac cos 60°=a2+c2-ac≥2ac-ac=ac=4,∴b≥2,当且仅当a=c时,等号成立.∴△ABC的周长L=a+b+c≥2√ac+b=4+b,当且仅当a=c时,等号成立.∴L≥4+2=6,当且仅当a=c时,等号成立.∴△ABC周长的最小值为6.∵a=c,B=60°,∴此时△ABC为等边三角形.20.(2015福建宁德五校联考,22)已知f(x)=x2-abx+2a2.(1)当b=3时,①若不等式f(x)≤0的解集为[1,2],求实数a的值;②求不等式f(x)<0的解集.(2)若f(2)>0在a∈[1,2]上恒成立,求实数b的取值范围.解:(1)当b=3时,f(x)=x2-abx+2a2=x2-3ax+2a2,①∵不等式f(x)≤0的解集为[1,2],∴1,2是方程x 2-3ax+2a 2=0的两根. ∴{1+2=3a ,1×2=2a 2,解得a=1.②∵x 2-3ax+2a 2<0, ∴(x-a )(x-2a )<0.∴当a>0时,此不等式的解集为(a ,2a ),当a=0时,此不等式的解集为空集, 当a<0时,此不等式的解集为(2a ,a ).(2)由题意f (2)=4-2ab+2a 2>0在a ∈[1,2]上恒成立, 即b<a+2a 在a ∈[1,2]上恒成立. 又a+2a ≥2√a ·2a =2√2,当且仅当a=2a ,即a=√2时上式等号成立.∴b<2√2,实数b 的取值范围是(-∞,2√2).21.(2015河南郑州高二期末,20)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某市的一条道路在一个限速为40 km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12 m,乙车刹车距离略超过10 m .又知甲、乙两种车型的刹车距离S (m)与车速x (km/h)之间分别有如下关系:S 甲=0.1x+0.01x 2,S 乙=0.05x+0.005x 2. 问:甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x+0.01x 2=12,即x 2+10x-1 200=0,解得x=30或x=-40(x=-40不符合实际意义,舍去). 这表明甲车的车速为30 km/h . 甲车车速不会超过限速40 km/h . 对于乙车,有0.05x+0.005x 2>10, 即x 2+10x-2 000>0,解得x>40或x<-50(x<-50不符合实际意义,舍去). 这表明乙车的车速超过40 km/h,超过规定限速.22.(2015河南南阳高二期中,22)已知数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n+12a n+1(n ∈N *). (1)求数列{a n }的通项a n ; (2)求数列{n 2a n }的前n 项和T n ;(3)若存在n ∈N *,使得a n ≥(n+1)λ成立,求实数λ的取值范围. 解:(1)因为a 1+2a 2+3a 3+…+na n =n+12a n+1(n ∈N *), 所以a 1+2a 2+3a 3+…+(n-1)a n-1=n 2a n (n ≥2). 两式相减得na n =n+12a n+1-n2a n , 所以(n+1)a n+1na n=3(n ≥2). 因此数列{na n }从第二项起,是以2为首项,以3为公比的等比数列, 所以na n=2·3n-2(n ≥2).故a n ={1,n =1,2n·3n -2,n ≥2. (2)由(1)可知当n ≥2时,n 2a n =2n ·3n-2, 当n ≥2时,T n =1+4·30+6·31+…+2n ·3n-2,∴3T n =3+4·31+…+2(n-1)·3n-2+2n ·3n-1.两式相减得T n =12+(n -12)·3n-1(n ≥2). 又∵T 1=a 1=1也满足上式,∴T n =12+(n -12)·3n-1.(3)a n ≥(n+1)λ等价于λ≤a n, 由(1)可知当n ≥2时,an=2·3n -2, 设f (n )=n (n+1)2·3n -2(n ≥2,n ∈N *),则f (n+1)-f (n )=-(n+1)(n -1)3n -1<0,∴1f (n+1)≥1f (n ).又1f (2)=13及a 12=12,∴所求实数λ的取值范围为λ≤13.。
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a<1,b>1,那么下列命题中正确的是( )A.1a>1b B.ba>1C.a2<b2D.ab<a+b 【解析】利用特值法,令a=-2,b=2.则1a<1b,A错;ba<0,B错;a2=b2,C错.【答案】 D2.一个等差数列的第5项a5=10,且a1+a2+a3=3,则有( )A.a1=-2,d=3 B.a1=2,d=-3C.a1=-3,d=2 D.a1=3,d=-2【解析】∵a1+a2+a3=3且2a2=a1+a3,∴a2=1.又∵a5=a2+3d=1+3d=10,d=3.∴a1=a2-d=1-3=-2.【答案】 A3.已知△ABC的三个内角之比为A∶B∶C=3∶2∶1,那么对应的三边之比a∶b∶c等于( )A.3∶2∶1 B.3∶2∶1C.3∶2∶1 D.2∶3∶1【解析】∵A∶B∶C=3∶2∶1,A+B+C=180°,∴A=90°,B=60°,C=30°.∴a∶b∶c=sin 90°∶sin 60°∶sin 30°=1∶32∶12=2∶3∶1.【答案】 D4.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322D .2【解析】 由题意得,图中阴影部分面积即为所求.B ,C 两点横坐标分别为-1,1.∴S △ABC =12×2×⎪⎪⎪⎪⎪⎪12--=32. 【答案】 B5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若A =π3,b =1,△ABC的面积为3,则a 的值为( ) A .1 B .2 C.32D. 3【解析】 根据S =12bc sin A =32,可得c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =3,故a = 3.【答案】 D6.(2016·龙岩高二检测)等差数列的第二,三,六项顺次成等比数列,且该等差数列不是常数数列,则这个等比数列的公比为( )A .3B .4C .5D .6【解析】 设等差数列的首项为a 1,公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,a 6=a 1+5d ,又∵a 2·a 6=a 23,∴(a 1+2d )2=(a 1+d )(a 1+5d ),∴d =-2a 1,∴q =a 3a 2=3. 【答案】 A7.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-3【解析】 x 2+ax +1≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立⇔ax ≥-x 2-1⇔a ≥⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫x +1x max ,∵x +1x ≥52, ∴-⎝ ⎛⎭⎪⎫x +1x ≤-52,∴a ≥-52.【答案】 C8.(2015·浙江高考)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0【解析】 ∵a 3,a 4,a 8成等比数列,∴a 24=a 3a 8,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),展开整理,得-3a 1d =5d 2,即a 1d =-53d 2.∵d ≠0,∴a 1d <0.∵S n =na 1+nn -2d ,∴S 4=4a 1+6d ,dS 4=4a 1d +6d 2=-23d 2<0.【答案】 B9.在数列{a n }中,a 1=2,a n +1-2a n =0(n ∈N *),b n 是a n 和a n +1的等差中项,设S n 为数列{b n }的前n 项和,则S 6=( )A.189 B.186 C.180 D.192【解析】由a n+1=2a n,知{a n}为等比数列,∴a n=2n.∴2b n=2n+2n+1,即b n=3·2n-1,∴S6=3·1+3·2+…+3·25=189.【答案】 A10.已知a,b,c∈R,a+b+c=0,abc>0,T=1a+1b+1c,则( )A.T>0 B.T<0 C.T=0 D.T≥0【解析】法一取特殊值,a=2,b=c=-1,则T=-32<0,排除A,C,D,可知选B.法二由a+b+c=0,abc>0,知三数中一正两负,不妨设a>0,b<0,c<0,则T=1a+1b+1c=ab+bc+caabc=ab+c b+aabc=ab-c2abc.∵ab<0,-c2<0,abc>0,故T<0,应选B.【答案】 B11.△ABC的内角A,B,C所对的边分别为a,b,c,若B=2A,a=1,b =3,则c=( )A.2 3 B.2 C. 2 D.1【解析】由正弦定理得:asin A=bsin B,∵B=2A,a=1,b=3,∴1sin A=32sin A cos A.∵A为三角形的内角,∴sin A≠0.∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形.由勾股定理得c =12+32=2.【答案】 B12.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A .13项B .12项C .11项D .10项【解析】 设该数列的前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n-2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4,两式相乘,得a 61q 3(n -1)=8,即a 21q n -1=2.又a 1·a 1q ·a 1q 2·…·a 1q n -1=64,所以a n 1·qn n -2=64,即(a 21qn -1)n =642,即2n =642,所以n =12. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.在△ABC 中,BC =2,B =π3,当△ABC 的面积等于32时,sin C =________.【导学号:05920086】【解析】 由三角形的面积公式,得S =12AB ·BC sin π3=32,易求得AB =1,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos π3,得AC =3,再由三角形的面积公式,得S =12AC ·BC sin C =32,即可得出sin C =12.【答案】 1214.(2015·湖北高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,3x -y ≥0,则3x +y 的最大值是________.【解析】 画出可行域,如图阴影部分所示,设z =3x +y ,则y =-3x +z ,平移直线y =-3x 知当直线y =-3x +z 过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x +y =4,x -y =2,可得A (3,1).故z max =3×3+1=10.【答案】 1015.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,则k 的取值范围为________.【解析】 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.【答案】 [2,8] 16.观察下列等式: 12=1, 12-22=-3,12-22+32=6, 12-22+32-42=-10, …照此规律,第n 个等式可为12-22+32-…+(-1)n -1n 2=________. 【解析】 分n 为奇数、偶数两种情况. 第n 个等式为12-22+32-…+(-1)n -1n 2.当n 为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-(3+7+11+15+…+2n -1)=-n2+2n -2=-n n +2.当n 为奇数时,第n 个等式为(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-n n -2+n 2=n n +2.综上,第n 个等式为 12-22+32-…+(-1)n -1n 2 =(-1)n +1n n +2.【答案】 (-1)n +1n n +2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若m =(a 2+c 2-b 2,-3a ),n =(tan B ,c ),且m ⊥n ,求∠B 的值.【解】 由m ⊥n 得(a 2+c 2-b 2)·ta n B -3a ·c =0,即(a 2+c 2-b 2)tan B =3ac ,得a 2+c 2-b 2=3actan B,所以cos B =a 2+c 2-b 22ac =32tan B,即tan B cos B =32,即sin B =32,所以∠B =π3或∠B =2π3.18.(本小题满分12分)在等差数列{a n }中,S 9=-36,S 13=-104,在等比数列{b n }中,b 5=a 5,b 7=a 7, 求b 6. 【导学号:05920087】【解】 ∵S 9=-36=9a 5,∴a 5=-4, ∵S 13=-104=13a 7,∴a 7=-8. ∴b 26=b 5·b 7=a 5 ·a 7=32. ∴b 6=±4 2.19.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 【导学号:05920088】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0.(1)当a =0时,原不等式化为x +1≤0⇒x ≤-1;(2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式等价于-1≤x ≤2a;②当2a =-1,即a =-2时,原不等式等价于x =-1; ③当2a<-1,即-2<a <0时,原不等式等价于2a≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞. 20.(本小题满分12分)设△ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a =1,b =2,cos C =1.(1)求△ABC 的周长; (2)求cos A 的值.【解】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4.∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5. (2)∵cos C =14,∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫142=154.∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A =1-⎝ ⎛⎭⎪⎫1582=78. 21.(本小题满分12分)(2016·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n+1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). 又a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a n a n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n , 则a n +1=-2a n +5×3n , ∴a n +1-3n +1=-2(a n -3n ). 又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列. ∴a n -3n =2×(-2)n -1, 即a n =2×(-2)n -1+3n (n ∈N *).22.(本小题满分12分)某厂用甲、乙两种原料生产A ,B 两种产品,制造1 tA,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:(2)每吨B 产品的利润在什么范围变化时,原最优解不变?当超出这个范围时,最优解有何变化?【解】 (1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14,x +3y ≤18,x ≥0,y ≥0,作出可行域如图:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品245 t ,B 产品225t 时,可得最大利润. (2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m ,又k AB =-2,k CB =-13,要使最优解仍为B 点, 则-2≤-5m ≤-13,解得52≤m ≤15, 则B 产品的利润在52万元/t 与15万元/t 之间时,原最优解仍为生产A 产品245t ,B 产品225t ,若B 产品的利润超过15万元/t ,则最优解为C (0,6),即只生产B 产品6 t ,若B 产品利润低于52万元/t ,则最优解为A (7,0),即只生产A 产品7 t.。
必修5模块测试1(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每个小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是符合题目要求的)1.a ∈R ,且a 2+a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3C .-a 3>a 2>-a D .a 2>-a >-a 3[答案] B[解析] ∵a 2+a <0,∴-1<a <0.令a =-12,-a 3=18,a 2=14,排除A 、C 、D ,故选B.2.已知全集U =R ,集合A ={x |x 2-2x >0},则∁U A 等于( ) A .{x |0≤x ≤2}B .{x |0<x <2}C .{x |x <0或x >2}D .{x |x ≤0或x ≥2} [答案] A[解析] ∵x 2-2x >0,∴x >2或x <0, ∴A ={x |x >2或x <0}, ∴∁U A ={x |0≤x ≤2}.3.已知等差数列{a n }中,a 2=4,a 6=12,则公差d 等于( ) A.12 B.32 C .2 D .3 [答案] C[解析] ∵a 2=4,a 6=12, ∴a 6-a 12=4d =8,∴d =2.4.在△ABC 中,由已知条件解三角形,其中有两解的是( ) A .b =20,A =45°,C =80° B .a =30,c =28,B =60° C .a =14,b =16,A =45° D .a =12,c =15,A =120° [答案] C[解析] A 中A =45°,C =80°,B =55°,△ABC 为锐角三角形,有唯一解;B 中,已知两边及其夹角,求第三边,有唯一解;C 中,已知两边及其一边对角,b >a ,∴B >45°,且由正弦定理知sin B =16sin45°14=427,∴C 有两种可能,或者为锐角或者为钝角,有两解;D中,c >a ,A =120°,无解,故选C.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2 D.12[答案] A[解析] ∵{a n }为等差数列,S n 为前n 项和,∴S 9=9 a 1+a 9 2=9³2a 52=9a 5,S 5=5 a 1+a 5 2=5³2a 32=5a 3, ∴S 9S 5=9a 55a 3=95³59=1. 6.已知等比数列{a n }的各项均为正数,公比q ≠1,设P =a 3+a 92,Q =a 5²a 7,则P 与Q的大小关系是( )A .P >QB .P <QC .P =QD .无法确定 [答案] A[解析] 由等比知识得,Q =a 5²a 7=a 3²a 9 而P =a 3+a 92且a 3>0,a 9>0,a 3≠a 9∴a 3+a 92>a 3²a 9,即P >Q .7.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12[答案] A[解析] 解法一:令a 1=14,a 2=34,b 1=14,b 2=34,则a 1b 1+a 2b 2=1016=58,a 1a 2+b 1b 2=616=38,a 1b 2+a 2b 1=616=38,∴最大的数应是a 1b 1+a 2b 2.解法二:作差法.∵a 1+a 2=1=b 1+b 2且0<a 1<a 2,0<b 1<b 2, ∴a 2=1-a 1>a 1,b 2=1-b 1>b 1, ∴0<a 1<12,0<b 1<12.又a 1b 1+a 2b 2=a 1b 1+(1-a 1)(1-b 1) =2a 1b 1+1-a 1-b 1,a 1a 2+b 1b 2=a 1(1-a 1)+b 1(1-b 1)=a 1+b 1-a 21-b 21,a 1b 2+a 2b 1=a 1(1-b 1)+b 1(1-a 1)=a 1+b 1-2a 1b 1.∴(a 1b 2+a 2b 1)-(a 1a 2+b 1b 2)=a 21+b 21-2a 1b 1 =(a 1-b 1)2≥0, ∴a 1b 2+a 2b 1≥a 1a 2+b 1b 2.∵(a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=4a 1b 1+1-2a 1-2b 1 =1-2a 1+2b 1(2a 1-1)=(2a 1-1)(2b 1-1) =4(a 1-12)(b 1-12)>0,∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.∵(a 1b 1+a 2b 2)-12=2a 1b 1+12-a 1-b 1=b 1(2a 1-1)-12(2a 1-1)=(2a 1-1)(b 1-12)=2(a 1-12)(b 1-12)>0,∴a 1b 1+a 2b 2>12.综上可知,最大的数应为a 1b 1+a 2b 2.8.已知△ABC 中,AB =3,AC =1且B =30°,则△ABC 的面积等于( ) A.32 B.34C.32或 3 D.34或32[答案] D[解析] c =AB =3,b =AC =1,B =30°.由于c sin B =3³12=32,c sin B <b <c ,∴符合条件的三角形有两个 ∵bsin B =c sin C ,即112=3sin C. ∴sin C =32. ∴C =60°或120°,∵A =90°或30°,∴S △ABC =32或34. 9.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25 [答案] C[解析] a 3²a 6²a 18=a 9q 6²a 9q3²a 9²q 9=a 39是一个确定常数,∴a 9为确定的常数.T 17=a 1²a 2²…²a 17=(a 3)17,∴选C.10.函数y =log 2(x +1x -1+5)(x >1)的最小值为( ) A .-3B .3C .4D .-4 [答案] B[解析] x >1,x -1>0y =log 2(x +1x -1+5)=log 2(x -1+1x -1+6)≥log 2(2+6)=log 28=3.11.某粮店用一杆不准确的天平(两臂长不相等)称大米,某顾客要购买20kg 大米,售货员先将10kg 的砝码放入左盘,置大米于右盘使之平衡后给顾客,然后又将10kg 砝码放入右盘,置大米于右盘平衡后再给顾客,则( )A .粮店吃亏B .顾客吃亏C .都不吃亏D .不一定 [答案] A[解析] 设天平支点为O ,左盘的臂长为a ,右盘的臂长为b ,两次称的粮食的质量分别为m 1,m 2.则有⎩⎪⎨⎪⎧10a =m 1b m 2a =10b,即⎩⎪⎨⎪⎧m 1=10ab m 2=10ba.∴m 1+m 2=10a b +10b a =10(a b +ba)>20(∵a ≠b ),因此粮店吃亏,故选择A.12.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件4元,乙每件7元,甲商品每件卖出去后可赚1元,乙每件卖出去后可赚1.8元.若要使赚的钱最多,那么该商贩购买甲、乙两种商品的件数应分别为( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件 [答案] D[解析] 设该商贩购买甲、乙两种商品的件数为x 件和y 件,此时该商贩赚的钱为z 元,则由题意可得⎩⎪⎨⎪⎧4x +7y ≤50x ,y ∈N*,z =x +1.8y .如图所示,经分析可知,要使z 最大,则只需通过点(2,6),∴当x =2,y =6时,z max =2+1.8³6=12.8.故选择D.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.如图,在高出地面30m 的小山顶C 上建造一座电视塔,今在距离B 点60m 的地面上取一点A ,在此点测得CD 所张的角为45°,则电视塔的高度是____________.[答案] 150m[解析] 设∠BAC =α,则tan α=BC AB =3060=12,tan A =tan(45°+α)=1+tan α1-tan α=1+121-12=3,∴BD =AB tan A =60³3=180.∴CD =BD -BC =150.14.一个正整数表如下(表中下一行中数的数的个数是上一行中的个数的2倍):则第9[答案] 259[解析] 由数表知表中各行数的个数构成一个以1为首项,公比为2的等比数列,前8行数的个数共有1-281-2=255个,故第9行中的第4个数是259.15.不等式(x 2-4)(x -6)2≤0的解集是________. [答案] {x |-2≤x ≤2或x =6} [解析] 原不等式变形得(x +2)(x -2)(x -6)2≤0,∴-2≤x ≤2或x =6.16.(2011²陕西文)如图,点(x ,y )在四边形ABCD 内部和边界上运动,那么2x -y 的最小值为________.[答案] 1[解析] 令b =2x -y ,则y =2x -b ,如图所示,作斜率为2的平行线y =2x -b , 当经过点A 时,直线在y 轴上的截距最大,为-b ,此时b =2x -y 取得最小值,为b =2³1-1=1.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为32,求b .[解析] ∵a ,b ,c 成等差数列, ∴2b =a +c ,平方得a 2+c 2=4b 2-2ac , 又S △ABC =32且∠B =30°.∴由S △ABC =12ac sin B =12ac sin30°=ac 4=32,得ac =6,∴a 2+c 2=4b 2-12.由余弦定理cos B =a 2+c 2-b 22ac =b 2-44=32,又b >0解得b =1+ 3.18.(本小题满分12分)(2011²宿州高二检测)已知函数f (x )=-3x 2+a (6-a )x +c . (1)当c =19时,解关于a 的不等式f (1)>0.(2)若关于x 的不等式f (x )>0的解集是(-1,3),求实数a ,c 的值. [解析] (1)由已知有:f (1)=3+a (6-a )+19>0., 即a 2-6a -16<0,解得:-2<a <8.所以不等式的解集为:(-2,8).(2)由关于x 的不等式f (x )>0的解集是(-1,3)可知:-1,3是关于x 的方程3x 2-a (6-a )x -c =0的两个根,则有⎩⎪⎨⎪⎧Δ>0-1+3=a 6-a 3-1³3=-c3,解得:a =3±3,c =9.19.(本小题满分12分)已知等比数列{a n }中,a 1=64,公比q ≠1,a 2,a 3,a 4又分别是某等差数列的第7项,第3项,第1项.(1)求a n ;(2)设b n =log 2a n ,求数列{|b n |}的前n 项和T n . [解析] (1)依题意有a 2-a 4=3(a 3-a 4), 即2a 1q 3-3a 1q 2+a 1q =0, ∴2q 2-3q +1=0.∵q ≠1,∴q =12,故a n =64³(12)n -1.(2)b n =log 2[64³(12)n -1]=7-n .∴|b n |=⎩⎪⎨⎪⎧7-n n ≤7n -7 n >7,当n ≤7时,T n =n 13-n2;当n >7时,T n =T 7+ n -7 n -62=21+ n -7 n -6 2.故T n=⎩⎪⎨⎪⎧n 13-n 2 n ≤7n -7 n -62+21 n >7 .20.(本小题满分12分)(2011²大纲全国卷文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .[解析] (1)由正弦定理得a 2+c 2-2ac =b 2, 由余弦定理得b 2=a 2+c 2-2ac cos B , 由cos B =22.又B 为三角形的内角,因此B =45°. (2)sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64. 故a =b sin A sin B =2+62=1+3, c =b sin C sin B =2³sin60°sin45°= 6.21.(本小题满分12分)已知等比数列{a n }的前n 项和为S n =a ²2n+b 且a 1=3. (1)求a 、b 的值及数列{a n }的通项公式; (2)设b n =na n,求{b n }的前n 项和T n .[解析] (1)由已知,得⎩⎪⎨⎪⎧3=2a +b , ①3+a 2=4a +b , ②3+a 2+a 3=8a +b , ③解得a 2=2a ,a 3=4a ,∴公比q =a 3a 2=2.a 23=2a3=2,∴a =3代入①得b =-3. ∴a n =3²2n -1.(2)b n =n a n =n3²2n -1,T n =13(1+22+222+…+n2n -1) ④12T n =13(12+222+…+n -12n -1+n2n ) ⑤ ④-⑤得:12T n =13(1+12+122+…+12n -1-n 2n )=13(1-12n1-12-n 2n ) =13(2-12n -1-n 2n )=23(1-12n -n2n +1),∴T n =43(1-12n -n2n +1).22.(本小题满分14分)围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:米),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求最小总费用.[解析] (1)设矩形的另一边长为a m ,则y =45x +180(x -2)+180³2a =225x +360a -360. 由已知xa =360,得a =360x,∴y =225x +3602x-360(x >0).(2)∵x >0,∴225x +3602x≥2225³3602=10800.∴y =225x +3602x-360≥10440.当且仅当225x =3602x时,等号成立.即当x =24m 时,修建围墙的总费用最小,最小总费用是10440元.。