2.3公式法(2)
- 格式:ppt
- 大小:2.76 MB
- 文档页数:17
北师大版数学九年级上册第二章第3节用公式法解一元二次方程(第2课时)导学案【教学目标】1.理解一元二次方程根的判别式;2.不解方程,会用一元二次方程根的判别式判别方程是否有实数根和两个实数根是否相等.教学重点:一元二次方程根的判别式教学难点:理解一元二次方程根的判别式【教学过程】[知识回顾:]一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是:x =-b ±b 2-4ac 2a(其中b 2―4ac ≥0). 这个公式成立的条件是:b 2―4ac ≥0.那么,有没有b 2―4ac <0的一元二次方程呢?如果有,这样的方程的解的情况又是怎样的?[问题探究:]对于方程x 2-2x +3=0,有a =1,b =-2,c =3,得b 2―4ac =(-2) 2―4×1×3=-8<0,不满足b 2―4ac ≥0的条件,所以该方程不能用求根公式求解.事实上,将方程x 2-2x =―3,配方,得x 2-2x +1=―3+1,即(x -1) 2=-2.∵x 取任何实数时,总有左边=(x -1) 2≥0,而右边=-2<0,∴x 取任何实数时,都不能使(x -1) 2=-2成立,即方程(x -1) 2=-2无实数根.也就是方程x 2-2x +3=0无实数根.[归纳总结,得出结论:]对于一元二次方程ax 2+bx +c =0(a ≠0),(1) 当b 2―4ac >0时,方程有两个不相等的实数根,(x =-b ±b 2-4ac 2a) (2) 当b 2―4ac =0时,方程有两个相等的实数根,(x 1=x 2=-b 2a) (3) 当b 2―4ac <0时,方程无实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2―4ac 来判定.我们把b 2―4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用“△”(读:delta )来表示.[例1]不解方程,判断下列方程的根的情况:(1) 2x 2+5=7x ; (2) 4x (x -1)+1=0; (3) (x +1)(4x +1)=2x .[跟踪练习1]1.不解方程,判断下列方程的根的情况:(1) 5x 2+x =7; (2) 25x 2+20x +4=0; (3) x 2-2x +3=0.[例2]若关于x的一元二次方程(k-1) x 2+2x-2=0有两个不相等实数根,求k的取值范围.[跟踪练习2]1.关于x的一元二次方程x2-2x+m=0无实数根,则实数m的取值范围是()A.m<1B.m≥1C.m≤1D.m>12.关于x的一元二次方程x2+kx-2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定3.已知关于x的一元二次方程x2-(2k-1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是________.4.已知关于x的一元二次方程kx2-2(k+1)x+k-1=0有两个不相等的实数根,求k的取值范围;5.关于x的一元二次方程(k-2)x2-2kx+k=6有两个实数根,求k的取值范围;[本课知识、方法总结:]1.我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,记作:△=b2-4ac,(1)当△>0时,方程有两个不相等的实数根;即x1=-b+b2-4ac2a,x2=-b―b2-4ac2a;(2)当△=0时,方程有两个相等的实数根;即x1=x2=-b2a.(3)当△<0时,方程无实数根.反过来也成立.[拓展延伸:]1.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏总长40m.(1) 鸡场的面积能达到180m2吗?(2) 鸡场的面积能达到200m2吗?(3) 鸡场的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.(提示:设平行于墙的一边为x m)答案例1(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根;[跟踪练习1]1.(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程有两个不相等的实数根;例2 解:根据题意,得⎩⎨⎧△=4-4×(-2)×(k -1)>0k -1≠0 解得k >12且k ≠1. [跟踪练习2]1.D2.A3.k <-1144.k 的取值范围是k >-13且k ≠0. 5.k 的取值范围是k ≥32且k ≠2. [拓展延伸:]1.解:设平行于墙的一边长为x 米,则垂直于墙的一边长为40-x 2米,鸡场的面积为x ·40-x 2平方米. (1)当x ·40-x 2=180时,解得 x 1=20-210,x 2=20+210(不合题意,舍去).∴鸡场的面积能达到180m 2,此时鸡场平行于墙的一边长为(20-210)米,垂直于墙的一边长为(10+2010)米.(2)当x ·40-x 2=200时,解得 x 1=x 2=20.∴鸡场的面积能达到200m 2,此时鸡场平行于墙的一边长为20米,垂直于墙的一边长为10米.(3)当x ·40-x 2=250时,整理,得 x 2-40x +500=0.∵△=1600-4×1×500<0,∴该方程没有实数根.∴鸡场的面积不能达到250m 2.。
九上数学§2.2配方法(3)【学习目标】.1.利用方程解决实际问题.2.训练用配方法解题的技能【学习重点】利用方程解决实际问题【学习指导】自学课本P60-61的内容,完成下列问题。
1、小明设计的方案:设花园四周小路的宽度均为x m,可列怎样的一元二次方程?一元二次方程的解是什么?这两个解都合要求吗?为什么?2、小亮设计的方案中可列怎样的一元二次方程?符合条件的解是多少?3、你还有其他设计方案吗?请设计出来与同伴交流。
【课堂检测】(1、2每题30分,第3题40分)、1、课本P62随堂练习2、课本P62问题解决2※3、课本P63联系拓广九上数学§2.3公式法【学习目标】.1.会一元二次方程的求根公式的推导【学习重点】一元二次方程的求根公式.【自学指导】1、自学教材P64的内容,并完成公式推导推导求根公式:ax2+bx+c=0 (a≠0)解:方程两边都除以a,得___________________.移项,得:________________________配方,得:______________________即:___________________∵a≠0,所以4a2>0当b2-4ac≥0时,得_________________________________∴x=_______________________一般地,对于一元二次方程ax2+bx+c=0 (a≠0)当b2-4ac>0时,它的根是x=_____________,一元二次方程有两个______的实数根_;当b2-4ac=0时,它的根是x=_____________,一元二次方程有两个______的实数根_;当b2-4ac<0时,一元二次方程_______________2、自学教材P65例1:【自学检验】:1、利用求根公式解方程:(1)2x2―9x+8=0 (2)9x2+6x+1=0 (3)16x2+8x=32、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
北师大版初中数学八年级(下)第二章分解因式2.3运用公式法(2)教案一、学情分析:认知基础:学生的知识储备中对于乘法公式的运用还是比较熟练的,但在能力上,对于公式的变形问题可能会处理不当。
二、教材处理中的问题与思考:1、教材采用直接将乘法公式逆过来应用,这种呈现新知方式,不适于学习基础较为困难的学生,如何让学生更好地理解整式乘法与因式分解之间的关系?2、对于形式上与完全平方公式相近的式子与完全平方公式的区别,进一步牢记公式有什么特点?三、教学设计:(一)教学目标:1、知识与技能:会用完全平方公式法(直接用公式不超过两次)分解因式。
2、过程与方法:经历通过整式乘法的完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力。
3、情感、态度与价值观:培养学生的整体意识,以及逆向应用公式的能力。
(二)教学重点:掌握公式的形式和特点并能正确运用。
(三)教学难点:将多项式适当变形后运用公式分解因式。
(四)教学过程:创设问题情境,导入新课:某小区规划在边长为a米的正方形场地上,修建两条宽为b米的通路,其余组织学生观察并思考:(1)先求出甬道面积,ab+ab-b2,然后不难求出草地的面积为a2-2ab+b2(2)将两条甬道运用平移法,移到边沿,不难求出种草的面积为(a-b)2。
● 2、尝试发现、探索新知:探索:由上面的问题,可以求出a 2-2ab+b 2=(a-b)2即:a 2±2ab+b 2=(a ±b)2实际上,这也是乘法公式中的完全平方公式的逆变形所得到的分解因式的方法。
组织学生观察,讨论这类式子的共同特点:x 2+14x+49 216364x x -+ a 4+2a 2b 2+b 4 (m+n)2-6(m+n)+9 总结这类式子的共同特点:(1)公式的左边是一个三项式;(2)在这个三项式中前后两项是两数的平方,且符号相同,中间一项是这两个数的积的2倍,符号可正可负。
小甸子中学八年级(下)数学 2.3 运用公式法 (2) 研学案主备: 曹立明 副备:于传波、黄祖花 审核人: 备课时间:2012-3-19【课前热身】1.把下列各式分解因式:(1)162-x (2)224121y x -(3)22249y x a - (4)22)()(y x y x --+2.计算: (1)(x+3)2= ; (2)(4x-y)2=(3)(1+2x )2= ; (4)(3m-2n)2=【自学提示】1、【知识点一】会判别完全平方公式。
乘法公式之完全平方公式:(a+b)2=222b ab a ++,2222)(b ab a b a +-=-反过来: 222b ab a ++ =____________222b ab a +-=___________________.温馨提示:1、利用完全平方公式可以进行分解因式。
2、完全平方公式中的a 与b 不仅可以表示单项式,也可以表示多项式.观察式子x ²+6x+9, 16x ²-8xy+y ², 1+4x+4x ²,小组讨论它们有什么共同特征? (有几项式?每项式都有什么特征?整体有什么特征?)你能按照再举几个例子吗?)【练习一】判断下列式子能否用完全平方公式分解因式?(1)x 2+xy+y 2 (2)x 2-2xy -y 2 (3)x 2+4xy+4y 2 (4)x 2-xy +y 22、【知识点二】利用完全平方公式进行分解因式。
(1)、结合课前热身第二题,完成下列填空:x ²+6x+9= , 16x ²-8xy+y ²= ,1+4x+4x ²= ,9m ²-12mn+4n ²= ,(2)、自学P 57例3同桌间指出完全平方公式中的“a ”“b ”。
(1)a 2-4a+4; (2)x 2+4xy+4y 2; (3)4a 2+4ab+ b 2;(4)a 2-4ab+4b 2; (5)x 2-6x+9; (6)a 2+a+0.25.(3)、自学P 57例4后模仿其过程完成下面问题【练习二】分解因式(利用完全平方公式)。
一、)请你任意写出一个..三项式,使它们的公因式是-)用简便方法计算,并写出运算过程:二、2+b2-2ab-1ma-mb+2a-2b3-aax2+ay2-2axy-ab2三、好好想一想n是正整数时,两个连续奇数的平方差一定是)一条水渠,其横断面为梯形,根据图时的面积.图2—3—1,在半径为r的圆形土地周围有一条宽为a的路,这条路的面积用作业导航了解平方差公式、完全平方公式的特点,掌握运用公式法分解因式的方法,会利用分解因式进行简便计算与化简.一、选择题1.-(2a-b)(2a+b)是下列哪一个多项式的分解结果( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b22.多项式(3a+2b)2-(a-b)2分解因式的结果是( )A.(4a+b)(2a+b)B.(4a+b)(2a+3b)C.(2a+3b)2D.(2a+b)23.下列多项式,能用完全平方公式分解因式的是( )A.x2+xy+y2B.x2-2x-1C.-x2-2x-1D.x2+4y24.多项式4a2+ma+25是完全平方式,那么m的值是( )A.10B.20C.-20D.±205.在一个边长为12.75 cm的正方形纸板内,割去一个边长为7.25 cm的正方形,剩下部分的面积等于( )A.100 cm2B.105 cm2C.108 cm2D.110 cm2二、填空题6.多项式a2-2ab+b2,a2-b2,a2b-ab2的公因式是________.7.-x2+2xy-y2的一个因式是x-y,则另一个因式是________.8.若x2-4xy+4y2=0,则x∶y的值为________.9.若x2+2(a+4)x+25是完全平方式,则a的值是________.10.已知a+b=1,ab=-12,则a2+b2的值为________.三、解答题11.分解因式(1)3x4-12x2(2)9(x-y)2-4(x+y)2(3)1-6mn+9m2n2(4)a2-14ab+49b2(5)9(a +b )2+12(a +b )+4 (6)(a -b )2+4ab12.(1)已知x -y =1,xy =2,求x 3y -2x 2y 2+xy 3的值. (2)已知a (a -1)-(a 2-b )=1,求21(a 2+b 2)-ab 的值. 13.利用简便方法计算: (1)2001×1999(2)8002-2×800×799+799214.如图1,在一块边长为a 厘米的正方形纸板的四角,各剪去一个边长为b (b <2a)厘米的正方形,利用因式分解计算当a =13.2,b =3.4时剩余部分的面积.图115.对于任意整数,(n +11)2-n 2能被11整除吗?为什么?参考答案一、1.D 2.B 3.C 4.D 5.D二、6.a-b7.y-x8.2 9.1或-9 10.25三、11.(1)3x2(x+2)(x-2) (2)(5x-y)(x-5y) (3)(3mn-1)2(4)(a-7b)2(5)(3a+3b+2)2(6)(a+b)2112.(1)2 (2)213.(1)3999999 (2)114.128平方厘米15.略2.3 运用公式法同步练习1.填空:(1)多项式各项的公因式是___________;(2)多项式各项的公因式是_________;(3)如果是一个完全平方式,那么k的值是__________;(4)().2.把下列各式分解因式:(1);(2);(3);(4);(5);(6);(7);(8).3.利用分解因式计算:(1);(2);(3);(4);(5);(6);(7);(8).4.先分解因式,再求值:(1),其中;(2),其中.5.对于任意自然数是否能被24整除?为什么?参考答案1.(1) ;(2);(3)9;(4) .2.(1) ;(2) ;(3) ;(4);(5);(6);(7);(8).3.(1)27.6;(2)125;(3)10100;(4)0.0395;(5)9801;(6)7;(7)6.32;(8)5000.4.(1) ,当 时,原式=9216;(2) ,当时,原式=100.5.,能被24整除.2.3 运用公式法 同步练习一、选择题1,下列各式中不能用平方差公式分解的是( )A.-a 2+b 2B.-x 2-y 2C.49x 2y 2-z 2D.16m 4-25n 2 2.下列各式中能用完全平方公式分解的是( )①x 2-4x+4; ②6x 2+3x+1; ③ 4x 2-4x+1; ④ x 2+4xy+2y 2 ; ⑤9x 2-20xy+16y 2A.①②B.①③C.②③D.①⑤3.在多项式:①16x 5-x;②(x-1)2-4(x-1)+4; ③(x+1)4-4x(x+1)2+4x 2;④-4x 2-1+4x 中,分解因式的结果中含有相同因式的是( )A.①②B.③④C.①④D.②③ 4.分解因式3x 2-3x 4的结果是( )A.3(x+y 2)(x-y 2)B.3(x+y 2)(x+y)(x-y)C.3(x-y 2)2D.3(x-y )2(x+y) 25.若k-12xy+9x 2是一个完全平方式,那么k 应为( )A.2B.4C.2y 2D.4y 26.若x 2+2(m-3)x+16, 是一个完全平方式,那么m 应为( )A.-5B.3C.7D.7或-1 7.若n 为正整数,(n+11)2-n 2 的值总可以被k 整除,则k 等于( ) A.11 B.22 C.11或22 D.11的倍数. 二、填空题8.( )2+20pq+25q 2= ( )29.分解因式x 2-4y 2= ___________ ; 10.分解因式ma 2+2ma+m= _______ ;11.分解因式2x 3y+8x 2y 2+8xy 3 __________ .12.运用平方差公式可以可到:两个偶数的平方差一定能被 _____ 整除。
用公式法求解一元二次方程(第2课时)
1.用公式法解方程243x x =+时,24b ac ∆=-的值是( )
A.4
B.28
C.20 D .-4
2.若点P 的横、纵坐标恰好是方程22240x x --=的两根,则点P 在( )
A. 第二象限
B. 第四象限
C.第一象限 D 第二或第四象限
3.方程2269x x -=的根为
4.已知三角形的两边长为分别为3cm 和4cm ,第三边长是方程2650x x -+=的根,则该三角形的周长为 ,形状为 ,面积为
5.如图,某小区规划在一个长30 m 、宽20 m
的长方形土地上修建三条等宽的通道,使其
中两条与AB 平行,另外两条与AD 平行,
其余部分种花草,要使每一块花草的面积
都为 78 m2,那么通道宽应该设计为多少?
设通道宽为x m ,则由题意列的方程
为_____________________.
6. 某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m. 养鸡场的面积能达到180 m2 吗?如果能,请给出设计方案;如果不能,请说明理由.
7.要对一块长为60m ,宽为40m 的矩形荒地ABCD 进行绿化和硬化,设计方案如图所示,矩形P ,Q 为两块绿地,其余为硬化路面。
P ,Q 两块绿地周围的硬化路面宽度都相等,并且两块绿地的面积和矩形ABCD 面积的
14,求P ,Q 两块绿地周围硬化路面的宽。
Q P D C B A。
2.3运用公式法(2)课型:新授 学生姓名:_________[目标导航]1.学习目标(1)经历通过整式乘法的完全平方公式等逆向得出用公式法分解因式的方法的过程,发展逆向思维能力和推理能力。
(2)会用公式法分解因式。
(3)在逆用乘法公式的过程中,了解换元的思想方法2.学习重点:会逆用完全平方公式、十字相乘法对多项式进行因式分解。
3.学习难点:熟练逆用完全平方公式、十字相乘法对多项式进行因式分解。
[课前导学]1.课前预习:阅读课本P57—P58并完成课前检测。
2.课前检测(1) 分解因式: ①24224916.0n m b a - ②224)32(x y x -- ③)()(3x y y x -+-(2) ①222(________)2520(______)=++q pq ; ②22)(________________94=+-x x ; ③________________)2)(3(=++x x ; ④_________________)2)(1(=--x x ; (3) 默写平方差公式:____________ ______________________________________ ; =++))((b x a x ___________________________________________________________;3.课前学记(课前学习疑难点、教学要求建议)[课堂研讨]1.新知探究(1)新课引入:①填空:(a+b )(a-b ) = ; a 2–b 2= ;(a+b )2= ; (a-b)2 = ;a 2+2ab+b 2= ; a 2-2ab+ b 2= .②结论:形如:______________________和____________________的式子称为完全平方式。
③填空:(x+a )(x+b ) = ; (a x+b )(c x+d ) = ; x 2+(a+b)x+ ab = ; ac x 2+(ad+bc)x+bd= ; (x-a )(x-b ) = ; (a x-b )(c x-d ) = ; x 2-(a+b)x+ ab = ; ac x 2-(ad+bc)x+bd= ;通过上面的填空谈谈你的收获:_______________________________________________________; ④结论:由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做______________________;(2)新课讲解①例1 把下列完全平方式分解因式:49142++x 9)(6)(2++-+n m n m②例2 逆用乘法公式分解因式:232++x x 122--x x③例3 把下列各式分解因式22363ay axy ax ++ xy y x 4422+-- a ax ax -+-3222.学习过关(1)下列多项式中,哪几个是完全平方式?请把是完全平方式的多项式分解因式:① 412+-x x ( ) ② 13922+-ab b a ( ) ③ 229341n mn m ++ ( ) ④ 251036--x x ( ) (2)把下列各式分解因式:① 223612y xy x +- ② 422492416bb a a ++③ 222y x xy --- ④ 2)(9)(124y x y x -+--(3)运用“十字相乘法”把下列各式分解因式:① 322--x x ② 2522++x x ③ 2)(3)(2++++b a b a.[课外拓展]1.课后记(收获、体会、困惑)2.分层作业(班级:_____________,学生姓名:____________)A 必做题(限时10分钟,实际完成时间:_______分钟)(1)把下列各式分解因式① 1222+-xy y x ② 24129t t +- ③ 412++y y④ 6480252+-m m ⑤2241y xy x ++ ⑥ 4422+-ab b a(2) 把下列各式分解因式① 9)(6)(2++++y x y x ② 22)()(2c b c b a a +++- ③ 32244y y x xy --④ 322a a a -+- ⑤4524+-x x ⑥ 22252y xy x +-B 选做题(1)已知多项式12x 与一个单项式和一个整式的完全平方,请你找出一个满足条件的单项式.(2)把下列式子分解因式:①ax+bx+2a+2b. ②a 2-ab -4b+4a.③ab -5a+3b -15.C 思考题(1)若(x+2)(x+3)(x+4)(x+5)+k 是完全平方式,求K 的值。
北师大版数学九年级上册2.3《公式法》教案一. 教材分析《北师大版数学九年级上册2.3《公式法》》这一节主要讲述了一元二次方程的解法——公式法。
通过前面的学习,学生已经掌握了一元二次方程的概念和性质,以及配方法解一元二次方程。
本节课通过公式法解一元二次方程,使学生能够更加深入地理解一元二次方程的解法,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念和性质,以及配方法解一元二次方程。
但部分学生对于公式的理解和运用还不够熟练,需要通过本节课的学习,加强学生对公式法的理解和运用。
三. 教学目标1.让学生掌握一元二次方程的公式法解法。
2.培养学生运用公式法解决实际问题的能力。
3.培养学生合作学习、积极探究的学习态度。
四. 教学重难点1.掌握一元二次方程的公式法解法。
2.运用公式法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过自主学习、合作交流,掌握一元二次方程的公式法解法。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过复习一元二次方程的配方法解法,引导学生思考:是否有一元二次方程的通用解法?从而引出本节课的内容——公式法。
2.呈现(10分钟)呈现一元二次方程的公式法解法,引导学生理解公式法的原理。
公式法解一元二次方程的步骤:(1)确定方程的系数a、b、c;(2)计算判别式Δ=b²-4ac;(3)根据公式x=(-b±√Δ)/(2a),求出方程的解。
3.操练(10分钟)让学生分组讨论,运用公式法解一元二次方程。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成练习题,巩固公式法解一元二次方程的方法。
5.拓展(10分钟)引导学生思考:公式法解一元二次方程的应用场景。
让学生举例说明,培养学生的应用能力。
6.小结(5分钟)教师引导学生总结本节课的学习内容,使学生对公式法解一元二次方程有一个清晰的认识。
§2.3运用公式法(2)【学习目标】1. 会用完全平方公式分解因式2. 综合运用分解因式的方法分解因式【学习重点】1.熟练掌握完全平方公式分解因式【学前准备】1.什么是分解因式? 我们已经学习了哪些因式分解的方法?2.把下列各式分解因式:① x a ax 222- ② 42-a③ a a -34 ④ x x 335-【师生探究合作交流】1.请你写出完全平方公式.这个公式倒过来可以写成: 222b ab a ++= 222b ab a +-=2.观察()2222b ab a b a ++=+与()2222b a b ab a +=++的不同点是什么? 发现:①第一个等式的左边()2b a +表示相乘关系; 第二个等式的左边222b ab a ++表示一个多项式。
②第一个等式表示把整式乘积形式转化成多项式形式;第二个等式是把多项式形式转化成整式乘积的形式。
因此,前者是多项式的乘法运算,而后者是分解因式。
3.完全平方式的特点:形如222b ab a ++和222b ab a +-的式子都称为完全平方式。
其特点是:(1)公式中的字母a,b 可以用单项式或多项式代替.(2)能运用完全平方公式分解的多项式必须是三项式,其中首末两项是两个数的完全平方,且这两项符号相同,而中间的一项是首项与末项乘积的2倍4.把下列各式分解因式:(1) 962++x x (2) ()()25102+---n m n m 解:(1)962++x x =22332+⨯+x x =( 2)(2)()()25102+---n m n m =(52)(2⨯--n m )+( 2) =( 2)(3) a ax ax 412+- (4) 2422-+-y y5.把下列各式分解因式:(注意方法,观察结果是否不能再分解了)(1) 1224+-x x (2) 222121y x xy ---【议一议】1.两个连续奇数的平方差能被8整除吗?为什么?你用了______分钟(真棒!)【小试牛刀】1.随堂练习【课堂小结】1. 用完全平方公式分解因式与平方差公式不同之处:【今日作业】1. 课后习题2.5第1,2【拓展与延伸】1.课本复习题写P63.第11。