数学人教版八年级下册一次函数图像复习专题
- 格式:ppt
- 大小:344.50 KB
- 文档页数:16
2021 -2021学年人教版八年级|数学下册第19章一次函数应用之图像专题 (一 )1.小明家所在地的供电公司实行 "峰谷电价〞 ,峰时 (8:00~21:00 )电价为0.5元/度 ,谷时 (21:00~8:00 )电价为0.3元/度.为了解空调制暖的耗能情况 ,小明记录了家里某天0时~24时内空调制暖的用电量 ,其用电量y (度 )与时间x (h )的函数关系如下图.(1 )小明家白天不开空调的时间共h ;(2 )求小明家该天空调制暖所用的电费;(3 )设空调制暖所用电费为w 元 ,请画出该天0时~24时内w 与x 的函数图象. (标注必要数据 )2.如图 ,l 1表示振华商场一天的某型电脑销售额与销售量的关系 ,l 2表示该商场一天的销售本钱与电脑销售量的关系.观察图象 ,解决以下问题:(1 )当销售量x =2时 ,销售额=万元 ,销售本钱=万元;(2 )一天销售台时 ,销售额等于销售本钱;当销售量时 ,该商场实现赢利 (收入大于本钱 );(3 )分别求出l 1和l 2对应的函数表达式;(4 )直接写出利润w 与销售量x 之间的函数表达式 ,并求出当销售量x 是多少时 ,每天的利润到达5万元 ?3.敦煌到格尔木铁路开通后 ,l 1与l 2分别是从敦煌北开往格尔木的动车和从格尔木站开往敦煌北的高铁到敦煌北的距离与行驶时间的图象 ,两车同时出发 ,设动车离敦煌北的距离为y 1 (千米 ) ,高铁离敦煌北的距离为y 2 (千米 ) ,行驶时间为t (小时 ) ,y 1和y 2与t 的函数关系如下图:(1 )高铁的速度为km /h ;(2 )动车的速度为km /h ;(3 )动车出发多少小时与高铁相遇 ?(4 )两车出发经过多长时间相距50千米 ?4.甲、乙两地相距300千米 ,一辆货车和一辆轿车先后从甲地出发向乙地 ,轿车比货车晚出发1.5小时 ,如图 ,线段OA 表示货车离甲地的距离y (千米 )与时间x (小时 )之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米 )与时间x (时 )之间的函数关系 ,请根据图象解答以下问题:(1 )轿车到达乙地时 ,求货车与甲地的距离;(2 )求线段CD对应的函数表达式;(3 )在轿车行进过程 ,轿车行驶多少时间 ,两车相距15千米.5.为落实 "精准扶贫〞精神 ,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收 ,上市20天全部销售完 ,专家对销售情况进行了跟踪记录 ,并将记录情况绘成图象 ,日销售量y (单位:千克 )与上市时间x (单位:天 )的函数关系如下图.(1 )观察图示 ,直接写出日销售量的最|大值为.(2 )根据图示 ,求李大爷家百香果的日销售量y与上市时间x的函数解析式 ,并求出第15天的日销售量.6.如图 ,自行车与摩托车从甲地开往乙地 ,OA与BC分别表示自行车、摩托车与甲地距离s (千米 )和自行车出发时间t (小时 )的关系.根据图象答复:(1 )摩托车每小时行驶千米 ,自行车每小时行驶千米;(2 )自行车出发后小时 ,两车相遇;(3 )求摩托车出发多少小时时 ,两车相距15千米 ?7.甲乙两位老师同住一小区 ,该小区与学校相距2000米.甲从小区步行去学校 ,出发10分钟后乙再出发 ,乙从小区先骑公共自行车 ,骑行假设干米到达还车点后 ,立即步行走到学校.乙骑车的速度为170米/分 ,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分 ) ,图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米 )与甲步行时间x(分 )的函数关系的图象;图2表示甲、乙两人之间的距离s(米 )与甲步行时间x (分 )的函数关系的图象 (不完整 ).根据图1和图2中所给的信息 ,解答以下问题:(1 )求甲步行的速度和乙出发时甲离开小区的路程;(2 )求直线BC的解析式;(3 )在图2中 ,画出当20≤x≤25时 ,s关于x的函数的大致图象.8.甲乙两人沿相同的路线同时登山 ,甲、乙两人距地面的高度y(米 )与登山时间x(分钟 )之间的函数图象如下图 ,根据图象所提供的信息解答以下问题:=.(1 )甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为:y甲(2 )假设乙提速后 ,乙的速度是甲登山速度的3倍 ,登山多长时间时 ,乙追上了甲 ?此时乙距A地的高度为多少米 ?9.某市端午节期间 ,甲、乙两队举行了赛龙舟比赛 ,两队在比赛时的路程s(米 )与时间t (分钟 )之间的图象如下图 ,请你根据图象 ,答复以下问题:(1 )这次龙舟赛的全程是多少米 ?哪队先到达终点 ?(2 )求甲与乙相遇时甲、乙的速度.10.某种机器工作前先将空油箱加满 ,然后停止加油立即开始工作.当停止工作时 ,油箱中油量为5L ,在整个过程中 ,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如下图.(1 )机器每分钟加油量为L ,机器工作的过程中每分钟耗油量为L.(2 )求机器工作时y关于x的函数解析式 ,并写出自变量x的取值范围.(3 )直接写出油箱中油量为油箱容积的一半时x的值.11.一辆慢车和一辆快车沿相同的路线由甲地到乙地匀速前进 ,甲、乙两地之间的路程为200km ,他们离甲地的路程y (km )与慢车出发后的时间x (h )的函数图象如下图.(1 )慢车的平均速度是km/h;(2 )分别求出表示快车、慢车所行驶的路程y (km )与时间x (h )的函数关系式; (不要求写出自变量的取值范围 )(3 )求慢车出发后多长时间两车第|一次相遇 ?(4 )快车到达乙地后 ,慢车距乙地还有多远 ?12.书籍是人类进步的台阶.为了鼓励全民阅读 ,某图书馆开展了两种方式的租书业务:一种是使用租书卡 ,另一种是使用会员卡 ,图中l1 ,l2分别表示使用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的关系.(1 )直接写出用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式;(2 )小红准备租某本名著50天 ,选择哪种租书方式比拟合算 ?小明准备花费90元租书 ,选择哪种租书方式比拟合算 ?13.小明来到奥体中|心观看比赛.进场时 ,发现门票还在家里 ,此时离比赛开始还有25分钟 ,于是立即步行回家取票 ,同时 ,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票 ,两人在途中相遇 ,相遇后爸爸立即骑自行车把小明送回奥体中|心.如图 ,线段AB、OB分别表示父子俩送票、取票过程中 ,离奥体中|心的距离S(米 )与所用时间t (分钟 )之间关系的图象 ,结合图象解答以下问题 (假设骑自行车和步行的速度始终保持不变 ):(1 )从图中可知 ,小明家离奥体中|心米 ,爸爸在出发后分钟与小明相遇.(2 )求出父亲与小明相遇时离奥体中|心的距离 ?(3 )小明能否在比赛开始之前赶回奥体中|心 ?请计算说明.14.一条笔直的公路上有甲、乙两地相距2400米 ,|王明步行从甲地到乙地 ,每分钟走96米 ,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发 ,运动的时间为t (分 ) ,与乙地的距离为s (米 ) ,图中线段EF ,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1 )李越骑车的速度为米/分钟;F点的坐标为;(2 )求李越从乙地骑往甲地时 ,s与t之间的函数表达式;(3 )求|王明从甲地到乙地时 ,s与t之间的函数表达式;(4 )求李越与|王明第二次相遇时t的值.15.一列快车从甲地匀速驶往乙地 ,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系 ,根据图象解决以下问题:(1 )甲、乙两地的距离为km;(2 )慢车的速度为km/h ,快车的速度为km/h;(3 )求当x为多少时 ,两车之间的距离为500km ,请通过计算求出x的值.参考答案1.解: (1 )小明家白天不开空调的时间为:18﹣8=10 (h ) ,故答案为:10;(2 )峰时所用电费为:3×3×0.5=4.5 (元 ) ,谷时所用电费为:11×3×0.3=9.9 (元 ) ,所以小明家该天空调制暖所用的电费为:4.5 +9.9=14.4 (元 );(3 )根据题意 ,可得该天0时~24时内w与x的函数图象如下:2.解: (1 )由图象可得 ,当销售量x=2时 ,销售额为2万元 ,销售本钱为3万元 ,故答案为:2 ,3;(2 )由图象可得 ,一天销售4台时 ,销售额等于销售本钱;当销售量大于4台时 ,该商场实现赢利 (收入大于本钱 ) ,故答案为:4 ,大于4台;(3 )设l1的表达式为y1=k1x ,将 (4 ,4 )代入得 ,4k1=4 ,解得k1=1 ,即l1的表达式为y1=x;设l2的表达式为y2=k2x +b ,将 (0 ,2 ) , (4 ,4 )分别代入y2=k2x +b ,得,解得 ,即l2的表达式为y2x +2;(4 )由题意可得 ,利润w与销售量x之间的函数表达式为w=xxx﹣2 ,当wx﹣2 ,解得x=14 ,答:利润w与销售量x之间的函数表达式是wx﹣2 ,当销售量x是14台时 ,每天的利润到达5万元.3.解: (1 )由图象可得 ,高铁的速度为300÷1.5=200 (km/h ) ,故答案为:200;(2 )由图象可得 ,动车的速度为300÷2=150 (km/h ) ,故答案为:150;(3 )设动车出发a小时与高铁相遇 ,200a +150a=300 ,解得a= ,即动车出发小时与高铁相遇;(4 )设两车出发经过b小时相距50千米 ,200a +150a=300﹣50或200a +150a=300 +50 ,解得a =或a =1 ,即两车出发经过小时或1小时相距50千米. 4.解: (1 )由图象可得 ,货车的速度为300÷5=60 (千米/小时 ) ,那么轿车到达乙地时 ,货车与甲地的距离是60×4.5=270 (千米 ) ,即轿车到达乙地时 ,货车与甲地的距离是270千米;(2 )设线段CD 对应的函数表达式是y =kx +b ,∵点C (2.5 ,80 ) ,点D (4.5 ,300 ) ,∴, 解得 ,即线段CD 对应的函数表达式是y =110x ﹣195 (2.5≤x ≤4.5 );(3 )当x =2.5时 ,两车之间的距离为:60×2.5﹣80=70 ,∵70>15 ,∴在轿车行进过程 ,两车相距15千米时间是在2.5~4.5之间 ,由图象可得 ,线段OA 对应的函数解析式为y =60x ,那么|60x ﹣ (110x ﹣195 )|=15 ,解得x 1=3.6 ,x 2=4.2 ,∵轿车比货车晚出发1.5小时 ,3.6﹣1.5=2.1 (小时 ) ,4.2﹣1.5=2.7 (小时 ) , ∴在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米 ,答:在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米.5.解: (1 )由图象可得 ,日销售量的最|大值为960千克 ,故答案为:960千克;(2 )当0≤x ≤12时 ,设y 与x 的函数关系式为y =kx ,12k =960 ,得k =80 ,即当0≤x ≤12时 ,y 与x 的函数关系式为y =80x ;当12<x ≤20时 ,设y 与x 的函数关系式为y =ax +b ,,得 ,即当12<x≤20时 ,y与x的函数关系式为y=﹣120x +2400 ,由上可得 ,y与x的函数关系式为y=;当x=15时 ,y=﹣120×15 +2400=600 ,答:李大爷家百香果的日销售量y与上市时间x的函数解析式为y=,第15天的日销售量是600千克.6.解: (1 )由图象可得 ,摩托车每小时行驶80÷ (5﹣3 )=40 (千米 ) ,自行车每小时行驶80÷8=10 (千米 ) , 故答案为:40 ,10;(2 )设自行车出发后a小时 ,两车相遇 ,10a=40 (a﹣3 ) ,解得 ,a=4 ,即自行车出发后4小时 ,两车相遇 ,故答案为:4;(3 )设摩托车出发b小时时 ,两车相距15千米 ,10 (b +3 )﹣40b=15或40b﹣10 (b +3 )=15 ,解得 ,bb=1.5 ,即摩托车出发0.5小时或1.5小时时 ,两车相距15千米.7.解: (1 )由图可知 ,甲步行的速度为:2000÷25=80 (米/分 ) ,乙出发时甲离开小区的路程是80×10=800 (米 ) ,答:甲步行的速度是80米/分 ,乙出发时甲离开小区的路程是800米;(2 ) (20﹣10 )×170=1700 (米 ) ,那么点C的坐标为 (20 ,1700 ) ,设直线BC对应的解析式为y=kx +b ,,得 ,即直线BC的解析式为y=170x﹣1700;(3 )∵甲步行的速度比乙步行的速度每分钟快5米 ,甲步行的速度是80米/分 ,∴乙步行的速度为80﹣5=75 (米/分 ) ,那么乙到达学校的时间为:20 + (2000﹣1700 )÷75=24 (分钟 ) ,当乙到达学校时 ,甲离学校的距离是:80× (25﹣24 )=80 (米 ) ,那么当20≤x≤25时 ,s关于x的函数的大致图象如以下图所示:=kx+b, 8.解: (1 )设甲距地面的高度y(米 )与登山时间x(分 )之间的函数关系式为y甲∵点 (0 ,100 ) , (20 ,300 )在函数y=kx +b的图象上 ,甲∴ ,解得 ,=10x +100 , 即甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为y甲故答案为:10x +100;(2 )由图象可得 ,甲的速度为: (300﹣100 )÷20=10 (米/分 ) ,∵乙提速后 ,乙的速度是甲登山速度的3倍 ,∴乙提速后的速度为30米/分 ,设乙登山a分钟时追上甲 ,那么15÷1×2 +30× (a﹣2 )=10a +100 ,解得a=6.5 ,当a=6.5时 ,乙距A地的高度为:30× (6.5﹣2 )=135 (米 ) ,即乙提速后 ,乙的速度是甲登山速度的3倍 ,登山6.5分钟时 ,乙追上了甲 ,此时乙距A 地的高度为135米.9.解: (1 )由函数图象可得 ,这次龙舟赛的全程是1000米 ,乙队先到达终点;(2 )由图象可得 ,甲与乙相遇时 ,甲的速度是1000÷4=250 (米/分钟 ) ,乙的速度是: (1000﹣400 )÷(3.8﹣2.2 )=600÷1.6=375 (米/分钟 ) ,即甲与乙相遇时甲、乙的速度分别为250米/分钟、375米/分钟.10.解: (1 )由图象可得 ,机器每分钟加油量为:30÷10=3 (L ) ,机器工作的过程中每分钟耗油量为: (30﹣5 )÷ (60﹣10 )=0.5 (L ) ,故答案为:3 ,0.5;(2 )当10<x≤60时 ,设y关于x的函数解析式为y=ax +b ,,解得 , ,即机器工作时y关于x的函数解析式为yx +35 (10<x≤60 );(3 )当3x=30÷2时 ,得x=5 ,x +35=30÷2时 ,得x=40 ,即油箱中油量为油箱容积的一半时x的值是5或40.11.解: (1 )由图象可得 ,慢车的速度为:200÷5=40 (km/h ) ,故答案为:40;(2 )设慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=kx ,5k=200 ,得k=40 ,即慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=40x;设快车所行驶的路程y (km )与时间x (h )的函数关系式是y=ax +b , ,解得 ,即快车所行驶的路程y (km )与时间x (h )的函数关系式是y=100x﹣200;(3 )令40x=100x﹣200 ,解得x= ,即慢车出发后时两车第|一次相遇;(4 )将x=4代入y=40x ,得y=160 ,200﹣160=40 (km ) ,答:快车到达乙地后 ,慢车距乙地还有40km.12.解: (1 )设直线l对应的函数解析式为y=kx ,1200k=60 ,解得k=0.3 ,对应的函数解析式为yx ,即直线l1对应的函数解析式为y=ax +b ,设直线l2,解得 ,对应的函数解析式为yx +20 ,即直线l2由上可得 ,用租书卡时每本书的租金y(元 )与租书时间x(天 )之间的函数关系式是yx,用会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式是yx +20;(2 )当x=50时 ,租书卡的租金为0.3×50=15 (元 ) ,会员卡的租金为0.2×50 +20=30 (元 ) ,∵15<30 ,∴小红准备租某本名著50天 ,选择租书卡租书方式比拟合算;当y=90时 ,租书卡可以租用90÷0.3=300 (天 ) ,会员卡可以租用 (90﹣20 )÷0.2=350 (天 ) ,∵300<350 ,∴小明准备花费90元租书 ,选择会员卡租书方式比拟合算.13.解: (1 )有图可知 ,小明家离体育馆3600米 ,父子俩在出发后15分钟相遇.其中小明路程与时间的图象用图中的线段OB表示 ,父亲路程与时间的图象用图中的线段AB表示.故答案为3600 ,15;(2 )设小明的速度为x ,父亲的速度为3x ,根据题意得 ,15 (x +3x )=3600 ,∴x=60米/分钟 ,∴小明与父亲相遇时距离体育馆还有60×15=900m ,答:父亲与小明相遇时离奥体中|心的距离为900m;(3 )由 (2 )知 ,小明的速度为60米/分钟 ,∴父亲的速度为180米/分钟 ,∴900÷180=5分钟 ,∴5 +15=20分钟<25分钟 ,∴小明能在比赛开始之前能赶回体育馆.14.解: (1 )由图象可得 ,李越骑车的速度为:2400÷10=240米/分钟 ,2400÷96=25 ,所以F点的坐标为 (25 ,0 ).故答案为:240; (25 ,0 );公众号:惟微小筑(2 )设李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=kt ,2400=10k ,得k=240 ,即李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=240t ,故答案为:s=240t;(3 )设|王明从甲地到乙地时 ,s与t之间的函数表达式为s=kt +2400 ,根据题意得 ,25k +2400=0 ,解得k=﹣96 ,所以|王明从甲地到乙地时 ,s与t之间的函数表达式为:s=﹣96t +2400;(4 )根据题意得 ,240 (t﹣2 )﹣96t=2400 ,解得t=20.答:李越与|王明第二次相遇时t的值为20.15.解: (1 )甲、乙两地的距离为720km ,故答案为:720;(2 )设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意 ,得 ,解得 ,故答案为80 ,120;(3 )由题意 ,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前: (80 +120 )x=720﹣500 ,解得x=1.1 ,相遇后:∵点C (6 ,480 ) ,∴慢车行驶20km两车之间的距离为500km ,∵慢车行驶20km需要的时间是=0.25 (h ) ,∴x=6 +0.25=6.25 (h ) ,故x=1.1 h或6.25 h ,两车之间的距离为500km.。
人教版八年级数学下册第19章专题:《一次函数图像综合:实际应用(行程、收费等)》(二)1.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)求线段BC所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.2.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)甲队的工作速度;(2)分别求出乙队在0≤x≤2和2≤x≤6时段,y与x的函数解析式,并求出甲乙两队所挖河渠长度相等时x的值;(3)当两队所挖的河渠长度之差为5m时x的值.3.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?4.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?5.如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;货车的速度是千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)试求客车与货两车何时相距40千米?6.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.7.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人距离景点A的路程(米)关于时间t(分)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙距离景点C的路程不超过300米,则乙从景点B步行到景点C的速度至少为多少?8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.如图,l A、l B分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t(小时)的关系.已知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距千米,B出发后小时与A相遇;(2)求出A距甲地的路程S A(千米)与时间t(小时)的关系式,并求出B修好车后距甲地的路程S B(千米)与时间t(小时)的关系式.(写出计算过程)(3)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相遇?10.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品千克,乙组升级设备停工了小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a、b的值.参考答案1.解:(1)由图可得,a=1500÷150=10,b=10+5=15,m=(3000﹣1500)÷(22.5﹣15)=1500÷7.5=200,故答案为:10,15,200;(2)设线段BC所在的直线的解析式为y=kx+m,∵点B(15,1500),点C(22.5,3000)在直线y=kx+m上,∴,得即线段BC所在的直线的解析式为y=200x﹣1500;(3)∵小军的速度是120米/分,∴线段OD所在直线的解析式为y=120x,令120x=200x﹣1500,解得,x=18.75∴小军第二次与爸爸相遇时距图书馆的距离是3000﹣120×18.75=750(米),答:小军第二次与爸爸相遇时距图书馆的距离是750米.2.解:(1)甲队的工作速度为:60÷6=10(米/小时);(2)当0≤x≤2时,设y与x的函数解析式为y=kx,可得2k=30,解得k=15,即y=15x;当2≤x≤6时,设y与x的函数解析式为y=nx+m,可得,解得,即y=5x+20,∴;10x=5x+20,解得x=4,即甲乙两队所挖河渠长度相等时x的值为4;(3)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.3.解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.4.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.5.解:(1)由函数图象可得,A,B两地相距:480+120=600(km),货车的速度是:120÷3=40(km/h).故答案为:600;40;(2)y=40(x﹣3)=40x﹣120(x>3);(3)分两种情况:①相遇前:80x+40x=600﹣40解之得x=…(8分)②相遇后:80x+40x=600+40解之得x=综上所述:当行驶时间为小时或小时,两车相遇40千米.6.解:(1)图中表示会员卡支付的收费方式是②.故答案为:②(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.7.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后25分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地300米时,乙需要步行的距离为:5400﹣3000﹣300=2100(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:=70(米/分),答:乙从景点B步行到景点C的速度至少为70米/分.8.解:(1)由图象可得,甲店团体票是200元,个人票为(元);乙店人数小于或等于10人时,个人票为(元),乙店人数大于10人而又不超过20人时,价格为600元.∴y甲=25x+200,;(2)当0≤x≤10时,令25x+200=60x,得x=,当10≤x≤20时,令25x+200=600,得x=16,答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人时,小王公司应该选择在乙店吃小龙虾更省钱.9.解:(1)由图形可得B出发时与A相距10千米B出发后3小时与A相遇;故答案为:10,3;(2)设S A的解析式为;S A=k2t+b,由题意得:,解得:,则S A的解析式为;S A=t+10,设S B的解析式为S B=mt+n,由题意得:解得:,∴S B的解析式为S B=10t﹣7.5;(3)如图,设B不发生故障时的解析式为:y=k2t,根据题意得:7.5=0.5k2,解得:k2=15,则解析式为y=15t,由,解得:,∴当t=时,与A相遇10.解:(1)由图象可得,甲组每小时加工食品:210÷7=30(千克);乙组升级设备停工了:4﹣2=2(小时),故答案为:30;2;(2)(210﹣30×2)÷(7﹣4)=50(千克/时),答:设备升级完毕后,乙组每小时可以加工食品50千克;(3)根据题意得,50(b﹣4)=30(b﹣2)+60×2,解得b=13,∴a=30×2+50×(13﹣4)=510.。
一次函数的图象和性质一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。
(3)用待定系数法求函数解析式。
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。
②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
④利用题目已知条件直接构造方程。
二、例题举例:例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。
证明:∵与成正比例,设=a(a≠0的常数),∵y=, =(k≠0的常数),∴y=·a=akx,其中ak≠0的常数,∴y与x也成正比例。
例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
学校班级姓名1【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】2专题04 一次函数期末总复习重难点知识一遍过1一、基础知识点综述基础讲解基 础 知 识函数与变量一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.常见自变量取值范围:00100y x x y x xy x x =≥=≠=≠ ()() ()常量:其值在变化过程中始终保持不变的量叫常量. 变量:其值在变化过程中会发生变化的量叫变量. 正比例函数 解析式 y =kx (k ≠0)形状一条过(0,0)、(1,k )的直线 坐标系中位置k >0时过一、三象限;k <0时过二、四象限 增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小一次函数解析式 y =kx +b (k ≠0)形状一条过(0,b )、(bk-,0)的直线 坐标系中位置k >0,b >0时过一、二、三象限;k >0,b <0时过一、三、四象限;k <0,b >0时过一、二、四象限;k <0,b <0时过二、三、四象限增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小【本文档由书林工作坊整理发布,谢谢你的下载和关注!】3基 础 知 识一次函数图象的位置关系 l 1∥l 2,则k 1=k 2,b 1≠b 2;l 1⊥l 2,则k 1·k 2=-1一次函数图象平移 上下平移与b 有关,上加下减;左右平移与x 有关,左加右减一次函数图象的对称y =kx +b 关于y 轴对称的解析式为:y =-kx +b ;y =kx +b 关于x 轴对称的解析式为:y =-kx -b ;一次函数与二元一次方程组方程组的解是两条直线的交点坐标一次函数与不等式会借助图象判断y =0,y <0,y >0时自变量取值范围;会借助图象判断y 1=y 2,y 1<y 2,y 1>y 2时自变量取值范围;求一次函数解析式方法待定系数法上表中,l 1:y 1=k 1x +b 1;l 2:y 2=k 2x +b 2二、典型例题讲解题1. (1)函数11y x x=+-自变量的取值范围是(2)函数()02y x x=--自变量的取值范围是(3)函数214y x x =-+自变量的取值范围是(4)在三角形中,它的一条边是a ,这条边上的高是h ,则其面积S =0.5ah ,当a 为定长时,在此式中变量是,常量是(5)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )【答案】(1)x ≥-1且x ≠0;(2)x >0且x ≠2;(3)全体实数;(4)S 、h ;0.5、a ;(5)B ;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】4【解析】解:(1)由10x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0;(2)由020x x >⎧⎨-≠⎩,解得:x >0且x ≠2;(3)由2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,得x 为全体实数;(4)由题意知S 随h 的变化而变化,所以S 和h 是变量,a 、0.5是常量;(5)通过分析可知,在注水开始至水面与小玻璃杯水面平齐过程中,水面高度不变,随后增大至最大后不再变化,故选B .题2. (1)正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x +k 的图象过象限;(2)若函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,则m 的取值范围(3)在平面直角坐标系中,将直线l 1:y =-3x -3平移后,得到直线l 2:y =-3x +2,则应向上平移个单位,或向右平移个单位;(4)已知点A (﹣5,y 1),B (10,y 2)在一次函数y =﹣x +9的图象上,则y 1y 2(5)直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围成的三角形面积为4,那么b 1﹣b 2等于(6)一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =(7)函数y =-2x +4的图象上存在点P ,使得点P 到y 轴的距离等于1,则点P 的坐标为 . (8)过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是【答案】(1)一、二、三;(2)m <-1;(3)5,53;(4)>;(5)4或-4;(6)-1; (7)(1,2)或(-1,6);(8)(1,4)、(3,1);【解析】解:(1)∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大, ∴k >0,则y =x +k 的图象过一、二、三象限;(2)∵函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,【本文档由书林工作坊整理发布,谢谢你的下载和关注!】5∴()10430m m +<⎧⎨-->⎩,解得:m <-1;(3)y =-3x -3平移后,得到直线l 2:y =-3x +2,可向上平移5个单位;设向右平移m 个单位,则y =-3(x -m )-3,即-3(x -m )-3=-3x +2,解得:m =53即向右平移53个单位; (4)y =﹣x +9中,y 随x 的增大而减小,因为A (﹣5,y 1),B (10,y 2)在一次函数图象上, 而-5<10,所以y 1>y 2 (5)由题意知:12122S b b =⨯⨯-, 即121422b b =⨯⨯-解得:b 1﹣b 2=4或-4 (6)由题意知:221304010m m m m ⎧-+-=⎪-≠⎨⎪-≠⎩,解得:m =-1; (7)点P 到y 轴的距离等于1,则P 点的横坐标为1或-1, 在y =-2x +4中,当x =1时,y =2;x =-1时,y =6, 即P 点坐标为(1,2)或(-1,6);(8)设直线AB 解析式为y =kx +b ,由题意知:k =32-, 将(﹣1,7)代入得:7=32-×(-1)+b ,解得:b =112, 即直线AB 解析式为:y =32-x +112,整理得:2y +3x =11,由题意知x 、y 均为整数时,有x =1,y =4;x =3,y =1,即符合要求的点的坐标是(1,4)、(3,1). 题3. (1)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,求k 、b 的值.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】6【答案】见解析.【解析】解:①当k >0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =3;x =4,y =6,代入y =kx +b 得:346k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=⎩ ②当k <0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =6;x =4,y =3,代入y =kx +b 得:643k b k b +=⎧⎨+=⎩,解得:17k b =-⎧⎨=⎩即k =1,b =2或k =-1,b =7.(2)如图3-1,函数y =2x 和y =ax +4的图象相交于点A (m ,4),则不等式2x <ax +4的解集为图3-1【答案】x <2.【解析】解:因为函数y =2x 和y =ax +4的图象相交于点A (m ,4), 所以当y =4时,x =2,由图象知:不等式2x <ax +4的解集为x <2.(3)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (千米),甲行驶的时间为t (小时),s 与t 之间的函数关系如图3-2所示.有下列结论:①出发1小时时,甲、乙在途中相遇; ②出发1.5小时时,乙比甲多行驶了60千米; ③出发3小时时,甲、乙同时到达终点; ④甲的速度是乙速度的一半. 其中正确结论是.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】7图3-2【答案】①②④.【解析】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a 千米/小时, 则120140a=+,解得:a =80,∴乙开汽车的速度为80千米/小时, ∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80-40)=60(千米),故②正确; 乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误; ∴正确的结论是①②④.题4. 如图4-1所示,在平面直角坐标系xOy 中,矩形ABCD 的AB 边在x 轴上,AB =3,AD =2,经过点C 的直线y =x ﹣2与x 轴、y 轴分别交于点E 、F .(1)求:①点D 的坐标;②经过点D ,且与直线FC 平行的直线的函数表达式;(2)直线y =x ﹣2上是否存在点P ,使得△PDC 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M ,使得以点M 、D 、C 、E 为顶点的四边形是平行四边形,请直接写出点M 的坐标.图4-1【答案】见解析.【解析】解:(1)①设点C的坐标为(m,2),∵点C在直线y=x﹣2上,∴2=m﹣2,解得m=4,即点C的坐标为(4,2),∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∴点D的坐标为(1,2);②设经过点D且与FC平行的直线函数表达式为y=x+b,将D(1,2)代入y=x+b,得b=1,∴经过点D且与FC平行的直线函数表达式为y=x+1;(2)存在.∵△EBC为等腰直角三角形,∴∠CEB=∠ECB=45°,∵DC∥AB,∴∠DCE=∠CEB=45°,∴△PDC是以P、D为直角顶点的等腰直角三角形,如图4-2所示,图4-2①当∠D=90°时,延长DA与直线y=x﹣2交于点P1,8【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】9∵点D 的坐标为(1,2), ∴点P 1的横坐标为1,把x =1代入y =x ﹣2得,y =﹣1,即P 1(1,﹣1);②当∠DPC =90°时,作DC 的垂直平分线与直线y =x ﹣2的交点即为点P 2, 点P 2的横坐标为52, 将x =52代入y =x ﹣2得,y =12,即P 2(52,12), 综上所述,符合条件的点P 的坐标为(1,﹣1)、(52,12); (3)当y =0时,x ﹣2=0,解得x =2, ∴OE =2,∵以点M 、D 、C 、E 为顶点的四边形是平行四边形, ①若DE 是对角线,则EM =CD =3, OM =EM ﹣OE =3﹣2=1, 点M 的坐标为(﹣1,0),②CE 是对角线,则EM =CD =3,OM =OE +EM =2+3=5, 点M 的坐标为(5,0),③CD 是对角线,则平行四边形的中心坐标为(52,2), 设点M 的坐标为(x ,y ), 则2522x +=,22y=, 解得x =3,y =4,此时,点M 的坐标为(3,4),综上所述,点M 的坐标为(﹣1,0),(5,0)(3,4).题5. 小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的2倍,爸爸在小华出发后50min 才乘上电缆车,电缆车的平均速度为180m /min .设小华出发x (min )行走的路程为y (m ),图5-1中的折线表示小华在整个行走过程中y (m )与x (min )之间的函数关系.(1)小华行走的总路程是_____m ,他途中休息了_____min ; (2)当50≤x ≤80时,求y 与x 的函数关系式;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】10(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?图5-1【答案】(1)3600,20;(2)(3)见解析. 【解析】解:(2)①当50≤x ≤80时, 设y 与x 的函数关系式为y =kx +b , 根据题意,当x =50时,y =1950; 当x =80时,y =3600,得:195050360080k bk b =+=+⎧⎨⎩解得k =55,b =-800,∴函数关系式为:y =55x -800;(3)缆车到山顶的线路长为3600×2=1800米, 缆车到达终点所需时间为1800÷180=10分钟 小颖到达缆车终点时,小亮行走的时间为10+50=60分钟, 把x =60代入y =55x ﹣800,得y =55×60﹣800=2500, ∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.题6. 某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】11【解析】解:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得:60329553x y x y =+=+⎧⎨⎩, 解得:1015x y ==⎧⎨⎩.答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W =10m +15(100-m )=-5m +1500∴()150051150310m m m -≤≤-⎧⎨⎩, 解得:70≤m ≤75.∵m 是整数,∴m =70,71,72,73,74,75.在W =-5m +1500中,∴-5<0,∴W 随m 的增大而减小,∴m =75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.题7. 在平面直角坐标系xOy 中,直线y =kx +4(k ≠0)与y 轴交于点A .(1)如图,直线y =-2x +1与直线y =kx +4(k ≠0)交于点B ,与y 轴交于点C ,点B 的横坐标为-1.①求点B 的坐标及k 的值;②直线y =-2x +1与直线y =kx +4与y 轴所围成的△ABC 的面积等于;(2)直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),若-2<x 0<-1,求k 的取值范围.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】12【解析】解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3,即B (-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k =1,∴直线AB 的解析式为:y =x +4,∴A (0,4),在y =-2x +1中,当x =0时,y =1,∴C (0,1),∴AC =4-1=3, ∴△ABC 的面积为:12×1×3=32; 故答案为:32; (2)∵直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),-2<x 0<-1,∴当x 0=-2,则E (-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E (-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <4.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。