知识点-生物膜的流动镶嵌模型
- 格式:ppt
- 大小:1.02 MB
- 文档页数:10
高中生物膜的流动镶嵌模型知识总结新课标人教版必修1 (一)对生物膜结构的探索历程1.19世纪末,欧文顿提出:膜是由脂质组成的。
2.20世纪初,荷兰科学家提出:细胞膜中的脂质分子必为连续的两层。
3.1959年,罗伯特森提出生物膜的模型:蛋白质——脂质——蛋白质三层结构构成,并描述为静态结构。
4.1970年,科学家通过实验证明细胞膜具有流动性。
5.1972年,桑格和尼克森提出流动镶嵌模型。
(二)流动镶嵌模型的基本内容1.膜是由蛋白质和脂类组成的。
2.膜的基本支架:磷脂双分子层。
该支架具有流动性。
3.蛋白质分子有的镶嵌在磷脂双分子层表面,有的嵌入其中间,有的横跨整个磷脂双分子层,大多数蛋白质分子是可以运动的。
4.膜的结构特点:流动性。
5.膜的功能特点:选择透过性。
本节内容包括:①对生物膜结构的探索历程②流动镶嵌模型的基本内容。
本节内容充分体现了生物体结构与功能的适应。
(1)细胞膜的成分主要是蛋白质和脂类,其中,蛋白质约占膜干重的20%~70%,脂类约占30%~80%,各种膜所含蛋白质和脂类的比例同膜的功能有密切关系,功能活动较旺盛的细胞,其蛋白质的含量高,因为膜的功能主要由蛋白质来承担,此外,细胞膜中还有10%左右的糖类,它们与蛋白质或脂类结合成糖蛋白或糖脂,分布在细胞膜的外表面,与细胞表面的识别有密切关系。
(2)构成细胞膜的基本骨架是磷脂双分子层,蛋白质分子覆盖在磷脂双分子层表面,或贯穿在磷脂双分子层之间,或镶嵌在磷脂双分子层当中。
(3)结构特点:组成细胞膜的磷脂分子和蛋白质分子大都是可以运动的,这种结构特点,使细胞膜具有一定的流动性。
(4)细胞膜的功能:一是保护作用,包括支持、识别、免疫;二是控制物质进出细胞,包括吸收、分泌、排泄等。
学习本节知识,要注意用“结构与功能相适应”的观点来分析细胞膜的结构与其功能之间的关系。
【例题】根据细胞膜的化学成分和结构特点,分析下列材料并回答问题:(1)1895年,Overton在研究各类未受精卵细胞的透性时,发现脂溶性物质容易透过细胞膜,反之,则比较困难,这表明组成细胞膜的主要成分中有(2)1925年,Gorter Grendel用丙酮提取红细胞膜的类脂,它在空气一水面上展开时,这个单层分子的面积相当于原来红细胞表面积的两倍油此可以认为细胞膜由组成。
生物必修1知识点:四(2)生物膜的流动镶嵌模型_*生物膜的分子结构模型有多种,较为流行的如流动镶嵌模型2、生物膜分子结构的基本特点是:(1)镶嵌性:膜的基本结构是由脂双分子层镶嵌蛋白质构成的(2)流动性:膜结构中的蛋白质和脂类分子在膜中可作多种形式的移动。
膜整体结构也具有流动性。
流动性的重要生理意义:物质运输、细胞识别、细胞融合、细胞表面受体功能调节等。
(3)不对称性:膜两侧的分子性质和结构不相同(4)蛋白质极性:多肽链的极性区突向膜表面,非极性部分埋在脂双层内部。
故蛋白质分子既和水溶性也和脂溶性分子具有亲和性。
3、流动镶嵌模型的基本内容结构特点:(1)磷脂双分子层:构成膜的基本支架(其中磷脂分子的亲水性头部朝向两侧,疏水性尾部朝向内侧)(2)蛋白质分子:在膜表面,或部分或全部镶嵌在磷脂双分子层糖被(少量):细胞膜外表功能特性:(3)脂分子是可以运动的,具有流动性;(4)膜的蛋白质分子也是可以运动的。
(也体现膜的流动性)(5)细胞膜外表,有一层由细胞膜上的蛋白质与糖类结合形成的糖蛋白,叫做糖被。
(糖被与细胞识别、胞间信息交流等有密切联系)4.为什么说细胞膜是选择透过性膜?水分子跨膜运输是顺相对含量梯度的,其他物质的跨膜运输并不都是这样,这取决于细胞生命活动的需要。
细胞对物质的吸收是有选择的。
结论:细胞膜不仅是半透膜,还是选择透过性膜1. 2012 山东济宁期末浸入1mol/L KNO3溶液中的洋葱表皮细胞,会发生质壁分离和自动复原的现象,此过程中没有发生( )A.主动运输 B.协助扩散 C.自由扩散 D.渗透作用解析:本题难度较大,浸入1摩尔每升的KNO3溶液中的洋葱表皮细胞,首先会通过渗透作用失水,本质是水的自由扩散,由于K+、NO-3可以通过主动运输的形式进入细胞,所以内部溶质浓度会不断增大,大于外侧时,就会吸水,导致质壁分离复原。
答案:B2.(2012 江西重点中学联考)下列有关物质跨膜运输的叙述中,正确的是( )A.神经递质由突触前膜释放到突触间隙中的方式是主动运输B.mRNA在细胞核中合成后进入细胞质中要穿过2层生物膜C.水稻叶肉细胞无氧呼吸产生的CO2被同一个细胞利用要穿过2层磷脂双分子层D.血液中的葡萄糖进入红细胞的方式是主动运输解析:分泌蛋白的分泌方式为胞吐,故A错误。
简述生物膜结构的流动镶嵌模型,
自20世纪60年代以来,生物膜结构及其流动镶嵌模型一直是物理学和生物学领域的一大挑战性课题。
该概念源于发现膜的材料构成的方式是由大量的非晶态蛋白质和其他化合物组成的具有流变性质的复杂多孔结构。
因此,大量的生物流体成分,如溶质和蛋白质,可以通过这种复杂的结构进行流体交换。
基于生物膜结构的流动镶嵌模型(FPMM)是一种物理模拟方法,旨在研究在特定条件下重要生物膜结构的物理属性及其行为。
FPMM常用于模拟生物膜组织中材料流动,研究介质的水平渗透,以及模拟其有效渗透特性。
该模型使用经典力学技术,如拉普拉斯定律、电磁力学、流变学和热力学,来研究膜的环境响应、耐受性和可控特性,研究吸收、排出和拥挤等等。
目前,FPMM主要在制药产品开发过程中发挥着重要作用,将帮助开发出新型制药、改善现有制药和改善传统护理方法。
它可用于预测普通细胞内/外环境介质的流动情况,模拟不同密度、尺寸和表面性质的蛋白质的交互作用及其演变,研究在有效吸收和低效率药物排放等方面的细胞/活性物质行为。
生物膜结构的流动镶嵌模型(FPMM)有可能改变现有膜物理学、生物物理学和药物能力研究新视角,有助于改善制药产品的安全性和有效性,以及增加人类的健康。
该模型为流动膜的定向工程提供了参考,有望在新药或护理方面取得成功。