向量的加法
- 格式:ppt
- 大小:536.50 KB
- 文档页数:11
向量的基本运算公式大全下面是向量的基本运算公式大全:1.向量加法:o a + b = b + a(交换律)o(a + b) + c = a + (b + c)(结合律)2.向量减法:o a - b = a + (-b)3.向量数量乘法:o ka = ak(交换律,其中k是标量)o(kl)a = k(la)(结合律)4.零向量:o a + 0 = ao a + (-a) = 05.向量点乘(内积):o a·b = b·a(交换律)o(ka)·b = k(a·b) = a·(kb)(分配律)o a·(b + c) = a·b + a·c(分配律)6.向量叉乘(外积):o a×b = -(b×a)(反对称性)o a×(b + c) = a×b + a×c(分配律)o(ka)×b = k(a×b) = a×(kb)(分配律)7.向量混合积:o a·(b×c) = b·(c×a) = c·(a×b)8.长度(模):o||a|| = √(a·a)9.单位向量:o一个向量除以其长度得到单位向量: a/||a||10.平行和垂直:o两个向量平行:a与b平行,当且仅当存在标量k,使得a = kb或b = ka。
o两个向量垂直:a与b垂直,当且仅当a·b = 0。
这些是向量的基本运算公式,它们形成了向量运算的基础,可以用于解决向量计算和几何问题。
需要注意的是,这些公式适用于向量的二维、三维或更高维度空间。
具体运用时,根据具体的向量运算要求和问题,选择合适的公式和运算规则。
向量加法运算知识点总结一、向量的基本概念1. 向量的定义向量是指具有大小和方向的量,通常用箭头表示。
在数学中,向量可以用一组有序数来表示,例如(3, 4),(2, -1, 5)等。
数学中的向量还可以表示为向量的分量形式、向量的模及方向角。
2. 向量的性质向量的性质包括零向量、相等向量、相反向量、单位向量和标准单位向量等。
3. 向量的表示向量可以用不同的表示方式来表示,包括坐标表示、分量表示、矩阵表示和参数方程表示。
二、向量加法的定义1. 向量加法的定义向量加法是指两个或多个向量进行相加的操作。
假设有两个向量a和b,它们的加法操作可以表示为:a + b = c,其中c为向量加法的结果。
2. 向量加法的几何意义向量加法的几何意义是通过平行四边形法则来理解。
假设两个向量a和b的起点相同,那么它们的和向量c的起点就是a和b的起点,终点是a和b的终点构成的平行四边形的对角线的终点。
这就是平行四边形法则的几何意义。
三、向量加法的运算规律1. 交换律向量加法满足交换律,即a + b = b + a。
2. 结合律向量加法满足结合律,即(a + b) + c = a + (b + c)。
3. 分配律向量加法满足分配律,即a * (b + c) = a * b + a * c,其中a为实数,b和c为向量。
四、向量加法的性质向量加法可以形成一个加法群,满足加法封闭性、结合律、交换律和存在可逆元的性质。
2. 向量加法的零向量零向量是指模为0的向量,任何向量与零向量相加都等于原来的向量本身。
3. 向量加法的相反向量任何向量a与其相反向量a的和等于零向量。
五、向量加法的运算方法1. 平行四边形法则通过平行四边形法则可以直观地理解向量加法的过程,通过向量的起点和终点进行对应和连接,从而得到和向量。
2. 分量法通过分量法来进行向量加法的运算,将向量投影到坐标轴上,然后分别对应相加,最终得到和向量。
3. 使用三角函数通过使用三角函数来进行向量加法的运算,可以将向量的模和方向进行合并,然后通过三角函数的性质来进行相加操作。
向量加法运算及其几何意义向量加法是指将两个或多个向量相加的运算。
在数学中,向量加法遵循以下规则:1.向量加法是可交换的。
即,对于任意向量a和b,a+b=b+a。
2.向量加法是可结合的。
即,对于任意向量a、b和c,(a+b)+c=a+(b+c)。
3.零向量是向量加法的单位元素。
即,对于任意向量a,a+0=0+a=a。
几何意义方面,向量加法可以用于描述物体的位移、力的合成以及速度的合成等。
下面以位移和力的合成为例进行解释:1.位移的合成:假设有一辆汽车沿东西方向行驶了100米,然后又沿南北方向行驶了50米。
我们可以将汽车的东西方向的位移表示为向量a=100i,南北方向的位移表示为向量b=50j。
那么,汽车的总位移可以表示为向量c=a+b,即c=100i+50j。
这个向量c表示汽车最终的位置相对于起始位置的位移。
2.力的合成:假设有两个力F1和F2作用在一个物体上,F1的大小为10牛顿,方向为东,F2的大小为5牛顿,方向为北。
我们可以将力F1表示为向量a=10i,力F2表示为向量b=5j。
那么,两个力的合力可以表示为向量c=a+b,即c=10i+5j。
这个向量c表示两个力的合力的大小和方向。
在几何上,向量加法的结果可以通过平行四边形法则进行图示。
以位移为例,我们可以将向量a和向量b的起点放在同一位置,然后将向量a按照其方向和大小绘制出来,再将向量b按照其方向和大小绘制出来。
通过平行四边形法则,我们可以找到一个平行四边形,其两条对角线的交点即为向量a和向量b的和向量c的终点。
总结起来,向量加法是一种将多个向量相加的运算,它遵循可交换和可结合的规则,并且零向量是其单位元素。
在几何上,向量加法可以用于描述位移和力的合成等。
通过平行四边形法则,我们可以找到向量加法的结果的几何意义。
向量的基本运算向量是数学中重要的概念,它用于表示有大小和方向的物理量。
向量可以进行一系列的基本运算,使得我们能够更好地理解和应用向量的概念。
本文将介绍向量的基本运算方法,包括向量的加法、减法、数乘以及点积和叉积运算。
一、向量的加法向量的加法是指将两个向量相加得到一个新的向量的运算。
设有两个向量A和B,表示为A=(a1, a2, a3)和B=(b1, b2, b3),则它们的加法运算可以通过分别将对应分量相加得到新向量C=(a1+b1, a2+b2, a3+b3)。
例如,若向量A=(2, 4, 6)和向量B=(1, 3, 5),则它们的和为C=(3, 7, 11)。
二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量的运算。
设有两个向量A和B,表示为A=(a1, a2, a3)和B=(b1, b2, b3),则它们的减法运算可以通过分别将对应分量相减得到新向量C=(a1-b1,a2-b2, a3-b3)。
例如,若向量A=(2, 4, 6)和向量B=(1, 3, 5),则它们的差为C=(1, 1, 1)。
三、向量的数乘向量的数乘是指将一个向量乘以一个实数得到一个新的向量的运算。
设有一个向量A=(a1, a2, a3)和一个实数k,它们的数乘运算可以通过将向量的每个分量乘以实数得到新向量B=(ka1, ka2, ka3)。
例如,若向量A=(1, 2, 3)和实数k=2,则它们的数乘结果为B=(2, 4, 6)。
四、向量的点积向量的点积又称为内积或数量积,它是两个向量之间的一种运算。
设有两个向量A=(a1, a2, a3)和B=(b1, b2, b3),它们的点积运算可以通过将对应分量相乘,然后将乘积相加得到一个标量c=a1*b1 + a2*b2 + a3*b3。
例如,若向量A=(1, 2, 3)和向量B=(4, 5, 6),则它们的点积结果为c=1*4 + 2*5 + 3*6=32。
五、向量的叉积向量的叉积又称为外积或向量积,它是两个向量之间产生一个新的向量的运算。
向量公式汇总一、向量的基本运算1.向量的加法:若有向量a=(a₁,a₂,a₃)和b=(b₁,b₂,b₃),则向量a和b的和可以表示为a+b=(a₁+b₁,a₂+b₂,a₃+b₃)。
2.向量的减法:若有向量a=(a₁,a₂,a₃)和b=(b₁,b₂,b₃),则向量a和b的差可以表示为a-b=(a₁-b₁,a₂-b₂,a₃-b₃)。
3.向量的数量积(点积):若有向量a=(a₁,a₂)和b=(b₁,b₂),则向量a和b的数量积可以表示为a·b=a₁b₁+a₂b₂。
4.向量的数量积的性质:-交换律:a·b=b·a-结合律:(k·a)·b=k·(a·b),其中k为常数-分配律:(a+b)·c=a·c+b·c5.向量的向量积(叉积):若有向量a=(a₁,a₂,a₃)和b=(b₁,b₂,b₃),则向量a和b的向量积可以表示为a×b=(a₂b₃-a₃b₂,a₃b₁-a₁b₃,a₁b₂-a₂b₁)。
6.向量的向量积的性质:-反交换律:a×b=-b×a-结合律:(k·a)×b=k·(a×b),其中k为常数-分配律:(a+b)×c=a×c+b×c二、向量的模和方向7.向量的模:向量a=(a₁,a₂,a₃)的模可以表示为,a,=√(a₁²+a₂²+a₃²)。
8.单位向量:向量的模为1的向量称为单位向量。
对于向量a,若其模为1,则该向量为单位向量。
9.方向余弦:若有向量a=(a₁, a₂, a₃),则它的方向余弦可以表示为cosα=a₁/,a,, cosβ=a₂/,a,, cosγ=a₃/,a。
三、向量的坐标表示10.点P的坐标表示:若P(x,y)为平面直角坐标系中的一点,则点P的坐标向量可以表示为P=(x,y)。
向量的加法法则
向量的加法法则是指两个向量在空间中进行相加的规则。
例如,将两个相同方向的向量相加可以得到一个更长的向量,相反方向的向量相加则会得到一个更短的向量。
向量的加法有以下几种情况:
①平行向量的加法
如果两个向量方向相同,那它们就是平行向量,它们可以直接相加。
其结果等于两个向量相加的模长值的向量。
例如,向量a和向量b都指向右方(平行),向量a的模长为3,向量b的模长为4,那么它们的和向量c的模长为7,并指向右方。
②反平行向量的加法
如果两个向量方向相反,那它们就是反平行向量,它们在相加前需要先取反其一。
其结果等于两个向量模长的差值向量。
例如,向量a和向量b方向相反,向量a的模长为3,向量b的模长为4,那么反平行向量a+b的模长为1(|3-4|=1),并指向a的反方向。
③垂直向量的加法
如果两个向量互相垂直,那它们的和向量等于它们之间组成的直角三角形的斜边长。
可以用勾股定理求出。
即:向量c²=向量a²+向量b²。
例如,向量a垂直于向量b,且向量a的模长为3,向量b的模长为4,那么它们的和向量c的模长等于根号(3²+4²)=5,同时c的方向和第一象限的y轴正方向夹角45°。
总之,向量的加法法则虽然简单,但也需要在实际问题中加以注意,需要根据向量所处的情况而进行不同的运算处理,才能得到正确的结果。
向量公式设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。
若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的加法运算向量的加法运算是数学中最基本的操作之一,在各种数学问题中常常用到。
它的定义是将两个向量加在一起,得到的新向量就是两个向量的和。
它具有多种性质,也可以用各种方法进行实现。
在本文中,将介绍向量的加法运算的定义、性质和实现方法,以及它的应用。
首先,介绍一下向量的加法运算的定义。
它是将两个或多个向量加起来,得到一个新的向量,就是原来两个向量的和。
如果是两个向量,则新向量的每个元素均为两个向量对应元素的和,即新向量的第i个元素等于两个老向量第i个元素的和,其中i=1,2,3,…n。
向量的加法运算具有多种性质。
其中最基本的性质是交换律,即两两向量的加法运算同次序无关,A+B=B+A;另一个性质是结合律,即多个向量相加得到一个新向量,次序不变, A+(B+C)=(A+B)+C;还有一个性质是零向量,即原向量加上零向量等于原向量,A+0=A。
在实际操作中,多种方法可以实现向量的加法运算。
最常用的方法是将两个向量的每个元素求和,得到新的向量;也可以用矩阵运算,将两个向量转化为两个相同行数的矩阵,再求矩阵的加法,得到的矩阵即为新的向量;也可以用几何图形的方法,即将两个向量对应的点进行连线,连线的另一端的点即为新的向量。
向量的加法运算是一种基本的操作,在数学中有着广泛的应用。
例如,它可用于解决多元一次方程组,求解向量空间中的距离和夹角;另外,它可用于物理学中的力学分析,将多个力的作用相加,从而得到结果;它还可以应用在流体力学中,求解流体速度场中流体分量之和。
总之,向量的加法运算是数学和物理学中最基本的操作之一,在多个学科中有着重要的应用。
它的定义、性质、实现方法以及应用都是数学领域中必须了解的内容。
本文介绍了向量的加法运算的定义、性质以及实现方法,并且介绍了它在数学和物理学中的应用,希望能给读者带来帮助。
向量加法的运算律
向量加法的运算律是指在向量空间中,向量之间的加法操作满足的规律。
向量加法的运算律包括交换律、结合律和零向量的存在性。
首先是向量加法的交换律。
对于任意向量a和b,a + b = b + a。
这意味着向量加法是满足交换律的,即加法的顺序不影响最终的结果。
这是因为向量的加法是一种可交换的运算。
其次是向量加法的结合律。
对于任意向量a、b和c,(a + b) + c = a + (b + c)。
这意味着在进行多个向量相加时,可以任意改变加法的顺序,最终结果不会改变。
这也说明向量的加法是一种满足结合律的运算。
另外,向量加法的运算律也包括零向量的存在性。
对于任意向量a,存在一个零向量0,使得a + 0 = a。
零向量是指一个模长为0的向量,它与任意向量相加都等于原向量本身。
这也意味着向量空间中存在一个单位元素,对向量加法起到类似于数字0对于加法的作用。
综上所述,向量加法的运算律包括交换律、结合律和零向量的存在性。
这些运算律是向量空间中的基本性质,对于进行向量加法运算和推导向量性质具有重要的意义。
向量加法的运算律使向量的运算更加灵活和方便,为向量空间的研究和应用提供了重要的基础。
向量的运算的所有公式数学公式是数学题目解题关键,那么向量的运算公式有哪些呢?快来和小编一起看看吧。
下面是由小编为大家整理的“向量的运算的所有公式”,仅供参考,欢迎大家阅读。
向量的运算的所有公式向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。
它可以形象化地表示为带箭头的线段。
箭头所指:代表向量的方向;线段长度:代表向量的大小。
向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。
数与向量的乘法满足下面的运算律:结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
向量的数量积的运算律:a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的向量积运算律:a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.拓展阅读:向量的表达方式1.代数表示一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,也可以用大写字母AB、CD上加一箭头(→)等表示。
向量加减法运算
向量加法满足和三角形法则。
向量加法的运算律有交换律:
a+b=b+a;:(a+b)+c=a+(b+c)。
向量减法的运算法则为:如果a、b是互为相反的向量,那么a-b=0。
在数学中,向量(也称为向量、几何向量、矢量),指具有大小和方向的量。
它可以形象化地表示为带箭头的线段。
向量定义是既有大小,又有方向的量叫做向量。
在几何上,向量用有向线段来表示,有向线段长度表示向量的大小,有向线段的方向表示向量的方向。
其实有向线段本身也是向量,称为几何向量。
在实际问题中,有些向量与其起点有关,有些向量与其起点无关。
由于一切向量的共性是它们都有大小和方向,所以在数学上我们只研究与起点无关的向量,并称这种向量为自由向量(以后简称向量),即只考虑向量的大小和方向,而不论它的起点在什么地方。
在只讨论自由向量的约定下,向量可以平行移动,所以两个向量相等的定义如下:定义如果两个向量大小相等,且方向相同,我们就说这两个向量是相等的。
即:经过平行移动后能完全重合的向量是相等向量,或者说它们是同一个向量。
向量的运算的所有公式1.向量加法的定义对于两个向量a和b,它们的和被定义为两个向量的对应分量相加所得的向量,即:a +b = (a1+b1, a2+b2, ... , an+bn)2.向量减法的定义向量减法可以看作是向量加法的逆操作,即a减去b等于a加上-b 的结果,即:a -b = a + (-b) = (a1-b1, a2-b2, ... , an-bn)3.向量数量乘法的定义向量数量乘法是将一个标量与一个向量的每个分量相乘,即:k * a = (k*a1, k*a2, ... , k*an)其中,k为标量。
若数k≠0,且k·a=0,则a=0。
4.向量运算的性质a.交换律:a+b=b+a向量的加法满足交换律,即加法的顺序可以任意调换。
b.结合律:(a+b)+c=a+(b+c)向量的加法满足结合律,即几个向量相加的结果与加法的顺序无关。
c. 分配律:k(a + b) = ka + kb向量的数量乘法满足分配律,即向量加法与数量乘法相互关联。
d.向量加法的零元:a+0=a零向量0是唯一的,满足任何向量与0相加的结果等于它本身。
e.数量乘法的单位元:1·a=a数量乘法的单位元是1,满足任何向量与1相乘的结果等于向量本身。
另外,针对一些常见运算,还存在一些特殊的公式:5.内积的定义两个n维向量a=(a1, a2, ... , an)和b=(b1, b2, ... , bn)的内积被定义为:a·b = a1*b1 + a2*b2 + ... + an*bn6.内积的性质a.交换律:a·b=b·a内积满足交换律,即两个向量的内积与其顺序无关。
b.分配律:(a+b)·c=a·c+b·c内积满足分配律,即内积对于向量的加法满足分配律。
c.数量乘法结合律:(k*a)·b=k*(a·b)=a·(k*b)内积满足数量乘法的结合律。
向量加减法的运算法则
1. 向量的加法:向量的加法满足交换律和结合律,即对于任意向量a、b和c,有a+b=b+a,(a+b)+c=a+(b+c)。
2. 向量的减法:向量的减法等价于加上一个负向量,即a-b=a+(-b)。
其中,-b 是向量b的负向量,它方向与b相反,大小相等。
3. 向量的数乘:向量的数乘指将一个实数k与向量a相乘,将a的大小缩放为原来的k倍,即ka。
如果k是负数,它会将向量a逆向,即大小不变,方向发生改变。
4. 零向量:零向量是一个特殊的向量,它所有的分量都为零。
零向量与任何向量进行加法,得到的结果是该向量本身,即a+0=a。
5. 反向量:每个向量都有一个对应的反向量,它的大小相等,方向相反。
向量a 的反向量记作-a,它满足a+(-a)=0。
6. 同向量和异向量:如果两个向量的正负方向相同,则它们是同向量;反之,如果它们正负方向相反,则称它们为异向量。
向量定理七个公式平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c 上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
输入分数,查看能上的大学测一测能上的大学1向量的加法1、向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3向量的的数量积1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.2、向量的数量积的坐标表示:a•b=x•x'+y•y'.3、向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);4、向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.5、向量的数量积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.(2)向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出b=c.(3)|a•b|≠|a|•|b|(4)由|a|=|b| ,推不出a=b或a=-b.4数乘向量1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.5向量的向量积1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.6向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号.7定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式8其他公式1、三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线2、三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心3、向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的重要条件是xy'-x'y=0.4、零向量0平行于任何向量.5、向量垂直的充要条件a⊥b的充要条件是a•b=0.a⊥b的充要条件是xx'+yy'=0.6、零向量0垂直于任何向量.。