人教版七年级数学模拟试题
- 格式:doc
- 大小:199.00 KB
- 文档页数:7
人教版七年级下数学期末模拟提优练试题一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,有理数是()A.B.0.1010010001C.D.2.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查3.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°4.(3分)如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,﹣1),雍和宫站的坐标为(0,4),则西单站的坐标为()A.(0,5)B.(5,0)C.(0,﹣5)D.(﹣5,0)5.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n26.(3分)观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加7.(3分)下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±28.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°9.(3分)若不等式组有解,则a的取值范围是()A.a≤3B.a<3C.a<2D.a≤210.(3分)在平面直角坐标系中,一动点从原点出发按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动的路线如图所示,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)二、填空题(本小题共8小题,每小题3分,共24分)11.(3分)4的平方根是.12.(3分)用不等式表示“比x的5倍大1的数不小于4”:.13.(3分)已知是二元一次方程ax﹣2y=4的一个解,则a的值是.14.(3分)化简:||=.15.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.16.(3分)有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”问:两个牧童各有多少只羊?设甲牧童有x只羊,乙牧童有y只羊,可列方程组为.17.(3分)已知AB∥y轴,点A的坐标为(﹣2,3),且AB=3,则点B的坐标为.18.(3分)已知实数x,y同时满足三个条件:①3x﹣2y=4+p;②3y﹣2x=2﹣p;③x>y,那么实数p的取值范围是.三、解答题(本题共46分)19.(6分)解方程组:.20.(7分)解不等式组:并把它的解集在所给数轴上表示出来.21.(8分)如图,在由边长为1的小正方形组成的网格图中建立平面直角坐标系.(1)直接写出点D的坐标(,);(2)平移△ABC,使得点A与点D重合,请在坐标系中画出平移后的三角形,记为△DB1C1(其中B、C的对应点分别是B1、C1);(3)若P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为(,).22.(6分)完成下面填空.已知:如图,AE平分∠BAD,AB∥CD,CD与AE相交于点F,∠CFE=∠E,求证:AD∥BC证明:∵AB∥CD(已知)∴∠1=∠(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠(角平分线定义)又∵∠CFE=∠E(已知)∴∠=∠E(等量代换)∴AD∥BC()23.(9分)今年央视举办的“经典咏流传”节目受到中学生的广泛关注,某中学为了了解学生对观看“经典咏流传”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制了如下所示的两幅统计图.在条形统计图中,从左往右依次为A类(非常喜欢),B 类(较喜欢),C类(一般),D类(不喜欢),已知A类和B类所占人数比是5:9,请结合两幅统计图,回答下列问题:(1)此次抽样调查的样本容量是:.(2)请补全两幅统计图:并计算扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)该校有2000名学生,请你估计对观看“经典咏流传”节目较喜欢的学生人数.24.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】依据实数的分类进行判断即可.【解答】解:是开方开不尽的数,是无理数;0.1010010001是有限小数,是有理数;是开方开不尽的数,是无理数;是无理数.故选:B.【点评】本题主要考查的是实数的概念,熟练掌握实数的定义是解题的关键.2.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选:D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.【分析】首先利用已知点确定原点位置,进而得出答案.【解答】解:如图所示:西单站的坐标为:(﹣5,0).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.5.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变6.【分析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,对选项一一分析,选择正确答案.【解答】解:A、2003年农村居民人均收入每年比上一年增长率低于2002年,但是,人均收入仍是增长,所以A错误;B、农村居民人均收入比上年增长率低于9%的有3年,所以B错误;C、农村居民人均收入比上年增长率最多时2004年,所以C错误;D、农村居民人均收入每年比上一年的增长率有大有小,但都在增长,故D正确.故选:D.【点评】本题考查的是折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.注意读图获取信息、分析问题解决问题的能力.7.【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.8.【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.9.【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a 的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选:B.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.10.【分析】根据点A1、A2、A3、A4、A5、A6、A7、A8、…的坐标的变化,可找出A4n(2n,0)(n为正整数),再结合100=4×25,即可得出A100的坐标.【解答】解:∵A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,∴A4n(2n,0)(n为正整数).∵100=4×25,∴A100的坐标为(50,0).故选:C.【点评】本题考查了规律型中点的坐标,根据点的坐标的变化找出变化规律“A4n(2n,0)(n为正整数)”是解题的关键.二、填空题(本小题共8小题,每小题3分,共24分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.13.【分析】将x与y的值代入方程即可求出a的值.【解答】解:将x=2,y=2代入方程得:2a﹣4=4,解得:a=4.故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.15.【分析】根据平行线的性质,即可得到∠3的度数,再根据平角的定义以及折叠的性质,即可得到∠2的度数.【解答】解:根据长方形的对边平行,可得∠1+∠3=180°,∵∠1=100°,∴∠3=80°,由折叠可得,∠2=∠4=(180°﹣80°)=50°,故答案为:50【点评】本题主要考查了平行线的性质以及折叠的性质,解题时注意:两直线平行,同旁内角互补.16.【分析】设甲牧童有x只羊,乙牧童有y只羊,根据题意列出方程组解答即可.【解答】解:设甲牧童有x只羊,乙牧童有y只羊,可得:,故答案为:,【点评】此题考查二元一次方程组的应用,解答此题的关键是弄清题意,设出未知数,再根据数量关系列出方程组解决问题.17.【分析】根据平行于y轴的点的横坐标相同可得点B的横坐标,再分点B在点A的上方与下方两种情况讨论求解.【解答】解:∵AB∥y轴,点A的坐标为(﹣2,3),∴点B的横坐标为﹣2,∵AB=3,∴点B在点A的上方时,点B的纵坐标为6,点B的坐标为(﹣2,6),点B在点A的下方时,点B的纵坐标为0,点B的坐标为(﹣2,0),综上所述,点B的坐标为(﹣2,6)或(﹣2,0)故答案为:(﹣2,6)或(﹣2,0)【点评】本题考查了坐标与图形性质,主要利用了平行于y轴的点的横坐标相同的性质,要注意分情况讨论,作出图形更形象直观.18.【分析】首先根据:①3x﹣2y=4+p,②3y﹣2x=2﹣p,用p表示出x、y;然后根据x >y,求出实数p的取值范围是多少即可.【解答】解:①×2+②×3,可得:5y=14﹣p,解得y=2.8﹣0.2p③,把③代入①,解得x=3.2+0.2p,∵x>y,∴3.2+0.2p>2.8﹣0.2p,解得p>﹣1.故答案为:p>﹣1.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三、解答题(本题共46分)19.【分析】利用加减消元法求解可得.【解答】解:①+②×5,得:44y=660,解得:y=15,将y=15代入①,得:5x﹣15=110,解得:x=25,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.【分析】(1)直接利用平面直角坐标系得出D点坐标;(2)利用D点平移规律得出各对应点位置进而得出答案;(3)利用平移规律得出P点坐标.【解答】解:(1)点D的坐标为:(﹣2,3);故答案为:﹣2,3;(2)如图所示:△DB1C1即为所求;(3)P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为:(a+3,b﹣2).故答案为:a+3,b﹣2.【点评】此题主要考查了平移变换,正确得出点的平移规律是解题关键.22.【分析】由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥DC(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠CFE=∠2(等量代换).∵∠CFE=∠E(已知),∴∠2=∠E(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:∠CFE;∠2;∠2;内错角相等,两直线平行.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得选择C和D的人数,B和D所占的百分比从而可以将统计图补充完整,并求得扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)根据统计图的数据可以求得对观看“经典咏流传”节目较喜欢的学生有多少人.【解答】解:(1)此次抽样调查的样本容量是:20÷20%=100,故答案为:100;(2)选择C的有:100×19%=19人,选择D的有:100﹣20﹣36﹣19=25人,B所占的百分比是:36÷100×100%=36%,D所占的百分比是:25÷100×100%=25%,补全的统计图如右图所示,扇形统计图“D类(不喜欢)”部分的圆心角度数是:360°×25%=90°;(4)2000×36%=720(人),答:对观看“经典咏流传”节目较喜欢的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、样本容量,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.一、七年级数学易错题1.如图,在直角坐标系中,已知点()()3,0,0,4A B -,对OAB ∆连续作旋转变换,,依次得到1,2,3,4?·····∆∆∆∆则2013∆的直角顶点的坐标为( )A .()8052,0B .()8040,0C .()8049,0D .()8048,0【答案】A 【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4), ∴22345AB +=,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0). 故选:A .【点睛】本题考查点的坐标变化规律,注意观察图形,得到每三个三角形为一个循环组依次循环是解题的关键.2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°【答案】B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.3.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD 交⊙D 于P′,此时AP′最大,∵A (1,0),D (4,4), ∴AD=5, ∴AP′=5+1=6, ∴a 的最大值为6. 故选D . 【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a ,求出点P 到点A 的最大距离即可解决问题,属于中考常考题型.4.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④【答案】B 【解析】 【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确; ②由x+y=0,得到y=-x ,代入方程组得:31x kx k -=⎧⎨-=-⎩,即k=3k-1,解得:12k =, 则存在实数12k =,使x+y=0,本选项正确;③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩,∵1y x ->-, ∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③【答案】C 【解析】 【分析】 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=⎩ B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩【答案】D 【解析】 【分析】 将方程组变形,设32,55x y m n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】 解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩ 设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, ∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩, ∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.7.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15【答案】C【解析】【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:12201n+≤﹣(舍去),或2201n≥﹣1.∵220114﹣113<,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12nn nS+=”.8.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A(3a,2b)在y轴的左边,∴点A的横坐标小于0,即3a<0,∴点A到y轴的距离是-3a;故答案为C.【点睛】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.【答案】C【解析】【分析】【详解】解:设1分的硬币有x枚,2分的硬币有y枚,则5分的硬币有(15-x-y)枚,可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34 y,因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.10.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18【答案】B【解析】【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.11.如果关于x 的不等式组02443x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x y 、均为整数),则符合条件的所有整数m 的和是( )A .2-B .2C .6D .10【答案】B【解析】【分析】 根据不等式组求得m ≤4,再解方程组求出732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩,根据x y 、均为整数得到整数m=4、2、-4,即可得到答案.【详解】 解不等式02x m ->得x m >, 解不等式443x x --<-得4x >, ∴m ≤4, 解方程组831mx y x y +=⎧⎨+=⎩得732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩, ∵x y 、均为整数,m-3是7的因数,∴m-3=1、-1、-7,7,即m=4、2、-4,10(舍去)符合条件的所有整数m 的和是4+2-4=2,故选:B.【点睛】此题考查解不等式组,解方程组,因式分解,解题中求出方程组的解,确定m-3是7的因数是解题的关键,由此根据m 的取值范围求出符合条件的所有整数m 的值.12.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关 【答案】A【解析】 根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .13.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁【答案】A【解析】【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得: 1025x y y x y x-=-⎧⎨-=-⎩ 即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.14.如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】【分析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23,168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【答案】C【解析】设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选C.16.设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有正确说法的序号是A.①④B.②③C.①②④D.①③④【答案】C【解析】根据勾股定理,边长为3的正方形的对角线长为a=①正确.根据实数与数轴上的一点一一对应的关系,a可以用数轴上的一个点来表示,故说法②正确.∵216<a18<25=,∴4<a=,故说法③错误.∵2a18=,∴根据算术平方根的定义,a是18的算术平方根,故说法④正确.综上所述,正确说法的序号是①②④.故选C.17.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()。
人教版七年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)4的算术平方根是()A.16B.±2C.2D.2.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.(3分)如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.(3分)在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.(3分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.(3分)小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.(3分)我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1010.(3分)根据表中的信息判断,下列语句中正确的是()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.(4分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.(4分)有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形ABCD 中,AB=8m ,BC=12cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒4cm 的速度,由点B 向点C 运动,同时,点Q 在线段CD 上以v 厘米/秒的速度,由点C向点D运动,设运动时间为t秒.(1)直接写出:PC= 厘米,CQ= 厘米;(用含t、v的代数式表示) (2)若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,试求v、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针方向沿长方形ABCD的四边运动,求经过多长时间点P与点Q第一次在长方形ABCD 的哪条边上相遇?备用图参考答案1.C.2.C.3.B4.B.5.A.6.B.7.A.8.D.9.A.10.A.11.4x3y;12.AF//DE;13.40°;14.174;15.9秒;16.173;17.原式=7;18.解:原式=-3xy=2;19.画图略;20.解:(1)∵∠A=∠ADE∴AD//DE∴∠CDE+∠C=180°设∠C=x,∠CDE=3x∴4x=180°∴x=45°∴∠C=45°(2)证明:BE//CD.证明如下:∵∠C=∠E∴∠E=45°∵AC//DE∴∠B=∠E=45°∵∠B=∠C=45°∴BE//CD.21.证明:在△ABC和△ADE中∵AD=AB,AE=AC,DE=BC∴△ABC≌△ADE(SSS).22.(1)4,6,4;12;(2)面积为24;23.解:(1)∠ECF=70°;(2)∠APC=2∠AFC.(3)∠APC=40°;24.(1)(a-b )2;a 2-2ab+b 2;(a-b )2=a 2-2ab+b 2;(2)ab=-2.5;(x-2019)2=5; 25.(1)12-4t ;vt ;(2)当BP=CQ 时,t=2,v=4;当BP=PC 时,t=1.5,v=38; (3)4t-38t=12,解得t=9;所以P 点路程为36cm ,所以P 、Q 相遇在边AD 上.七年级(下)期中考试数学试题及答案一、选择题(第1至4题每小题3分,第5至10题每小题2分,共24分)1.4的平方根是( )A.4 B.±4 C.±2 D.22.如图,∠1,∠2是对顶角的是()3.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是( )A.30°B.105° C.120° D.135°4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A.60°B.45°C.50°D.30°5.( )A.点PB.点QC.点RD.点S6.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.点A (2,-1)关于x轴对称的点B的坐标为()A.(2, 1) B.(-2,1) C.(2,-1) D.(-2,- 1)+=,则a与b的关系是()8.0A.a=b=0 B.a=b C.a与b互为相反数D.a=9.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2), 那么水立方的坐标为()A .(-2, -4)B .(-1, -4)C .(-2, 4)D .(-4, -1) 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018, 2)B .(2019, 2)C .(2019,1)D .(2017,1)二、填空题(第11至16题每小题3分,第17、18题每小题2分,共22分) 11.在平面直角坐标系中,点(2,3)到x 轴的距离是________.12x 的取值范围是________.13.若33a b-<-,则a_________b .(填“<、>或=”号) 14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________.153=,则7-m 的立方根是________.16.在平面直角坐标系中,已知两点坐标A(m-1,3), B(1,m 2-1),若AB ∥x 轴,则m 的值是________.17.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。
人教版七年级下数学期末模拟提优练试题含解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的立方根是()A.﹣2B.2C.±2D.42.(4分)下列各数中,介于6和7之间的数是()A.B.C.D.3.(4分)若x轴上的点P到y轴的距离为3,则点P为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)4.(4分)不等式组的解集是()A.﹣5≤x<3B.﹣5<x≤3C.x≥﹣5D.x<35.(4分)下列问题中,应采用抽样调查的是()A.企业招聘,对应聘人员进行面试B.了解某班学生的身高情况C.调查春节联欢晚会的收视率D.了解某校七年级第二学期期末考试各班的数学科平均成绩6.(4分)已知a∥b,将等腰直角三角形ABC按如图所示的方式放置,其中锐角顶点B,直角顶点C分别落在直线a,b上,若∠1=15°,则∠2的度数是()A.15°B.22.5°C.30°D.45°7.(4分)如图所示,下列各组图形中,一个图形经过平移能得到另一个图形的是()A.B.C.D.8.(4分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.45°B.30°C.50°D.36°9.(4分)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40B.45C.51D.5610.(4分)关于x、y的方程组的解为整数,则满足这个条件的整数m的个数有()A.2个B.3个C.4个D.无数个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:=.12.(4分)请写出一个比2大且比4小的无理数.13.(4分)已知|4x+3y﹣1|+(y﹣3)2=0,求x+y的值.14.(4分)如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.15.(4分)如图,在平面直角坐标系中,若▱ABCD的顶点A,B,C的坐标分别是(2,3),(1,﹣1),(7,﹣1),则点D的坐标是.16.(4分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,则第1007个三角数与第1009个三角数的差为.三、解答题(本大题共9小题,共86分)17.(8分)计算:18.(8分)解不等式2(2x+1)<14,并把它的解集在数轴上表示出来:19.(8分)解方程组:.20.(8分)如图:O为直线AB上一点,,OC是∠AOD的平分线.求:∠COD的度数.21.(8分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(10分)在图中描出A(﹣4,4),B(0,4),C(2,1),D(﹣2,1)四个点,线段AB、CD有什么位置关系?顺次连接A,B,C,D四点,求四边形ABCD的面积.23.(10分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.24.(12分)某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元.(1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?25.(14分)如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是;(2)当P、Q分别在线段AO,OC上时,连接PB,QB,使S△P AB=2S△QBC,求出点P 的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请探究∠OPQ和∠PQB的数量关系,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【分析】根据(﹣2)3=﹣8,继而可得出﹣8的立方根.【解答】解:=﹣2,故选:A.【点评】此题考查了立方根的知识,属于基础题,比较简单,关键是知道(﹣2)3=﹣8.2.【分析】先估算出5<<6,6<7,7<<8,3<<4,根据以上范围得出选项即可.【解答】解:∵5<<6,6<7,7<<8,3<<4,∴在6和7之间的数是,故选:B.【点评】本题考查了估算无理数的大小的应用,解此题的关键是能估算出每个数的范围,是基础题目,难度不大.3.【分析】根据x轴上的点P到y轴的距离为3,可得点P的横坐标为±3,进而根据x轴上点的纵坐标为0可得具体坐标.【解答】解:∵x轴上的点P到y轴的距离为3,∴点P的横坐标为±3,∵x轴上点的纵坐标为0,∴点P的坐标为(3,0)或(﹣3,0),故选:B.【点评】本题考查了点的坐标的相关知识;用到的知识点为:x轴上点的纵坐标为0.4.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥﹣5,故不等式组的解集为:﹣5≤x<3.故选:A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断.【解答】解:A、企业招聘,对应聘人员进行面试应采用全面调查;B、了解某班学生的身高情况应采用全面调查;C、调查春节联欢晚会的收视率应采用抽样调查;D、了解某校七年级第二学期期末考试各班的数学科平均成绩应采用全面调查;故选:C.【点评】本题考查的是算术平均数、抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】利用等腰直角三角形的定义求∠3,再由平行线的性质求出∠2即可.【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1+∠3=45°,∵∠1=15°,∴∠3=30°,∵a∥b,∴∠2=∠3=30°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【分析】根据平移的性质,结合图形,对选项进行一一分析,选出正确答案.【解答】解:各组图形中,选项D中的图形是一个图形经过平移能得到另一个图形,故选:D.【点评】本题考查平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.【分析】设∠ADB=x,则∠BDC=2x,再由AD∥BC得出∠DBC=∠ADB=x,根据三角形内角和定理得出x的值,进而可得出结论.【解答】解:∵∠ADB:∠BDC=1:2,∴设∠ADB=x,则∠BDC=2x.∵AD∥BC,∴∠DBC=∠ADB=x,∵∠C=30°,∠C+∠DBC+∠BDC=180°,即30°+x+2x=180°,解得x=50°,∴∠DBC=50°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.9.【分析】先根据[x]表示不大于x的最大整数,列出不等式组,再求出不等式组的解集即可.【解答】解:根据题意得:5≤<5+1,解得:46≤x<56,故选:C.【点评】此题考查了一元一次不等式组的应用,关键是根据[x]表示不大于x的最大整数,列出不等式组,求出不等式组的解集.10.【分析】首先应用加减消元法,求出方程组的解是多少;然后根据方程组的解为整数,判断出满足这个条件的整数m的个数有多少即可.【解答】解:①﹣②,可得(2﹣m)x=﹣m,解得x=,把x=代入①,解得y=,∴原方程组的解是,∵方程组的解为整数,∴m﹣2=±1,±2或±4.(1)m﹣2=﹣1时,m=1,原方程组的解是,符合题意;(2)m﹣2=1时,m=3,原方程组的解是,符合题意;(3)m﹣2=﹣2时,m=0,原方程组的解是,符合题意;(4)m﹣2=2时,m=4,原方程组的解是,符合题意;(5)m﹣2=﹣4时,m=﹣2,原方程组的解是,不符合题意;(6)m﹣2=4时,m=6,原方程组的解是,不符合题意;∴满足这个条件的整数m的个数有4个:m=0,1,3,4.故选:C.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.二、填空题(本大题共6小题,每小题4分,共24分)11.【分析】易知=3,=2,即可计算【解答】解:=3﹣2=1故答案为1【点评】此题主要考查实数的运算,根据根式的性质即可计算.12.【分析】由于4<5<16,则<<,即可得到满足条件的无理数【解答】解:∵4<5<16,∴<<,即2<<4.故答案为:.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.13.【分析】首先由非负数的性质得出x、y的数值,进一步代入求得答案即可.【解答】解:根据题意得,解得.则原式=﹣2+3=1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.【分析】根据折叠的性质,得∠BFE=(180°﹣∠1),再根据平行线的性质即可求得∠AEF的度数.【解答】解:根据长方形ABCD沿EF对折,若∠1=50°,得∠BFE=(180°﹣∠1)=65°.∵AD∥BC,∴∠AEF=115°.【点评】此题综合运用了折叠的性质和平行线的性质.15.【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,即可求得顶点D的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、B、C的坐标分别是(2,3),(1,﹣1),(7,﹣1),∴BC=6,顶点D的坐标为(8,3).故答案为:(8,3).【点评】此题考查了平行四边形的性质.注意数形结合思想的应用是解此题的关键.16.【分析】观察分析得到第1个三角形数为1,第2个三角形数为1+2=3,第3个三角形数为1+2+3=6,第4个三角形数为1+2+3+4=10,第5个三角形数为1+2+3+4+5=15,…,得到第n个三角形数为1+2+3+4+…+n,则第22个三角形数为1+2+3+4+…22,第24个三角形数为1+2+3+4+…+22+23+24,即可得到第24个三角形数与第22个三角形数的差.【解答】解:第1个三角形数为1,第2个三角形数为1+2=3,第3个三角形数为1+2+3=6,第4个三角形数为1+2+3+4=10,第5个三角形数为1+2+3+4+5=15,…所以第1007个三角形数为1+2+3+4+…1007,第1009个三角形数为1+2+3+4+…+1007+1008+1009,所以第1007个三角形数与第1009个三角形数的差等于1008+1009=2017.故答案为:2017.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(本大题共9小题,共86分)17.【分析】先化成最简二次根式,再根据二次根式的加减法则求出即可.【解答】解:原式==.【点评】本题考查了二次根式的加减,能灵活运用法则进行计算是解此题的关键.18.【分析】先去括号,再移项合并同类项,最后系数化1即可得到解集,最后画数轴表示解集.【解答】解:4x+2<14,4x<12,x<3.∴不等式的解集为x<3.【点评】本题主要考查了解一元一次不等式的方法以及在数轴上表示不等式解集的方法,属于基础题型.19.【分析】把第一个方程乘以4,然后利用加减消元法解方程组即可.【解答】解:,①×4得,8x﹣4y=20③,②+③得,11x=22,解得x=2,把x=2代入①得,4﹣y=5,解得y=﹣1,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.【分析】利用∠AOC=∠BOC及补角的性质就可求出∠COD的度数.【解答】解:∵∠AOC=∠BOC,∠AOC+∠BOC=180°,∴4∠AOC=180°,∠AOC=45°,∵OC平分∠AOD,∴∠COD=∠AOC=45°.【点评】此题主要考查了补角的性质及垂直的定义,要注意领会由直角得垂直这一要点.21.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.【分析】根据平面直角坐标系描出各点,再根据网格结构的特点观察图形即可得解;由图形可以判断四边形的形状为平行四边形,利用网格结构求出AB边的长度以及AB边上的高,然后根据面积公式列式计算即可得解.【解答】解:(1)如图,AB∥CD;(2)S=4×3=12,四边形ABCD的面积是12.【点评】本题考查了坐标与图形的性质,熟练掌握网格结构与平面直角坐标系准确描出A、B、C、D四个点是解题的关键.23.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.24.【分析】①根据题意,需分类讨论.因为160<240,所以不可能选择A类年票;然后计算出若只选择购买B类年票,若只选择购买C类年票,若不购买年票,进入该园林的次数,通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C类年票.②设一年中进入该园林x次时,购买A类年票比较合算,根据题意,可得不等式组.求得解集即可得解.【解答】(1)解:不可能选A年票.若选B年票,则(次),若选C年票,则(次),若不购买年票,则(次),所以,若计划花费160元在该公园的门票上时,则选择购买C类年票进入公园的次数最多,为13次;(2)解:设超过x次时,购买A类年票比较合算,,解得x>30,因此,一年中进入该公园超过30次时,购买A类年票比较合算.【点评】此题主要考查了一元一次不等式组的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式组.25.【分析】(1)根据非负数的性质分别求出a、c,得到点B的坐标,根据坐标与图形性质判断AO和BC位置关系;(2)过B点作BE⊥AO于E,根据三角形的面积公式求出AP,得到点P的坐标;(3)分点Q在点C的上方、点Q在点C的下方两种情况,根据平行线的性质解答即可.【解答】解:(1)∵(a+8)2+=0,∴a+8=0,c+4=0,解得,a=﹣8,c=﹣4,则点B的坐标为(﹣4,﹣4),∵点B的坐标为(﹣4,﹣4),点C的坐标为(0,﹣4),∴BC∥AO,故答案为:(﹣4,﹣4),BC∥AO;(2)过B点作BE⊥AO于E,设时间经过t秒,S△P AB=2S△QBC,则AP=2t,OQ=t,∴CQ=4﹣t,∵BE=4,BC=4,∴,,∵S△APB=2S△BCQ,∴4t=2(8﹣2t)解得,t=2,∴AP=2t=4,∴OP=OA﹣AP=4,∴点P的坐标为(﹣4,0);(3)∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.理由如下:①当点Q在点C的上方时,过Q点作QH∥AO,如图2所示,∴∠OPQ=∠PQH,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠OPQ+∠CBQ=∠PQH+∠BQH,∴∠PQB=∠OPQ+∠CBQ,即∠PQB=∠OPQ+30°;②当点Q在点C的下方时;过Q点作HJ∥AO如图3所示,∴∠OPQ=∠PQJ,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ=30°,∴∠HQB+∠BQP+∠PQJ=180°,∴30°+∠BQP+∠OPQ=180°,即∠BQP+∠OPQ=150°,综上所述,∠PQB=∠OPQ+30°或∠BQP+∠OPQ=150°.【点评】本题考查的是三角形的面积计算、坐标与图形性质、平行线的性质、三角形内角和定理,掌握非负数的性质、灵活运用分情况讨论思想是解题的关键.一、七年级数学易错题1.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 2【答案】B 【解析】【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a 的取值范围是﹣4≤a <﹣3. 【详解】解不等式x ﹣a >0,得:x >a , 解不等式3﹣2x >0,得:x <1.5, ∵不等式组的整数解有5个, ∴﹣4≤a <﹣3, 故选B .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a 的取值范围.2.已知关于x 的不等式组 ()()255133 22x x x t x +⎧->⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( )A .1992t << B .1992t ≤<C .1992t <≤D .1992t ≤≤【答案】C【解析】 【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可. 【详解】解:由(1)得x<-10, 由(2)x>3-2t,, 所以3-2t<x<-10,∵x 有5个整数解,即x=-11,-12,-13,-14,-15, ∴163215t -≤-<-∴1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错.3.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( ) A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩ B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩ C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩ D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩【答案】A 【解析】 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .4.如果关于x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,设整数a 与整数b 的和为M ,则M 的值的个数为( ) A .3个 B .9个C .7个D .5个【答案】D 【解析】 【分析】先求出不等式组的解集,再得出关于a 、b 的不等式组,求出a 、b 的值,即可得出选项. 【详解】520730x a x b ->⎧⎨-≤⎩①②∵解不等式①得:x >25a , 解不等式②得:x≤37b , ∴不等式组的解集为2357a b x <≤, ∵x 的不等式组520730x a x b ->⎧⎨-≤⎩的整数解仅有7,8,9,∴6≤25a <7,9≤37b<10, 解得:15≤a <17.5,21≤b <2313,∴a=15或16或17,b=21或22或23,∴M=a+b=36、37、38、39或40,共5种情况.故选D【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.5.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为()A.B.C.D.2【答案】C【解析】【分析】过P点作PD⊥x轴,垂足为D,根据A(,0)、B(0,1)求OA、OB,利用勾股定理求AB,可得△ABC的面积,利用S△ABP=S△AOB+S梯形BODP﹣S△ADP,列方程求a.【详解】过P点作PD⊥x轴,垂足为D,由A(,0)、B(0,1),得OA,OB=1.∵△ABC为等边三角形,由勾股定理,得AB2,∴S△ABC.又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP(1+a)×3(3)×a=由2S△ABP=S△ABC,得:,∴a.故选C.【点睛】本题考查了坐标与图形,点的坐标与线段长的关系,不规则三角形面积的表示方法及等边三角形的性质和勾股定理.6.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③【答案】C【解析】【分析】【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角.平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.7.若于x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,且关于y 的分式方程3111y a y y---=--有非负整数解,则满足条件的所有整数a 的和为( ) A .12 B .14C .18D .24【答案】B 【解析】 【分析】根据已知x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩可解出x 的取值范围,且仅有5个整数解,可确定x可能取的值,即可求得a 的取值范围,再根据关于y 的分式方程3111y a y y---=--有非负整数解,可确定a 的取值范围,综合所有a 的取值范围得出a 最终可取的值,求和得答案. 【详解】解x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩得3284x x -≤-4x ≤2(5)2x a x -+<x >27a- ∵x 的不等式组3428512x x x a x +≤+⎧⎪⎨+-<⎪⎩有且仅有5个整数解,即0、1、2、3、4∴2107a--≤< 29a <≤y 的分式方程3111y a y y---=-- 3)1y a y --=-(31y a y -+=- 22y a =-22a y -=已知关于y 的分式方程3111y a y y---=--有非负整数解 而212a y -=≠ ∴202a -≥且212a -≠ 所以2a ≥且4a ≠又∵ 22a y -=有非负整数解∴a 为偶数综上所述,满足条件的所有整数a 为6、8,它们的和为14 故选:B 【点睛】本题主要考点:不等式组和分式方程的求解,根据已知条件,再通过求解不等式组和分式方程确定a 的取值范围,分式方程中分母不能为0,可作为已知条件,综合所有a 的取值范围,确定最终a 的值8.若数a 使关于x 的不等式52x x a -≥+的最小正整数解是1x =,则a 的取值范围是( ) A .2a >- B .2a <C .22a -<<D .2a ≤【答案】D 【解析】 【分析】由不等式的最小正整数解为1x =,可得出关于a 的一元一次不等式,解之即可得出a 的取【详解】解:∵关于x 的不等式52x x a -≥+的最小正整数解是1x = ∴214a+≤ 2a ≤故选:D. 【点睛】此题主要考查一元一次不等式的正整数解的问题,熟练利用数轴理解一元一次不等式的解集是解题的关键.9.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.10.如图,在平面直角坐标系上有点A(1,0),点A 第一次跳动至点()111A -,,第二次点1A 跳动至点()221A ,,第三次点2A 跳动至点()322A ,-,第四次点3A 跳动至点()432A ,,……,依此规律跳动下去,则点2017A 与点2018A 之间的距离是( )A .2017B .2018C .2019D .2020【答案】C 【解析】 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A 2017与点A 2018的坐标,进而可求出点A 2017与点A 2018之间的距离. 【详解】解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), …第2n 次跳动至点的坐标是(n+1,n ), 则第2018次跳动至点的坐标是(1010,1009), 第2017次跳动至点A 2017的坐标是(-1009,1009). ∵点A 2017与点A 2018的纵坐标相等,∴点A 2017与点A 2018之间的距离=1010-(-1009)=2019, 故选C .本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<【答案】B 【解析】 【分析】符号[]a 表示不大于a 的最大整数,即[]a 为小于等于a 的最大整数. 【详解】因为[]a 为小于等于a 的最大整数,所以[][]1a a a <+≤, 若[]a =-6,则a 的取值范围是65a -≤-<, 故选B . 【点睛】本题考查了对不等关系的理解,解题的关键是理解符号[]a 的本质是小于或等于a 的最大整数.12.如图所示,A 1(1,3),A 2(32,32),A 3(2,3),A 4(3,0).作折线A 1A 2A 3A 4关于点A 4的中心对称图形,再做出新的折线关于与x 轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线一每秒1个单位的速度移动,设运动时间为t .当t =2020时,点P 的坐标为( )A .(1010B .(2020C .(2016,0)D .(1010 【答案】A 【解析】 【分析】把点P 从O 运动到A 8作为一个循环,寻找规律解决问题即可. 【详解】由题意OA 1=A 3A 4=A 4A 5=A 7A 8=2,A 1A 2=A 2A 3=A 5A 6=A 6A 7=1, ∴点P 从O 运动到A 8的路程=2+1+1+2+2+1+1+2=12, ∴t =12,把点P 从O 运动到A 8作为一个循环, ∵2020÷12=168余数为4,∴把点A 3向右平移168×3个单位,可得t =2020时,点P 的坐标,∵A 3(2,168×6=1008,1008+2=1010,∴t =2020时,点P 的坐标(1010, 故选:A . 【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.13.已知13ax b ≤+<的解集为23x ≤<,则()113a x b ≤-+<的解集为( ) A .23x ≤< B .23x <≤ C .21x -≤<- D .21x -<≤-【答案】D 【解析】 【分析】令1-x=y ,则13ay b ≤+<,根据题干可知:23y ≤<,从而得出x 的取值范围. 【详解】令1-x=y ,则13ay b ≤+< ∵13ax b ≤+<的解集为23x ≤< ∴13ay b ≤+<的解集为:23y ≤< ∴213x ≤-< 解得:21x -<≤-【点睛】本题考查解不等式,解题关键是通过换元法,将1-x 表示为y 的形式.14.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩【答案】B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B .15.如果关于x 的不等式(a +1)x >a +1的解集为x <1,则a 的取值范围是( ) A .a <0 B .a <﹣1 C .a >1 D .a >﹣1【答案】B 【解析】 【分析】根据不等式的性质,两边同时除以a+1,a+1是正数还是负数不确定,所以要分两种情况,再根据解集为x <1,发现不等号的符号发生了变化,所以确定a+1<0,从而得到答案. 【详解】解:(a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <-1. 故选:B .此题主要考查了解不等式,当不等式两边除以同一个数时,这个数的正负性直接影响不等号.16.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为()A.(46,4)B.(46,3)C.(45,4)D.(45,5)【答案】D【解析】【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.17.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选C.【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.18.一个自然数的一个平方根是a,则与它相邻的下一个自然数的平方根是()a+A.1a+B.1C.21a+D.21±+a【答案】D【解析】【分析】根据平方根定义得原数为a2,故相邻的下一个自然数是a2+1,再求得平方根即可.。
人教版七年级数学上册第一章《有理数》单元模拟试卷一﹨选择题〖每小题3分,共18分〗 1.﹣21的倒数为〖 〗 A .﹣2 B .21 C .﹣21D .22.如果水位升高6m 时水位变化记作+6m ,那么水位下降6m 时水位变化记作〖 〗A .﹣3mB .3mC .6mD .﹣6m3.某自治州自然风景优美,每天吸引大量游客前来游览,经统计,某段时间内来该州风景区游览的人数约为36000人,用科学记数法表示36000为〖 〗A .36×103B .0.36×106C .C ﹨0.36×104D .3.6×1044.下列各式:①﹣〖﹣2〗;②﹣|﹣2|;③﹣22;④﹣〖﹣2〗2,计算结果为负数的个数有〖 〗.A .4个B .3个C .2个D .1个 5.下列说法正确的是〖 〗A .绝对值大的数一定大于绝对值小的数B .任何有理数的绝对值都不可能是负数C .任何有理数的相反数都是正数D .有理数的绝对值都是正数6.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是〖 〗 A .56 B .58 C .63 D .72二﹨填空题〖每小题3分,共18分〗7.某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是 . 8.在数轴上,点A 表示数﹣1,距A 点2个单位长度的点表示的数是 .9.一根2米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度是_________米.10.已知()01122=-++b a =0,则 20042b a +=_______.11.对于任意有理数a ,b ,规定运算:a*b=a 2﹣b 2﹣a .则〖﹣3〗*5= .12.数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是.三﹨计算题〖每小题6分,共30分〗13.计算:〖1〗〖-8〗×5-40=_____;1〗-〖-2〗=______.〖2〗〖-1.2〗÷〖-31,23分14.把数-7,4.8,4,0,-9,-7.9,-12,-32别填在相应的大括号内.正数:{ }负数:{ }分数:{ }整数:{ } 15.计算:〖1〗﹣16﹣|﹣5|+2×〖﹣〗2; 〖2〗2﹣54×〖﹣+〗.16.a ﹨b 互为相反数,c 与d 互为倒数,m 的绝对值是2,试求2015〖a+b 〗﹣3cd+m 2的值.17.〖本题满分8分〗画一条数轴并在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来:211-,0,﹣|﹣2.5|,﹣〖﹣3〗,1.5,31-.四﹨解答题〖18-21每题8分,22题10分,23题12分,共54分〗18.某检修工人检修电话线路,乘车时设定前进为正,后退为负,某天自A 地出发到收工时,所行路程为〖单位:千米〗:17,2,8,22,3,4+--+-+ 问收工时距A 地多远?若每千米耗油4升,问从A 地出发到收工共耗油多少升?19.根据某地实验测得的数据表明,高度每增加1 km ,气温大约下降6℃,已知该地地面温度为21℃. (1)高空某处高度是8 km ,求此处的温度是多少; (2)高空某处温度为一24 ℃,求此处的高度.20.设,0,0<>b a ,且b a <,在数轴上表示b b a a --,,,并用“<”号把它们连接起来。
2024-2025学年七年级数学上学期期中模拟卷(内蒙古呼和浩特专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七年级上册第一章至第四章。
5.难度系数:0.82。
一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题自的答案标号涂黑.1.小戴同学的微信钱包账单如图所示, 5.20+表示收入5.20元,下列说法正确的是( )A . 1.00-表示收入1.00元B . 1.00-表示支出1.00元C . 1.00-表示支出 1.00-元D .收支总和为6.20元2.亚洲、欧洲、非洲和南美洲的最低海拔如下表所示表,其中最低海拔最小的大洲是( )大洲亚洲欧洲非洲南美洲最低海拔/m415-28-156-40-A .亚洲B .欧洲C .非洲D .南美洲3.已知a ,b 两个数在数轴上对应的点如图所示,则下列结论正确的是( )A .0a b +>B .a b ->-C .0a b +=D .a b-<-4.下列各数:45-,1,8.6,7-,0,56, 243-,101+,0.05-,9-中,( )A .只有1,7-,101+,9-是整数B .其中有三个数是正整数C .非负数有1,8.6,101+,0D .只有45-,243-,0.05-是负分数5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( )A .717.510´B .81.7510´C .91.7510´D .90.17510´6.下列各数中,互为相反数的是( )A .()3--和3-B .2-和()2--C .12--和12æö-+ç÷èøD .0.6和()0.6---7.下列计算正确的是( )A .523xy xy -=B .2235x x x +=C .422422a a a -=D .352a a a-=-8.若623a x y -与13b x y +-的和为单项式,则a b 、的值分别为( )A .5a =,5b =B .3a =,5b =C .5a =,3b =D .3a =,3b =9.若1x =时,式子39ax bx ++的值为4.则当1x =-时,式子39ax bx ++的值为( )A .14-B .4C .13D .1410.一组按照规律排列的式子如下:2m 、25m -、310m 、417m -、526m 、……,请根据规律写出第21个式子为( )A .21401mB .21401m -C .21442m D .21442m -第II 卷(非选择题)二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.单项式5ab -的系数是__________,次数是__________.12.多项式2234x x --是由__________项组成的,它们分别是__________.13.已知120a b ++-=,则a b +=__________.14.对于有理数a b 、,若规定a b a ab *=-,则(2)5-*的值为__________.15.如图,化简b a b -+=__________.16.有下列说法:①若|a |=|b |,则a =b ;②两个数相加,若和为负数,则这两个数必定都是负数;③如果a +b <0,ab <0,那么这两个数一定一正一负,且负数的绝对值大;④正数的倒数大于它本身.则其中正确的序号有__________.三、解答题:本大题共有8小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(本小题满分10分)计算或化简:(1)()32024116231-+¸-´--;(2)()()224243x x x x +--+.18.(本小题满分7分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,()1--, 1.5-,0,2--,132-;______.19.(本小题满分10分)阅读下面的解题过程:计算:11(15)632æö-¸-´ç÷èø.解:原式1(15)66æö=-¸-´ç÷èø (第一步)(15)(1)=-¸- (第二步)15=- (第三步)回答:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是______,第二处是第三步,错误的原因是______.(2)把正确的解题过程写出来.20.(本小题满分7分)先化简,再求值:222243(25)(65)x y xy y x -++-,已知13x =,15y =.21.(本小题满分7分)张叔叔到某大厦办事,若乘电梯向上一层记作1+层,向下一层记作1-层.张叔叔从1楼出发,电梯上下楼层依次记录如下(单位:层)6+,3-,10+,8-,12+,7-,10-.(1)请你通过计算说明张叔叔最后是否回到出发层1楼;(2)该中心大楼每层高3米,电梯每向上或向下1米需要耗电0.2度,根据张叔叔上下楼的记录计算,他办事时电梯耗电多少度?22.(本小题满分9分)我们知道,分类讨论思想在数学中是非常重要的数学思想.请同学们阅读下面试题并把解题过程补充完整:已知若|x |=2,|y |=5,且x <0,求x +y 的值.解:因为|x |=2,|y |=5.所以x =±2,y =±5.因为x <0,所以x =__________.所以当x =__________,y =__________,x +y =__________;当x =__________,y =__________,x +y =__________.23.(本小题满分10分)【实践与应用】学校举办诗歌颂祖国活动,需要定制一批奖品颁发给表现突出的同学,每份奖品包含纪念徽章与纪念品各一个,现有两家供应商可以提供纪念徽章设计、制作和纪念品制作业务,报价如下:纪念徽章设计费纪念徽章制作费纪念品费用甲供应商300元3元/个18元/个乙供应商免设计费6元/个不超过100个时,20元/个;超过100个时,其中100个单价仍是20元/个,超出部分打九折(1)若学校需要定制20份奖品,则选甲供应商需要支付____________元,选乙供应商需要支付____________元;(2)现学校需要定制()100x x >份奖品.若选择甲供应商,需要支付的费用为____________元;(用含x 的代数式表示,结果需化简)若选择乙供应商,需要支付的费用为____________元;(用含x 的代数式表示,结果需化简)(3)如果学校需要定制150份奖品,请你通过计算说明选择哪家供应商比较省钱.24.(本小题满分12分)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是_____;表示―2和1两点之间的距离是_____;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ―n |.(2)如果|x+1|=2,那么x=______;(3)若|a―3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是______,最小距离是_____.(4)若数轴上表示数a的点位于―3与5之间,则|a+3|+|a―5|=_____.(5)当a=_____时,|a―1|+|a+5|+|a―4|的值最小,最小值是_____.。
李庄人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .1>0 D .1-m <2 2.下列各式中,正确的是( )16±4 B.±164 C 327- 3 2(4)- 4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A . B . C . D .4.一辆汽车在马路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为的方程组是( ) A. B. C. D.6.如图,在△中,∠500,∠800,平分∠,平分∠,则∠的大小是( ) A .1000 B .1100 C .1150 D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△沿方向平移了长度的一半得到的,若△的面积为20 cm 2,则四边形A 11的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案干脆填在答题卷的横线上. 11.49的平方根是,算术平方根是8的立方根是. 12.不等式59≤3(1)的解集是.13.假如点P(a,2)在第二象限,那么点Q(-3)在.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为C 1A 1ABB 1CD了使李庄人乘火车最便利(即间隔 最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠度.16.如图∥,∠100°平分∠,则∠.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种可以辅满地面的是.(将全部答案的序号都填上) 18.若│x 2-25则.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤. 19.解不等式组:,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, ∥ , 平分∠,你能确定∠B 及∠C 的数量关系吗?请说明理由。
七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
人教版2022-2023学年七年级数学上册期末模拟测试题(附答案)一.选择题(满分30分)1.﹣的相反数是()A.﹣B.C.﹣2D.22.若x=2是方程4x+2m﹣14=0的解,则m的值为()A.10B.4C.﹣3D.33.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离4.一个角的度数等于60°20′,那么它的余角等于()A.40°80′B.39°80′C.30°40′D.29°40′5.下列计算正确的是()A.﹣2﹣2=0B.8a4﹣6a2=2a2C.3(b﹣2a)=3b﹣2a D.﹣32=﹣96.下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣37.下列方程中,与x﹣1=﹣x+3的解相同的是()A.x+2=0B.2x﹣3=0C.x﹣2=2x D.x﹣2=08.若代数式ax2+4x﹣y+3﹣(2x2﹣bx+5y﹣1)的值与x的取值无关,则a+b的值为()A.6B.﹣6C.2D.﹣29.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,则下面所列方程正确的是()A.9x+11=6x﹣16B.9x﹣11=6x+16C.6x﹣11=9x+16D.6x+11=9x﹣1610.已知整数a1、a2、a3、a4、…满足下列条件:a1=﹣1,a2=﹣|a1+2|,a3=﹣|a2+3|,a4=﹣|a3+4|,…,a n+1=﹣|a n+n+1|(n为正整数)依此类推,则a2022的值为()A.﹣1010B.﹣2020C.﹣1011D.﹣2022二.填空题(满分15分)11.填空:1.4142135≈(精确到0.001).12.计算77°53′26″+43°22′16″=.13.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是.14.某种商品的标价为200元,为了吸引顾客,按九折出售,这时仍要盈利20%,则这种商品的进价是元.15.符号“f”,“g”分别表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,⋯,f(10)=9,⋯;(2),,,,⋯,,⋯.利用以上规律计算:=.三.解答题(满分75分)16.计算:(﹣1)10×2+(﹣2)3÷4.17.如图,∠AOB=120°,OC、OE、OF是∠AOB内的三条射线,且∠COE=60°,OF 平分∠AOE,∠COF=20°,求∠BOE的度数.18.先化简,再求值:,其中.19.解方程:(1)2(x+8)=3(x﹣1);(2)﹣=1.20.小奇借助有理数的运算,定义了一种新运算“⊕”,规则如下:a⊕b=ab+2a.(1)求的值;(2)若⊕x=x⊕3,求x的值.21.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?22.如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD、OE.并且使OB 是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,求∠BOD的度数;(2)若∠AOD=110°,∠BOE=100°,求∠AOE的度数;(3)当∠AOD=n°时,则∠BOE=(150﹣n)°,求∠BOD的度数.23.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是3个单位长度,长方形ABCD的长AD是6个单位长度,长方形EFGH的长EH是10个单位长度,点E 在数轴上表示的数是5,且E、D两点之间的距离为14.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,原点为O.当OM=ON时,求x的值.(3)若长方形ABCD以每秒4个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,当S=12时,求此时t的值.参考答案一.选择题(满分30分)1.解:﹣的相反数是,故选:B.2.解:把x=2代入方程得:4×2+2m﹣14=0,解得:m=3,故选:D.3.解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:B.4.解:90°﹣60°20′=29°40′,故选:D.5.解:A、﹣2﹣2=﹣2+(﹣2)=﹣4,此选项错误;B、8a4与﹣6a2不是同类项,不能合并,此选项错误;C、3(b﹣2a)=3b﹣6a,此选项错误;D、﹣32=﹣9,此选项正确;故选:D.6.解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.7.解:x﹣1=﹣x+3,解得:x=2,将x=2代入各选项可得:A.左边=4,右边=0,左边≠右边,故本选项不合题意;B.左边=1,右边=0,左边≠右边,故本选项不合题意;C.左边=0,右边=4,左边≠右边,故本选项不合题意;D.左边=0,右边=0,左边=右边,故本选项符合题意;故选:D.8.解:ax2+4x﹣y+3﹣(2x2﹣bx+5y﹣1)=ax2+4x﹣y+3﹣2x2+bx﹣5y+1=(a﹣2)x2+(4+b)x﹣6y+4,∵ax2+4x﹣y+3﹣(2x2﹣bx+5y﹣1)的值与x的取值无关,∴a﹣2=0且4+b=0,∴a=2,b=﹣4,∴a+b=﹣2,故选:D.9.解:设有x个人共同出钱买鸡,根据题意得:9x﹣11=6x+16.故选:B.10.解:a1=﹣1,a2=﹣|﹣1+2|=﹣1,a3=﹣|﹣1+3|=﹣2,a4=﹣|﹣2+4|=﹣2,a5=﹣|﹣2+5|=﹣3,a6=﹣|﹣3+6|=﹣3,…,∴a1=a2=﹣1,a3=a4=﹣2,a5=a6=﹣3,…,∵2022÷2=1011,∴a2022=﹣1011,故选:C.二.填空题(满分15分)11.解:1.4142135≈1.414(精确到0.001).故答案为:1.414.12.解:77°53′26″+43°22′16″=121°15′42″.故答案为:121°15′42″.13.解:∵a2+2a﹣3=0,∴a2+2a=3,∴2a2+4a﹣3=2(a2+2a)﹣3=2×3﹣3=3,故答案为:3.14.解:设这种商品的进价是x元,由题意可得:200×0.9﹣x=20%x,解得x=150,答:这种商品的进价是150元,故答案为:150.15.解:由(1)可知:f(n)=n﹣1,由(2)知:g(n)=,∴=2022﹣2021=1,故答案为:1.三.解答题(满分75分)16.解:(﹣1)10×2+(﹣2)3÷4=1×2﹣8×=2﹣2=0.17.解:∵∠COE=60°,∠COF=20°,∴∠EOF=∠COE﹣∠COF=60°﹣20°=40°,∵OF平分∠AOE,∴∠AOE=2∠EOF=80°,∴∠BOE=∠AOB﹣∠AOE=120°﹣80°=40°.18.解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=,y=﹣2时,原式=﹣2+4=2.19.解:(1)2(x+8)=3(x﹣1),去括号,得2x+16=3x﹣3,移项,得2x﹣3x=﹣3﹣16,合并同类项,得﹣x=﹣19,系数化为1,得x=19;(2)﹣=1,去分母,得2(5x+1)﹣(2x﹣1)=6,去括号,得10x+2﹣2x+1=6,移项,得10x﹣2x=6﹣1﹣2,合并同类项,得8x=3,系数化为1,得x=.20.解:(1)根据题中的新定义得:4⊕=4×+2×4=2+8=10,则原式=(﹣3)⊕10=﹣3×10+2×(﹣3)=﹣30﹣6=﹣36;(2)已知等式利用题中的新定义化简得:x+1=3x+2x,去分母得:x+2=6x+4x,移项合并得:9x=2,解得:x=.21.解:(1)设乙工程队每天能完成x平方米的绿化改造面积,则甲工程队每天能完成(x+200)平方米的绿化改造面积,依题意得:x+200+x=800,解得:x=300,∴x+200=300+200=500.答:甲工程队每天能完成500平方米的绿化改造面积,乙工程队每天能完成300平方米的绿化改造面积.(2)选择方案①所需施工费用为600×=14400(元);选择方案②所需施工费用为400×=16000(元);选择方案③所需施工费用为(600+400)×=15000(元).∵14400<15000<16000,∴选择方案①的施工费用最少.22.解:(1)OB是∠AOC的平分线,∴∠BOC=∠AOB=50°;∵OD是∠COE的平分线,∴∠COD=∠DOE=30°,∴∠BOD=∠BOC+∠COD=50°+30°=80°;(2)∵OB平分∠AOC,OD平分∠COE,∴设∠EOD=∠DOC=x°,∠AOB=∠COB,∵∠AOD=110°,∠BOE=100°,∴∠AOB=∠BOC=100°﹣2x°,∴∠COD+∠COB+∠AOB=110°,∴x+100﹣2x+100﹣2x=110,解得x=30,即∠EOD=∠DOC=30°,∴∠AOE=∠AOD+∠DOE=110°+30°=140°.(3)设∠EOD=∠DOC=x°,∠AOB=∠BOC=y°,依题意可知,x°+y°+y°=n°,x°+x°+y°=(150﹣n)°则3x°+3y°=150°,∴x°+y°=50°,∴∠BOD=50°.23.解:(1)由题意得:ED=14,OE=5,EH=10,AD=6,∴OH=OE+EH=5+10=15,OD=ED﹣OE=14﹣5=9,∴OA=OD+AD=9+6=15,∴点H在数轴上表示的数是15,点A在数轴上表示的数是﹣15,故答案为:15;﹣15;(2)∵点M为线段AD的中点,AD=6,∴DM=3,∵线段AD的中点为M,∴M表示的数为﹣12,∵线段EH上一点N,且EN=EH,∴N表示的数为7,点M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,则经过x秒后,M点表示的数为4x﹣12,N点表示的数为7﹣3x,∵OM=ON,∴|4x﹣12|=|7﹣3x|,∴4x﹣12=7﹣3x,或4x﹣12=3x﹣7,∴x=,或x=5,∴x=秒或x=5秒时,OM=ON;(3)∵两个长方形的宽都是3个单位长度,两个长方形重叠部分的面积为12,∴重叠部分的的长方形的长为4,当点D运动到E点右边4个单位时,两个长方形重叠部分的面积为12,此时长方形ABCD运动的时间为:(14+4)÷4=(秒);当点A运动到H点左边4个单位时,两个长方形重叠部分的面积为12,此时长方形ABCD运动的时间为:(6+14+6)÷4=(秒),综上,长方形ABCD运动的时间为秒或秒时,两个长方形重叠部分的面积为12.。
一、选择题1.(0分)[ID:67642]有理数a、b在数轴上,则下列结论正确的是()A.a>0 B.ab>0 C.a<b D.b<02.(0分)[ID:67629]下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.43.(0分)[ID:67623]计算4(8)(4)(1)+-÷---的结果是()A.2 B.3 C.7 D.4 34.(0分)[ID:67619]实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.(0分)[ID:67617]下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数6.(0分)[ID:67612]一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比()A.提高20元B.减少20元C.提高10元D.售价一样7.(0分)[ID:67598]绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.48.(0分)[ID:67596]一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 39.(0分)[ID:67592]某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个10.(0分)[ID:67590]一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多1011.(0分)[ID:67581]当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米 12.(0分)[ID :67579]若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1 13.(0分)[ID :67578]把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000 14.(0分)[ID :67576]计算 -2的结果是( )A .0B .-2C .-4D .4 15.(0分)[ID :67573]有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <二、填空题16.(0分)[ID :67754]绝对值小于2的整数有_______个,它们是______________. 17.(0分)[ID :67726]已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____.18.(0分)[ID :67690]若两个不相等的数互为相反数,则两数之商为____.19.(0分)[ID :67687]已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.20.(0分)[ID :67678]下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.21.(0分)[ID :67676]定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.22.(0分)[ID :67670]等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.23.(0分)[ID :67660]截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.24.(0分)[ID :67750]一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .25.(0分)[ID :67749]如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.26.(0分)[ID :67723]如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.27.(0分)[ID :67719]比较大小:364--_____________()6.25--. 三、解答题28.(0分)[ID :67889]阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x xx ==--.用这个结论可以解决下面问题: (1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c+++++的值. 29.(0分)[ID :67943]计算:2202013(1)(2)4(1)2-÷-⨯---+-.30.(0分)[ID :67925]小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.C3.C4.B5.D6.B7.C8.C9.D10.D11.B12.D13.C14.A15.C二、填空题16.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(117.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b18.-1【分析】设其中一个数为a(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和19.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:20.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶21.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶22.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的23.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学24.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可26.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数27.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据数轴的性质,得到b>0>a,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b>0>a,所以A、D错误,C正确;而a和b异号,因此乘积的符号为负号,即ab<0所以B错误;故选C.【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a和b的位置正确判断a和b的大小.2.C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.3.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 4.B解析:B【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.5.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意;既没有最大的数,也没有最小的数,正确,故选项D 符合题意.故选:D .【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键. 6.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.7.C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.8.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.9.D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.10.D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.11.B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.12.D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.13.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法15.C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.二、填空题16.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.17.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab 的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.18.-1【分析】设其中一个数为a(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a (a ≠0),则它的相反数为-a ,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.19.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab <0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab <0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.20.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶 解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.21.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.22.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,+⨯=.∴点C对应的数是1134故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.23.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,24.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.26.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.27.【分析】利用绝对值的性质去掉绝对值符号再根据正数大于负数两个负数比较大小大的数反而小可得答案【详解】∵由于∴故答案为:【点睛】本题考查了绝对值的化简以及有理数大小比较两个负数比较大小绝对值大的数反而小解析:<【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】∵3276 6.7544--=-=-,()6.25 6.25--=,由于 6.75 6.25-<,∴36( 6.25)4--<--,故答案为:<.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.三、解答题(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b +-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 30.(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.。
人教版七年级数学期中模拟试题(带解析)一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 有理数a、b、c满足a < b < c,且a + c = 0,那么b的取值范围是?A. b > 0B. b < 0C. b = 0D. 无法确定4. 若一个等差数列的首项为2,公差为3,那么第10项是多少?A. 29B. 30C. 31D. 325. 一个正方形的对角线长为10cm,那么它的面积是?A. 50cm²B. 100cm²C. 200cm²D. 50√2cm²二、判断题(每题1分,共5分)6. 两个负数相乘,结果一定是正数。
()7. 一组对边平行且相等的四边形一定是矩形。
()8. 0是有理数。
()9. 任何一个等差数列的相邻两项之差都是相同的。
()10. 若a² = b²,则a = b。
()三、填空题(每题1分,共5分)11. 若|a| = 5,则a = _______ 或 _______。
12. 一个正方形的边长为6cm,则它的对角线长为 _______ cm。
13. 若一个等差数列的第3项是7,第7项是19,则它的公差是_______。
14. 若一个等比数列的首项为2,公比为3,那么第4项是_______。
15. 一个圆的半径为5cm,则它的周长是 _______ cm。
四、简答题(每题2分,共10分)16. 简述有理数的定义。
17. 什么是等腰三角形?它有哪些性质?18. 什么是等差数列?给出一个等差数列的例子。
19. 什么是等比数列?给出一个等比数列的例子。
20. 什么是勾股定理?请给出一个应用勾股定理的例子。
五、应用题(每题2分,共10分)21. 小明从家出发去学校,他以每分钟80米的速度走了10分钟,然后以每分钟100米的速度走了5分钟。
人教版七年级数学模拟试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,三角形ABC,∠BAC=,AD是三角形ABC的高,图中相等的是().
A.∠B=∠C B.∠BAD=∠B C.∠C=∠BAD D.∠DAC=∠C
2 . 二元一次方程 2x−y=1 有无数多个解,下列四组值中是该方程的解是()
A.B.C.D.
3 . 下列说法中正确的是()
A.如果两条直线被第三条直线所截,那么同旁内角互补
B.垂线段最短
C.垂直于同一条直线的两条直线平行
D.如果a=b,那么a=b
4 . 如图,在中BC边上的高是()
A.CE B.CF C.AD D.AC
5 . 如果点A( a ,b )在第二象限,那么a 、b 的符号是()
A.a > 0 , b > 0B.a < 0 , b > 0
C.a > 0 , b < 0D.a < 0 , b < 0
6 . 如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()
A.(,),(,)B.(,),(,)
C.(,),(,)D.(,),(,)
7 . 下列现象中是平移的是()
A.将一张纸沿它的中线折叠B.飞碟的快速转动
C.电梯的上下移动D.翻开书中的每一页纸张
8 . 一个等腰三角形的两条边长分别是方程x2﹣6x+8=0的两根,则该等腰三角形的周长是()
A.8B.10C.12D.8或10
9 . 的值为()
A.2B.±2C.-2D.
10 . 已知点P在x轴上方,y轴左侧,距x轴2个单位长度,距y轴3个单位长度,则点P的坐标为()A.(3,2)B.(-2,-3)C.(-3,2)D.(3,-2)
二、填空题
11 . 所在的象限是第__________象限.
12 . 把命题“等角的补角相等”改写成“如果…,那么…”的形式为________________________.题设是:
________________________.结论是:________________________.
13 . 小明想度量图中点到三角形的边的距离,在老师的指导下小明完成了画图,那么____就是点
到直线的距离.
14 . 如果,则的值是___________.
15 . 如图,一艘轮船自西向东航行,航行到处测得小岛位于北偏东方向上,继续向东航行10海里到达点处,测得小岛在轮船的北偏东方向上,此时轮船与小岛的距离为_____海里.(结果保留根号)
16 . 直线l1∥l2,一块含45°角的直角三角板如图放置.若∠1=75°,则∠2=_____度.
17 . 如图,如果正方形BEFG的面积为6,正方形ABCD的面积为8,则的面积是
_______.
18 . 如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H;下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正确的结论有
______.
三、解答题
19 . 在下图中平移三角形ABC,使点A移到点A’,点B和点C应移到水面位置?请在图中画出平移后图形(保
留作图痕迹).
20 . 问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是边CB上任意一点,△ADE是等边三角形,且点E在∠ACB的内部,连接B
A.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为,点E落在 ______ ,容易得出BE与DE之间的数量关为;
(2)当点D是BC上任意一点(不与点B、C重合)时,结合图1,探究(1)中线段BE与DE之间的数量关系是否还成立?并证明你的结论.
(3)如图3,若点P为直线BC上一点,若△PAB为等腰三角形,请你求出∠APB的度
数.
21 . “方程”是现实生活中十分重要的数学模型.请结合你的生活实际编写一道二元一次方程组的应用题,并使所列出的二元一次方程组为,并写出求解过程.
22 . 计算:(﹣1)2017+(π﹣2017)0﹣.
23 . 解方程组:.
24 . 已知点A(2m+1,m+9)在第一象限,且点A到x轴和y轴的距离相等,求点A的坐标.
25 . 如图,∠1=60°,∠2=60°,∠3=85°,求∠4的度数.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、。