Verilog-A 30分钟快速入门教程
- 格式:pdf
- 大小:203.84 KB
- 文档页数:7
Verilog的词法约定1Verilog是大小写相关的,其中的关键字全部为小写。
2空白符由空格、制表符、和换行符组成。
3单行注释以“//”开始,verilog将忽略此处到行尾的内容。
多行注释以“/*”开始,以“*/”结束。
多行注释不允许嵌套4操作符有三种:单目操作符、双目操作符和三目操作符。
5数字声明Verilog中有两种数字生命:指明位数的数字和不指明位数的数字指明位数的数字表示形式:<size>’<base format><number>Size用来指明数字位宽度,只能用十进制整数表示Base format包括十进制(’d或’D),二进制(’b或’B),八进制(‘o或’O),十六进制(‘h或’H)例如4’b1111 //4位2进制数12’h3ac //12位16进制数不指明位数的数字:如果数字说明中没有指定基数,那么默认表示为十进制数。
如果没有指定位宽,则默认的位宽度与仿真器和使用的计算机有关(最小为32位)。
‘o21 //32位八进制数X值和Z值:不确定值用X表示,高阻用Z值表示。
在八进制数中代表3位,十六进制中代表4位。
12’h12X //这是一个12位16进制数,其中低四位不确定负数:在表示位宽的数字前面增加一个减号来表示它是一个负数。
-6’d3 //一个6位的用二进制补码形式存储的十进制数3,表示负数-6’sd3 //一个6位的带符号算数运算的负数下划线符号和问号:除了第一个字符,下划线“_”可以出现在数字中的任何位置,它的作用只是提高可读性,在编译阶段会被忽略掉问号“?”是z的另一种表示,使用问号的目的在于增强casex和casez语句的可读性。
在这两条语句中,“?”表示不必关心的情况。
12’B1111_0011_1110 // 增强可读性4’b10?? //相当于4’b10zz6字符串是双引号括起来的一个字符队列。
对于字符串的限制是,它必须在一行中书写完,不可书写在多行中,也不能包含回车符。
目录•Verilog概述•Verilog基础语法•组合逻辑电路设计•时序逻辑电路设计•数字系统设计方法学•华为Verilog编程规范与技巧Verilog概述1 2 3Verilog语言诞生,最初用于模拟电子系统的行为。
1980年代初期Verilog逐渐发展成为硬件描述语言(HDL),用于描述数字电路和系统的结构和行为。
1980年代中期Verilog不断完善和发展,成为电子设计自动化(EDA)领域的重要标准之一,广泛应用于集成电路设计、FPGA开发等领域。
1990年代至今Verilog历史与发展集成电路设计Verilog可用于描述数字集成电路的逻辑功能、时序关系和电路结构,是IC设计领域的重要工具。
FPGA开发Verilog可用于FPGA的逻辑设计和编程,实现复杂的数字系统和算法。
ASIC设计Verilog可用于ASIC设计的各个阶段,包括逻辑设计、综合、布局布线等。
系统级建模与仿真Verilog可用于构建系统级模型,进行系统仿真和性能分析。
Verilog应用领域01Verilog 是一种硬件描述语言(HDL ),用于描述数字电路和系统的结构和行为。
02与其他硬件描述语言(如VHDL )相比,Verilog具有更接近C 语言的语法风格,易于学习和使用。
Verilog 支持多种抽象层次的描述,包括行为级、寄存器传输级(RTL )、门级和开关级,方便设计师在不同设计阶段使用。
Verilog 与硬件描述语言关系02Verilog基础语法标识符与关键字标识符用于标识变量、模块、函数等程序实体的名称,由字母、数字和下划线组成,首字符必须是字母或下划线。
关键字Verilog语言中的保留字,用于定义语言结构和控制语句,如`module`、`input`、`output`、`if`、`else`等。
数据类型与运算符数据类型包括整型(`integer`)、实型(`real`)、时间型(`time`)以及用户自定义类型等。
(完整word版)Verilog-A30分钟快速入门教程.docxVerilog-A 30分钟快速入门教程进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“ Verilog- AMS Language Reference Manual”和ADS的帮助文档。
现在的状态算是入门了,写了个简单的PLL。
总结这几天的学习,觉得效率太低,我以前有一定 Verilog 基础,研一时学过一点 VHDL-AMS ,学到现在这个状态应该半天就够了;入门的话, 30 分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A 。
(前提是有一定的Verilog 基础和电路基础)1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的简化版),作为模拟电路描述语言Verilog-A ,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow) 和位 (Potential) ,在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。
在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(out)/R ,这样就产生了一个电阻,最后 Verilog-A 仿真器会用某种算法( 迭代是最常见的 ) 将 I(out) 和 V(out) 求解出来,然后根据这个解去算下一个时刻的 I 、V 等,当然这仅仅是指时域仿真。
2 、下面讲Verilog-A的语法:begin end //相当于C语言的一对大括号,与Verilog同if ( expression ) true_statement ;[ else false_statement ; ] //与Verilog同case ( expression ) case_item { case_item } endcasefor ( procedural_assignment ; expression;procedural_assignment ) statement//case与for语句都跟Verilog、C语言类似cross( expr [, dir [, time_tol [, expr_tol ]]] );//cross 用来产生一个 event ,如:@(cross(V(sample) -2.0, +1.0))//指 sample 的电压超过 2.0 时触发该事件,将会执行后面的语句,+1.0 表示正向越过, -1.0 则相反ddt( expr )// 求导,如:I(n1,n2) <+ C * ddt(V(n1, n2)); //表示了一个电容idt( expr ,[ ic [, assert [, abstol ]]] ) //积分,如:V(out) <+ gain * idt(V(in) ,0) + gain * V(in);// 比例积分,式中的 0 表示积分的初值transition( expr [, time_delay [, rise_time [, fall_time [, time_tol ]]]] )// 将 expr 的值 delay一下并指定上升下降沿时间,相当于一个传输门laplace_zp( expr ,ζ ,ρ)将expr 进行拉普拉斯变换,具体表达式参看相关文献,还有laplace_zd()等数据类型:integer 、real ,另外就是 discipline ,不知道怎么翻译比较好,比如说它将电压电流这两个nature 类型作为一个discipline ,这些都在disciplines.vams这个头文件里建好了,编程时要`include "disciplines.vams"。
•Verilog-A 30分钟快速入门教程进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS Language Reference Manual”和ADS的帮助文档。
现在的状态算是入门了,写了个简单的PLL。
总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。
(前提是有一定的Verilog基础和电路基础)1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。
在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(out)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(out)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。
2、下面讲Verilog-A的语法:begin end //相当于C语言的一对大括号,与Verilog同if ( expression ) true_statement ;[ else false_statement ; ] //与Verilog同case ( expression ) case_item { case_item } endcasefor ( procedural_assignment ; expression;procedural_assignment ) statement//case与for语句都跟Verilog、C语言类似cross( expr [, dir [, time_tol [, expr_tol ]]] );//cross用来产生一个event,如:@(cross(V(sample) -2.0, +1.0))//指sample的电压超过2.0时触发该事件,将会执行后面的语句,+1.0表示正向越过,-1.0则相反ddt( expr ) //求导,如:I(n1,n2) <+ C * ddt(V(n1, n2)); //表示了一个电容idt( expr ,[ ic [, assert [, abstol ]]] ) //积分,如:V(out) <+ gain * idt(V(in) ,0) + gain * V(in);//比例积分,式中的0表示积分的初值transition( expr [, time_delay [, rise_time [, fall_time [, time_tol ]]]] ) //将expr的值delay一下并指定上升下降沿时间,相当于一个传输门laplace_zp( expr ,ζ,ρ)将expr进行拉普拉斯变换,具体表达式参看相关文献,还有laplace_zd()等数据类型:integer、real,另外就是discipline,不知道怎么翻译比较好,比如说它将电压电流这两个nature类型作为一个discipline,这些都在disciplines.vams 这个头文件里建好了,编程时要`include "disciplines.vams"。
verilog教程当您开始学习Verilog时,以下是一些重要的基础知识和概念。
1. Verilog是一种硬件描述语言(HDL),用于描述和设计数字电路。
它可以用于模拟、合成和验证电路。
2. Verilog使用模块化的设计风格。
每个设计都由一个或多个模块组成,每个模块有自己的输入和输出。
3. 使用`module`关键字定义一个模块,并在其后给出模块的名称。
```verilogmodule my_module;// 模块主体endmodule```4. 模块内部包含用`input`和`output`声明的端口,用于与其他模块进行通信。
```verilogmodule my_module(input wire a,input wire b,output wire c);// 模块主体endmodule```5. `wire`关键字用于声明连接不同模块的导线。
可以将导线看作是用于传输数字信号的线。
6. 在模块主体中,可以使用`assign`关键字创建逻辑连接。
逻辑连接使用`=`运算符连接输入和输出。
```verilogmodule my_module(input wire a,input wire b,output wire c);assign c = a & b;endmodule```7. 除了逻辑连接外,可以在模块内部使用`always`块创建组合和时序逻辑。
```verilogmodule my_module(input wire a,input wire b,output wire c);reg d;always @(a or b)d = a | b;assign c = d;endmodule```8. Verilog还支持使用`if-else`语句,`case`语句和循环结构等常见的编程结构。
9. 为了模拟和验证设计,可以使用Verilog仿真工具,如ModelSim、VCS等。
•进入正题,学了几天的Verilog-A,平台是Agilent ADS,主要参考“Verilog-AMS L anguage Reference Manual”和ADS的帮助文档。
现在的状态算是入门了,写了个简单的PLL。
总结这几天的学习,觉得效率太低,我以前有一定Verilog基础,研一时学过一点VHDL-AMS,学到现在这个状态应该半天就够了;入门的话,30分钟足矣;跟着这个教程走,你会很快了解和熟悉Verilog-A。
(前提是有一定的Verilog 基础和电路基础)
1、基尔霍夫定律撑起了整个电路学的大厦(当然也可以认为基尔霍夫定律只是麦克斯韦方程的
简化版),作为模拟电路描述语言Verilog-A,同样将基尔霍夫定律作为其基本,最重要的两个概念便是流量(Flow)和位(Potential),在电学里是电流和电压,在力学里可以是力和距离,在热学里可以是功率和温差,等等。
在Verilog-A中,你可以将电阻电容电感等器件用一个方程式来表述,比如I(out) <+ V(o ut)/R,这样就产生了一个电阻,最后Verilog-A仿真器会用某种算法(迭代是最常见的)将I(o ut)和V(out)求解出来,然后根据这个解去算下一个时刻的I、V等,当然这仅仅是指时域仿真。
2、下面讲Verilog-A的语法:
begin end //相当于C语言的一对大括号,与Verilog同
if ( expression ) true_statement ;
[ else false_statement ; ] //与Verilog同
case ( expression ) case_item { case_item } endcase
for ( procedural_assignment ; expression;
procedural_assignment ) statement
//case与for语句都跟Verilog、C语言类似
cross( expr [, dir [, time_tol [, expr_tol ]]] );
//cross用来产生一个event,如:
@(cross(V(sample) -2.0, +1.0))
//指sample的电压超过2.0时触发该事件,将会执行后面的语句,+1.0表示正向越过,-1. 0则相反
ddt( expr ) //求导,如:
I(n1,n2) <+ C * ddt(V(n1, n2)); //表示了一个电容
idt( expr ,[ ic [, assert [, abstol ]]] ) //积分,如:
V(out) <+ gain * idt(V(in) ,0) + gain * V(in);
//比例积分,式中的0表示积分的初值
transition( expr [, time_delay [, rise_time [, fall_time [, time_tol ]]]] )
//将expr的值delay一下并指定上升下降沿时间,相当于一个传输门
laplace_zp( expr ,ζ,ρ)
将expr进行拉普拉斯变换,具体表达式参看相关文献,还有laplace_zd()等
数据类型:
integer、real,另外就是discipline,不知道怎么翻译比较好,比如说它将电压电流这两个na ture类型作为一个discipline,这些都在disciplines.vams这个头文件里建好了,编程时要`i nclude "disciplines.vams"。
如果要定义一个电路节点,electrical node_name就好了parameter {real | integer} list_of_assignments ;
//定义参数,如parameter R = 50 from (0:inf];
在一个模块中调另一个模块和Verilog差不多,如:
blk_a a1(Input1, a_b1);
blk_a a2(Input2, a_b2);
运算符号:
+ - * / > < == & | && || ^ << >> ?: 等,跟Verilog一样
另外,新加的一个符号<+,这个专门给模拟信号赋值用,注意这个赋值符号是可以累加的,就是说赋两次值的话,它会加起来,而不是覆盖,如:
// model input admittance(导纳)
I(in) <+ V(in)/Rin;
I(in) <+ Cin*ddt(V(in));
预处理&宏:
`define `else `ifdef `include `resetall `undef
跟Verilog差不多
3、Verilog-A程序基本结构:
`include "disciplines.vams" //预处理
module load(p); //定义模块,p是端口
electrical p, gnd; //定义节点
ground gnd; //定义gnd为ground节点,电位为0
parameter real R=50.0; //定义R这个参数并赋初值
analog //模拟语句从这开始
V(p) <+ R * I(p, gnd); //在这里表示一个电阻,表示了输出电压与输出电流的关系
endmodule //模块定义结束
4、上面这些基本上是最常用的了,了解之后,你就能看懂一般的Verilog-A程序了,下面是我写的PLL仿真程序,把它看完并看懂(当然第一次并不需要看得很仔细):
提示:振荡频率4~6G,分频器为50分频,Fref为100M,鉴相器为电荷泵型。
`include "disciplines.vams"
`include "constants.vams"
//VCO
module my_vco(in, out);
input in;
output out;
electrical in, out;
parameter real gain=2.0e9, fc=4.0e9;
analog
V(out) <+ sin(2*`M_PI*(fc*$realtime + idt(gain*V(in)))); endmodule
//phase detector
module my_pd(ref,rf,outP,outN);
input ref,rf;
output outP,outN;
electrical ref,rf,outP,outN;
real clr,up,down;
parameter real Ro=1e6, Ro2=1;
analog begin
@(cross(V(ref)-0.5,+1))
up = 1;
@(cross(V(rf)-0.5,+1))
down = 1;
clr = absdelay(up && down, 1e-9);
// clr = transition(up && down, 1e-9); //这两条语句都可以if(clr>0.5) begin
up = 0;
down = 0;
end
if(up) begin
if(V(outP)>= 3)
V(outP) <+ 3-I(outP)*Ro2;
else I(outP) <+ -up*0.01;
end
else begin
I(outP) <+ 0;
end
if(down) begin
if(V(outN) <= 0)
V(outN) <+ 0-I(outN)*Ro2;
else I(outN) <+ down*0.01;
end
else begin
I(outN) <+ 0;
end
end
endmodule
//N divider
module my_divider(in,out);
input in;
output out;
electrical in,out;
integer cnt;
parameter integer K=50;
analog begin
@(cross(V(in),+1))
cnt = cnt+1;
if(cnt>=K)
cnt=0;
if(cnt*2-K>=0)
V(out) <+ 1;
else
V(out) <+ 0;
end
endmodule
以上是VCO、鉴相器和分频器,原理图我是在ADS中画的,如下所示:
以下是仿真结果:。